# **Constant Speed Motors**

Overview, Product Series

> Constant Speed Motors

Three-Phase Induction Motors

Single-Phase Induction Motors

Reversible Motors

Electromagnetic Brake Motors

Clutch & Brake Motors

Electromagnetic Brake Motors

**Reversible Motors** 

**Three-Phase** 

Single-Phase Induction Motors

**Induction Motors** 

**Clutch & Brake Motors** 

Low-Speed Synchronous Motors Low-Speed Synchronous Motors

Watertight, Dust-Resistant Motors

Motors

Right-Angle Gearheads

Linear Heads

Brake Pack

Accessories

Installation

|                                                  | Page      |
|--------------------------------------------------|-----------|
| Features and Types of Constant Speed Motors····· | ···· C-10 |
| How to Read Specifications                       | ···· C-12 |
| Common Specifications                            | ···· C-17 |
| Three-Phase Induction Motors                     | ···· C-21 |
| Single-Phase Induction Motors                    | ·· C-113  |
| Reversible Motors                                | C-147     |
| Electromagnetic Brake Motors                     | C-155     |
| Clutch & Brake Motors                            | C-163     |
| Low-Speed Synchronous Motors                     | C-167     |

# **Features and Types of Constant Speed Motors**

Constant speed motors come in various types as shown below. Select from a wide range of products depending on the application, required functions, output, etc.

|                              |                                                                                               | Frame Size mm (in.)/Output Power                                                                                                                                                                                                                                                                                                                                                                                                      |                | □60            | □70             | □80                                 |      |                             | 90           |          | □104             |
|------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------|-------------------------------------|------|-----------------------------|--------------|----------|------------------|
| Types                        | Features                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                       | (□1.65)<br>1 W | (□2.36)<br>6 W | (□2.76)<br>15 W | (□3.15)<br>25 W                     | 40 W | (□3.<br>60 W                | .54)<br>90 W | 100 W    | (□4.09)<br>200 W |
|                              |                                                                                               | Series                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                 |                                     |      | (1/12 HP)                   |              | (1/8 HP) | (1/4 HP)         |
|                              | Suitable for applications<br>where the motor is<br>operated continuously<br>in one direction. | KIIS Series<br>These new high-efficiency three-<br>phase induction motors were created<br>through optimized motor design.<br>They are best suited for speed<br>control in combination with an<br>inverter.<br>The right-angle geared type provides<br>high strength through the use of<br>hypoid gears and an integral<br>structure of the motor and<br>gears.<br>KIIS Series<br>CON US CE<br>CON US CE<br>Right-Angle<br>Geared Type |                |                |                 |                                     |      | •                           |              | •        |                  |
| Induction Motors             |                                                                                               | KII Series<br>This series adopts a gearhead with<br>high permissible torque, high<br>strength, long life and low noise.<br>The "Combination Type" comes with<br>a motor and a pre-assembled<br>gearhead.                                                                                                                                                                                                                              |                | •              | •               | •                                   | •    | •                           | •            |          |                  |
|                              |                                                                                               | World K Series<br>These motors conform to major<br>standards and support global power<br>supply voltages for use in major<br>countries. C E<br>2-Pole,<br>High-Speed<br>Type                                                                                                                                                                                                                                                          |                | •              |                 | 40 W, 60 W<br>(1/19 HP,<br>1/12 HP) | •    | 60 W, 90<br>(1/12 HP<br>1/5 | , 1/8 HP,    |          |                  |
| Page<br>C-21                 |                                                                                               | BH Series<br>The BH Series provides high-output<br>power of 200 W (1/4 HP) in a compact<br>104 mm (4.09 in.) square mounting<br>configuration. They also conform to<br>major standards and support global<br>power supply voltages.                                                                                                                                                                                                   |                |                |                 |                                     |      |                             | ,            |          | •                |
| Page C-147                   | Suitable for applications<br>where the motor reverses<br>its direction repeatedly.            | World K Series<br>These motors conform to major<br>standards and support global power<br>supply voltages for use in major<br>countries.                                                                                                                                                                                                                                                                                               | •              | •              | •               | •                                   | •    | •                           | •            |          |                  |
| e Motors                     | Suitable for applications<br>where the load must<br>always be held in place.                  | KIIS Series<br>These new high-efficiency<br>three-phase induction motors were<br>created through optimized motor<br>design.<br>They are best suited for speed<br>control in combination with an<br>inverter.                                                                                                                                                                                                                          |                |                |                 |                                     |      | •                           |              | •        |                  |
| Electromagnetic Brake Motors |                                                                                               | World K Series<br>These motors conform to major<br>standards and support global power<br>supply voltages for use in major<br>countries.                                                                                                                                                                                                                                                                                               |                | •              | •               | •                                   | •    | •                           | •            |          |                  |
| Page<br>C-155                |                                                                                               | BH Series<br>The BH Series provides high-output<br>power of 200 W (1/4 HP) in a compact<br>104 mm (4.09 in.) square mounting<br>configuration. They also conform to<br>major standards and support global<br>power supply voltages.                                                                                                                                                                                                   |                |                |                 |                                     |      |                             |              |          | •                |

|                                 |                                                                                                                                                                                |                   |                   |                   |                   |                   |                   |                  | Overview,<br>Product<br>Series      |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------------------------|
| Tupon                           | Frame Size mm (in.)/Output Power                                                                                                                                               | □42<br>(□1.65)    | □60<br>(□2.36)    | □70<br>(□2.76)    | □80<br>(□3.15)    |                   | □90<br>(□3.54)    |                  | Constant                            |
| Types                           | Features                                                                                                                                                                       | 1 W<br>(1/750 HP) | 6 W<br>(1/125 HP) | 15 W<br>(1/50 HP) | 25 W<br>(1/30 HP) | 40 W<br>(1/19 HP) | 60 W<br>(1/12 HP) | 90 W<br>(1/8 HP) | Speed<br>Motors                     |
| lotors                          | This motor combines a power on activated type clutch and brake with an induction motor. It is ideal for high-frequency starting and stopping. $\mathbf{S}^{\circ}$             |                   |                   |                   |                   |                   |                   |                  | Three-Phase<br>Induction<br>Motors  |
| & Brake Motors                  |                                                                                                                                                                                |                   |                   |                   |                   |                   |                   | •                | Single-Phase<br>Induction<br>Motors |
| Clutch 8                        |                                                                                                                                                                                |                   |                   |                   |                   |                   |                   |                  | Reversible<br>Motors                |
| Page<br>C-163                   |                                                                                                                                                                                |                   |                   |                   |                   |                   |                   |                  | Electromagnetic<br>Brake Motors     |
| S                               | Suitable for applications where the motor is operated starting, stopping and reversing<br>repeatedly and the motor is operated at synchronous speed regardless of load torque. |                   |                   |                   |                   |                   |                   |                  | Clutch &                            |
| ed<br>Moto                      |                                                                                                                                                                                |                   | □56.4             |                   |                   |                   | □85               |                  | Brake Motors                        |
| Low-Speed<br>Synchronous Motors |                                                                                                                                                                                | •*                | (□2.22)           |                   |                   |                   | (□3.35)<br>●*     |                  | Low-Speed<br>Synchronous<br>Motors  |
| Page<br>C-167                   |                                                                                                                                                                                |                   |                   |                   |                   |                   |                   |                  | Torque<br>Motors                    |
|                                 | w-speed synchronous motors, only the frame size is represented.                                                                                                                | L                 | I                 |                   |                   |                   |                   |                  | Watertight,                         |

 $\boldsymbol{\ast}$  For low-speed synchronous motors, only the frame size is represented.

Right-Angle Gearheads

Linear Heads

Brake Pack

Accessories

Installation



## **How to Read Specifications**

When selecting a motor and gearhead, you should read the specifications to make sure that the motor you select meets the application requirements. Shown below is an explanation of how to read the specifications on some important items.

### How to Read Motor Specifications

#### Motor Specifications

Motor Specifications Table (Example)

## Specifications – Continuous Rating–6

|                   |                | Ψ            |                  |           | Q       | 3               | 4             | 9           |           |                        |
|-------------------|----------------|--------------|------------------|-----------|---------|-----------------|---------------|-------------|-----------|------------------------|
| Produc            | t Name         | Output Power | Voltage          | Frequency | Current | Starting Torque | Rated Torque  | Rated Speed | Capacitor | Overheat<br>Protection |
| Terminal Box Type | Lead Wire Type | W (HP)       | VAC              | Hz        | А       | mN·m (oz-in.)   | mN·m (oz-in.) | r/min       | μF        | Device                 |
| 4IK25UAT2-⊡A      | 4IK25UA-⊟A     | 25 (1/30)    | Single-Phase 110 | 60        | 0.44    | 120 (17.0)      | 170 (24)      | 1450        | 6.0       | TP                     |
|                   |                | 23 (1/30)    | Single-Phase 115 | 00        | 0.43    | 120 (17.0)      | 170 (24)      | 1450        | 0.0       | 11*                    |

6

୭

(F)

①Output Power: The amount of work that can be performed in a given period of time. It can be used as a criteria for motor capability.

②Current: The current value used by a motor when the motor is producing rated torque.

③Starting Torque: This term refers to the torque generated the instant the motor starts. If the motor is subjected to a friction load smaller than this torque, it will operate.

④Rated Torque: This is the torque created when the motor is operating most efficiently. Though the maximum torque is far greater, rated torque should, from the standpoint of utility, be the highest torque.

⑤Rated Speed: This is the speed of the motor when the motor is producing rated torque.

6 Rating: The time that a motor can operate continuously at rated output (torque). With a continuous rating, a motor can operate continuously.

6

#### Electromagnetic Brake (Power Off Activated Type)

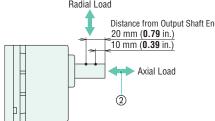
| Specifications Ta  | ble (Example)    | )         |         |       | U                    |
|--------------------|------------------|-----------|---------|-------|----------------------|
|                    | Voltage          | Frequency | Current | Input | Holding Brake Torque |
| Motor Product Name |                  |           |         |       | mN∙m                 |
|                    | VAC              | Hz        | A       | W     | oz-in                |
| 4IK25GN-SW2M       | Single-Phase 220 | 60        | 0.05    | 7     | 100                  |
| 4IK25A-SW2M        | Single-Phase 230 | 00        | 0.05    | 1     | 14.2                 |

0Holding Brake Torque: This refers to the holding brake torque of the electromagnetic brake and expresses the size of holding torque at the motor output shaft.

When a gearhead is connected, calculate the holding torque at the gearhead output shaft with the following formula. Holding torque at the gearhead output shaft at the gearhead output shaft

$$T_G = T_M \times i$$
  $T_G$  : Holding torque

 $T_M$  : Holding torque at the motor output shaft


*i* : Gearhead gear ratio

#### Permissible Radial Load and Permissible Axial Load of Motors

#### Specifications Table for Permissible Radial Load (Example)

| N          | otor                  |                      | Permissible         | Radial Load          |                     |  |  |  |
|------------|-----------------------|----------------------|---------------------|----------------------|---------------------|--|--|--|
| Frame Size | Output Shaft Diameter | 10 mm (0.39 in.) fro | om Output Shaft End | 20 mm (0.79 in.) fro | om Output Shaft End |  |  |  |
| 🗌 mm (in.) | φ mm (in.)            | N                    | lb.                 | N                    | lb.                 |  |  |  |
| 60 (2.36)  | 6 (0.2362)            | 50                   | 11.2                | 110 24               |                     |  |  |  |

1



How to Read Gearhead Specifications

Gearmotor – Torque Table

Permissible torque

<200 Hz

ratio.

Product Name

4IK25U

Gearmotor - Torque Table (Example)

Speed r/min

Gear Ratio

Some gearheads other than those for constant speed motors are listed.

1

240 200

11

 $T_G = T_M \times i \times \eta$ 

144

19 23 2.8 3.8 44

Permissible torque when a gearhead is connected can be calculated with the formula below.

 $T_M$ 

i

n

1.4

12.3 16.8 20 24 33 38 46 64 77 97 116 129 141 141 141 141 141 141

120

100 72

18 25 30 36 50 60 75 90

① Permissible Torque: It refers to the value of load torque driven by the gearhead's output shaft. Each value is shown for the corresponding gear

Permissible torque for some products are omitted. In that case, use the formula below to calculate the permissible torque.

: Motor torque

: Gearhead gear ratio : Gearhead efficiency

60 50 36 30 24 20 18

*T<sub>G</sub>* : Permissible torque of gearhead

5.3 7.3 11.0 13.2

88

360 300

5 6 7.5 9 12.5 15

0 77 0.92

6.8 8.1 9.7 ① Permissible Radial Load: The value ① shown in the table above is the one for the permissible radial load. As shown in the figure to the left, this term refers to the permissible value of the load applied in a direction perpendicular to the motor output shaft.

2 Permissible Axial Load: As shown in the figure to the left, this term refers to the permissible value of the load applied in the axial direction to the motor output shaft. Keep the axial load to half or less of motor mass.

The calculating method of radial load applied on the output shaft is the same as for a gear shaft. Refer to the permissible radial load and permissible axial load of gearheads for details. Permissible radial load and permissible axial load of gearheads → Page C-16

> 15 12

100 120 150

16

16 16 16 16 16

146

#### Overview, Product Series

Speed Motors Three-Phase

Inductio Motors

Single-Phase Induction Motors

Reversible Motors

lectromagne Irake Motors

Clutch & Brake Motor

Torque Motors

Unit: Upper values: N·m/ Lower values: Ib-in

10

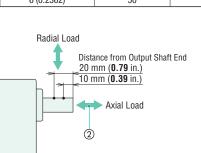
7.2 6 5

180 250 300 360

Watertight, Dust-Resistant Motors

**Right-Angle** Gearheads

Linear Heads


Brake Pack

Accessories

Installation

CAD Data Manuals





## C-14 Constant Speed Motors/Overview

#### Gearhead Efficiency

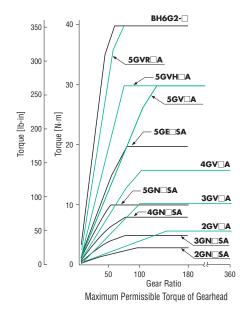
| Gear Ratio                                          | 3   | 3.6 | 5  | 6   | 7.5 | 9   | 12.5 | 15  | 18 | 25  | 30  | 36 | 50 | 60 | 75  | 90 | 100 | 120 | 150 | 180 | 250 | 300 | 360 |
|-----------------------------------------------------|-----|-----|----|-----|-----|-----|------|-----|----|-----|-----|----|----|----|-----|----|-----|-----|-----|-----|-----|-----|-----|
| $2GV \square A$ , $3GV \square A$ , $4GV \square A$ |     |     |    |     |     | 90  | )%   |     |    |     |     |    |    | 86 | i%  |    |     |     |     |     | 81% |     |     |
| 5GV□A, 5GVH□A                                       |     |     |    |     |     | 90% |      |     |    |     |     |    | 86 | 6% |     |    |     |     |     | 81% |     |     |     |
| 5GVR□A                                              |     |     |    |     | 90  | %   |      |     |    |     | 86  | 6% |    |    |     |    | 81  | %   |     |     |     |     |     |
| 2GN_SA, 3GN_SA, 4GN_SA, 5GN_SA                      | 81% |     |    |     |     |     |      |     |    |     | 73% |    |    |    | 66% |    |     |     |     |     |     |     |     |
| 5GE_SA                                              |     |     | 81 | 81% |     |     |      | 73% |    | 669 |     |    | 5% |    |     |    | 59% |     |     |     |     |     |     |
| BH6G2-                                              |     |     | 90 | )%  |     |     |      |     | 86 | 6%  |     |    |    |    |     | 81 | %   |     |     |     |     |     |     |

• For **BH6G2-IRH** and **BH6G2-IRA**, gearhead efficiency of all gear ratio is 73% at the rated speed and starting.

Gearhead efficiency of all the decimal gearheads is 81%.

| Gear Ratio Product Name | 5 | 10 | 15 | 20 | 30 | 50  | 100 | 200 |
|-------------------------|---|----|----|----|----|-----|-----|-----|
| GFV2G A, GFS2G          |   | 90 | )% |    |    | 86% |     | 81% |
| GFV4G 🗆 A, GFS4G 🗌      |   | 90 | )% |    |    | 86% |     | 81% |
| GFV5G 🗆 A, GFS5G 🗆      |   | 90 | )% |    |    | 86% |     | 81% |
| GFV6G A, GFS6G          |   | 90 | )% |    | 86 | 5%  | 81  | %   |

| Gear Rati<br>Product Name | 5   | 10 | 15 | 20  | 30  | 50 | 100 | 200 |
|---------------------------|-----|----|----|-----|-----|----|-----|-----|
| GFS2G_FR                  | 80% |    |    |     | 85% |    |     |     |
| GFS4G_FR                  |     |    |    | 85  | i%  |    |     |     |
| GFS5G_FR                  |     |    |    | 85  | i%  |    |     |     |
| GFS6G_FR                  |     |    |    | 85% |     |    |     |     |


#### Note

The transmission efficiency in the table above is the value at room temperature. The transmission efficiency of the gear head varies according to the ambient temperature. Care should be taken when using in a low-temperature environment as the transmission efficiency will drop along with the output torque.

#### Maximum Permissible Torque

The gearhead output torque increases proportionally as the gear ratio increases. However, the load torque is saturated at a certain gear ratio because of the gear materials and other conditions. This torque is called the maximum permissible torque.

The maximum permissible torque of typical gearheads are shown in the figure to the right.



#### Speed and Rotation Direction

#### Gearmotor - Torque Table (Example)

|                                                                                                                                                                            | ~                                                                                                      |                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                        |                           |                         |                               |                  |                 |                            |                         |        |       |       |          |           |          |                            |                    |                  |                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|---------------------------|-------------------------|-------------------------------|------------------|-----------------|----------------------------|-------------------------|--------|-------|-------|----------|-----------|----------|----------------------------|--------------------|------------------|----------------------------------------------------------------------------------------------------|
| <b>⊘60 Hz</b>                                                                                                                                                              | (1                                                                                                     | )                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                        |                           |                         |                               |                  |                 |                            |                         |        |       |       | Unit:    | Upper va  | lues: N  | m/ Low                     | er value           | es: Ib-in        |                                                                                                    |
| Dreduct Name                                                                                                                                                               | Speed r/min                                                                                            | 360                                   | 300                                               | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                        | 144                                    | 120                       | 100                     | 72                            | 60               | 50              | 36                         | 30                      | 24     | 20    | 18    | 15       | 12        | 10       | 7.2                        | 6                  | 5                |                                                                                                    |
| Product Name                                                                                                                                                               | Gear Ratio                                                                                             | 5                                     | 6                                                 | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                          | 12.5                                   | 15                        | 18                      | 25                            | 30               | 36              | 50                         | 60                      | 75     | 90    | 10    | 0 120    | 150       | 180      | 250                        | 300                | 360              | Overview                                                                                           |
| 4IK25U                                                                                                                                                                     |                                                                                                        | 0.77                                  | 0.92                                              | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4                                        | 1.9                                    | 2.3                       | 2.8                     | 3.8                           | 4.4              | 5.3             | 7.3                        | 8.8                     | 11.0   | 13.2  | 14.   | 6 16     | 16        | 16       | 16                         | 16                 | 16               | Product<br>Series                                                                                  |
| 4IK2J0A                                                                                                                                                                    |                                                                                                        | 6.8                                   | 8.1                                               | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.3                                       | 16.8                                   | 20                        | 24                      | 33                            | 38               | 46              | 64                         | 77                      | 97     | 116   | 129   | 9 141    | 141       | 141      | 141                        | 141                | 141              | 001100                                                                                             |
| ①Speed: This refe                                                                                                                                                          | ers to the spe                                                                                         | ed at t                               | the ge                                            | earhea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ad ou                                      | tput s                                 | shaft.                    | The s                   | speed                         | ls, de           | pend            | ing or                     | n gear                  | ratio, | are s | shov  | vn in tl | ne "Ge    | armo     | tor –                      | Torqu              | е                | Constant                                                                                           |
| Table." The spe                                                                                                                                                            | ed is calculate                                                                                        | ed by                                 | dividi                                            | ng the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e mot                                      | or's s                                 | ynch                      | ronou                   | us spe                        | ed by            | y the           | gear                       | ratio.                  | The a  | ctual | spe   | ed is 2  | ~20%      | 6 less   | than                       | the                |                  | Speed<br>Motors                                                                                    |
| displayed value                                                                                                                                                            | depending o                                                                                            | n the l                               | load.                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                        |                           |                         |                               |                  |                 |                            |                         |        |       |       |          |           |          |                            |                    |                  | WOLDIS                                                                                             |
| The speed is                                                                                                                                                               | calculated w                                                                                           | ith the                               | e follo                                           | wing f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | formu                                      | ıla.                                   |                           |                         |                               |                  |                 |                            |                         |        |       |       |          |           |          |                            |                    |                  | Three-Pha                                                                                          |
| Speed NG                                                                                                                                                                   | NMNG                                                                                                   | : Gea                                 | rhoad                                             | 1 enoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d [r/r                                     | minl                                   |                           |                         |                               |                  |                 |                            |                         |        |       |       |          |           |          |                            |                    |                  | Induction<br>Motors                                                                                |
| Opeed No                                                                                                                                                                   |                                                                                                        | : Mote                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                        |                           |                         |                               |                  |                 |                            |                         |        |       |       |          |           | ~        | $\langle$                  |                    |                  |                                                                                                    |
|                                                                                                                                                                            |                                                                                                        | : Gea                                 |                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                        |                           |                         |                               |                  |                 |                            |                         |        |       |       |          | $\langle$ | $\leq$   | $\sim$                     | - \                |                  | Single-Pha<br>Induction                                                                            |
| 2 Rotation Directi                                                                                                                                                         |                                                                                                        |                                       |                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                        | awad                      | from                    | the e                         | utout            | tobof           | • ^ ~                      | aloroo                  |        |       |       | ockwise  |           |          |                            |                    | )                | Motors                                                                                             |
|                                                                                                                                                                            | on. This refers                                                                                        | 5 10 11                               | erola                                             | ation c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mecu                                       |                                        | eweu                      | ITOITI                  | the c                         | μιραι            | l Shai          | L. A CO                    | Joiec                   | 1      | Dire  | ction | 1        | 1/10      | 11/11    |                            |                    |                  |                                                                                                    |
|                                                                                                                                                                            |                                                                                                        |                                       | - I CI                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · •                                        | 11                                     |                           |                         |                               |                  |                 |                            |                         |        | (00)  | A/\   |          |           | )) ) ]   |                            |                    |                  |                                                                                                    |
| background (                                                                                                                                                               | ,                                                                                                      | •                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                        |                           |                         |                               |                  |                 | r shaf                     |                         |        | (CC/  | W)    | ļ        | R         |          |                            |                    |                  |                                                                                                    |
| while the others                                                                                                                                                           | s rotate in the                                                                                        | oppos                                 | site di                                           | irectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on. Th                                     | ie dire                                | ction                     | of ge                   | earhea                        | ad sha           | aft ro          | r shaf<br>tation           | may                     |        | (CC)  | W)    | L        |           |          |                            |                    |                  | Reversible<br>Motors                                                                               |
| while the others<br>differ from moto                                                                                                                                       | s rotate in the<br>or shaft rotatio                                                                    | oppos<br>on dep                       | site di<br>pendin                                 | irectio<br>ng on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on. Th<br>the g                            | ie dire<br>ear ra                      | ction<br>tio of           | of ge<br>the g          | earhea<br>gearh               | ad sha           | aft ro          | r shaf<br>tation           | may                     |        | (CC/  | W)    | L        |           |          |                            | vise Dir           | ection           |                                                                                                    |
| while the others                                                                                                                                                           | s rotate in the<br>or shaft rotatio                                                                    | oppos<br>on dep                       | site di<br>pendin                                 | irectio<br>ng on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on. Th<br>the g                            | ie dire<br>ear ra                      | ction<br>tio of           | of ge<br>the g          | earhea<br>gearh               | ad sha           | aft ro          | r shaf<br>tation           | may                     |        | (CC/  | W)    | L        |           |          | Clockv<br>(CW)             | vise Dir           | ection           | Motors<br>Electromagn                                                                              |
| while the others<br>differ from moto<br>and rotation dire                                                                                                                  | or shaft rotation<br>or shaft rotation<br>ection of each                                               | oppos<br>on dep<br>n gearf            | site di<br>bendin<br>head i                       | irectio<br>ng on<br>is sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on. Th<br>the g<br>own ir                  | ie dire<br>lear ra<br>n the t          | ction<br>tio of           | of ge<br>the g          | earhea<br>gearh               | ad sha           | aft ro          | r shaf<br>tation           | may                     |        | (CC)  | W)    |          |           |          | (CW)                       |                    |                  | Reversible<br>Motors<br>Electromagne<br>Brake Motors                                               |
| while the others<br>differ from moto                                                                                                                                       | or shaft rotation<br>or shaft rotation<br>ection of each                                               | oppos<br>on dep<br>n gearf            | site di<br>bendin<br>head i                       | irectio<br>ng on<br>is sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on. Th<br>the g<br>own ir                  | ie dire<br>lear ra<br>n the t          | ction<br>tio of           | of ge<br>the g          | earhea<br>gearh               | ad sha           | aft ro          | r shaf<br>tation           | may                     |        | (CC/  | W)    |          | ·Same d   |          | (CW)<br>as the             | motor s            | haft             | Motors<br>Electromagne                                                                             |
| while the others<br>differ from moto<br>and rotation dire                                                                                                                  | or shaft rotation<br>or shaft rotation<br>ection of each                                               | oppos<br>on dep<br>n gearf            | site di<br>bendin<br>head i<br>on of              | irectio<br>ng on<br>is sho<br><b>Gear</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on. Th<br>the g<br>own ir                  | ie dire<br>lear ra<br>n the t          | ction<br>tio of           | of ge<br>the g          | earhea<br>gearh               | ad sha           | aft ro          | r shaf<br>tation           | may                     |        | (CC)  | W)    |          | ·Same d   |          | (CW)<br>as the             | motor s            | haft             | Motors<br>Electromagne<br>Brake Motors<br>Clutch &                                                 |
| while the others<br>differ from moto<br>and rotation dire<br>Ogear Ratio and                                                                                               | or shaft rotation<br>or shaft rotation<br>ection of each                                               | oppos<br>on dep<br>n gearf            | site di<br>bendin<br>head i                       | irectio<br>ng on<br>is sho<br><b>Gear</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on. Th<br>the g<br>own ir                  | e dire<br>ear ra<br>the t<br>d         | ction<br>tio of           | of ge<br>the g<br>belov | earhea<br>gearh<br>v.         | ad sha<br>ead. 1 | aft ro<br>The g | r shaf<br>tation           | may<br>tio              | 50     |       | ,     |          | Opposit   | e direct | (CW)<br>as the<br>ion as t | motor s<br>he moto | haft<br>or shaft | Motors<br>Electromagn<br>Brake Motors                                                              |
| while the others<br>differ from moto<br>and rotation dire<br>Gear Ratio and<br>Product Name                                                                                | s rotate in the<br>or shaft rotatic<br>ection of each<br>d Rotation D                                  | oppos<br>on dep<br>n gearf            | site di<br>bendin<br>head i<br>on of              | irectio<br>ng on<br>is sho<br><b>Gear</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on. Th<br>the g<br>own ir<br>r <b>heac</b> | e dire<br>ear ra<br>the t<br>d         | ection<br>itio of<br>able | of ge<br>the g<br>belov | earhea<br>gearh<br>v.         | ad sha<br>ead. 1 | aft ro<br>The g | r shaf<br>tation<br>ear ra | may<br>tio              | 50     |       | ,     |          | Opposit   | e direct | (CW)<br>as the<br>ion as t | motor s<br>he moto | haft<br>or shaft | Motors<br>Electromagn<br>Brake Motors<br>Clutch &<br>Brake Moto                                    |
| while the others<br>differ from moto<br>and rotation dire<br>Gear Ratio and<br>Product Name<br>2GV A, 3GV A,                                                               | s rotate in the<br>or shaft rotatic<br>ection of each<br>d Rotation D                                  | oppos<br>on dep<br>n gearf            | site di<br>bendin<br>head i<br>on of              | irectio<br>ng on<br>is sho<br><b>Gear</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on. Th<br>the g<br>own ir<br>r <b>heac</b> | e dire<br>ear ra<br>the t<br>d         | ection<br>itio of<br>able | of ge<br>the g<br>belov | earhea<br>gearh<br>v.         | ad sha<br>ead. 1 | aft ro<br>The g | r shaf<br>tation<br>ear ra | may<br>tio              | 50     |       | ,     |          | Opposit   | e direct | (CW)<br>as the<br>ion as t | motor s<br>he moto | haft<br>or shaft | Motors<br>Electromagn<br>Brake Motor<br>Clutch &<br>Brake Mot                                      |
| while the others<br>differ from moto<br>and rotation dire<br>Gear Ratio and<br>Product Name<br>2GV_A, 3GV_A,<br>5GV_A, 5GVH_                                               | s rotate in the<br>or shaft rotatic<br>ection of each<br>d Rotation D                                  | oppos<br>on dep<br>n gearf            | site di<br>bendin<br>head i<br>on of              | irectio<br>ng on<br>is sho<br><b>Gear</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on. Th<br>the g<br>own ir<br>r <b>heac</b> | e dire<br>ear ra<br>the t<br>d         | ection<br>itio of<br>able | of ge<br>the g<br>belov | earhea<br>gearh<br>v.         | ad sha<br>ead. 1 | aft ro<br>The g | r shaf<br>tation<br>ear ra | may<br>tio              | 50     |       | ,     |          | Opposit   | e direct | (CW)<br>as the<br>ion as t | motor s<br>he moto | haft<br>or shaft | Motors<br>Electromagn<br>Brake Motor<br>Clutch &<br>Brake Mot                                      |
| while the others<br>differ from moto<br>and rotation dire<br>Gear Ratio and<br>Product Name<br>2GV_A, 3GV_A,<br>5GV_A, 5GVH_<br>5GVR_A                                     | s rotate in the<br>or shaft rotatic<br>ection of each<br>d Rotation D<br>,4GV_A<br>A                   | oppos<br>on dep<br>n gearf<br>irectio | site di<br>bendin<br>head i<br>on of              | irectio<br>ng on<br>is sho<br><b>Gear</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on. Th<br>the g<br>own ir<br>r <b>heac</b> | e dire<br>ear ra<br>the t<br>d         | ection<br>itio of<br>able | of ge<br>the g<br>belov | earhea<br>gearh<br>v.         | ad sha<br>ead. 1 | aft ro<br>The g | r shaf<br>tation<br>ear ra | may<br>tio              | 50     |       | ,     |          | Opposit   | e direct | (CW)<br>as the<br>ion as t | motor s<br>he moto | haft<br>or shaft | Motors<br>Electromagn<br>Brake Motor<br>Clutch &<br>Brake Mot                                      |
| while the others<br>differ from moto<br>and rotation dire<br>Gear Ratio and<br>Product Name<br>2GV_A, 3GV_A,<br>5GV_A, 5GVH_A<br>5GVR_A<br>2GN_SA, 3GN                     | s rotate in the<br>or shaft rotatic<br>ection of each<br>d Rotation D<br>,4GV_A<br>A                   | oppos<br>on dep<br>n gearf<br>irectio | site di<br>bendin<br>head i<br>on of              | irectio<br>ng on<br>is sho<br><b>Gear</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on. Th<br>the g<br>own ir<br>r <b>heac</b> | e dire<br>ear ra<br>the t<br>d         | ection<br>itio of<br>able | of ge<br>the g<br>belov | earhea<br>gearh<br>v.         | ad sha<br>ead. 1 | aft ro<br>The g | r shaf<br>tation<br>ear ra | may<br>tio              | 50     |       | ,     |          | Opposit   | e direct | (CW)<br>as the<br>ion as t | motor s<br>he moto | haft<br>or shaft | Motors<br>Electromagn<br>Brake Motor<br>Clutch &<br>Brake Mot                                      |
| while the others<br>differ from moto<br>and rotation dire<br>Gear Ratio and<br>Product Name<br>2GV_A, 3GV_A,<br>5GV_A, 5GVH_<br>5GVR_A                                     | s rotate in the<br>or shaft rotatic<br>ection of each<br>d Rotation D<br>,4GV_A<br>A                   | oppos<br>on dep<br>n gearf<br>irectio | site di<br>bendin<br>head i<br>on of              | irectio<br>ng on<br>is sho<br><b>Gear</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on. Th<br>the g<br>own ir<br>r <b>heac</b> | e dire<br>ear ra<br>the t<br>d         | ection<br>itio of<br>able | of ge<br>the g<br>belov | earhea<br>gearh<br>v.         | ad sha<br>ead. 1 | aft ro<br>The g | r shaf<br>tation<br>ear ra | may<br>tio              | 50     |       | ,     |          | Opposit   | e direct | (CW)<br>as the<br>ion as t | motor s<br>he moto | haft<br>or shaft | Motors<br>Electromagn<br>Brake Motor<br>Clutch &<br>Brake Mot<br>Low-Spee<br>Synchronc<br>Motors   |
| while the others<br>differ from moto<br>and rotation dire<br>Gear Ratio and<br>Product Name<br>2GV_A, 3GV_A,<br>5GV_A, 5GVH_<br>5GVR_A<br>2GN_SA, 3GN_<br>5GE_SA<br>BH6G2- | s rotate in the<br>or shaft rotatio<br>ection of each<br>d Rotation D<br>4GV\[]A<br>A<br>SA, 4GN\[]SA, | oppos<br>on dep<br>irectio            | site di<br>bendin<br>head i<br>on of<br>iear Rati | irectiong on the short of the s | on. Th<br>the g<br>own ir<br>rheac<br>3.6  | e dire<br>lear ra<br>h the t<br>d<br>5 | 6 7.                      | of ge<br>the g<br>below | earhea<br>gearh<br>v.<br>12.5 | ad sha<br>ead. 1 | aft ro<br>The g | r shaf<br>tation<br>ear ra | may<br>tio<br><b>36</b> |        | 60 7  | ,     |          | Opposit   | e direct | (CW)<br>as the<br>ion as t | motor s<br>he moto | haft<br>or shaft | Motors<br>Electromage<br>Brake Motor<br>Clutch &<br>Brake Motor<br>Low-Spee<br>Synchrony<br>Motors |
| while the others<br>differ from moto<br>and rotation dire<br>Gear Ratio and<br>Product Name<br>2GV_A, 3GV_A,<br>5GV_A, 5GVH_A<br>5GVR_A<br>2GN_SA, 3GN_<br>5GE_SA          | s rotate in the<br>or shaft rotatio<br>ection of each<br>d Rotation D<br>4GV\[]A<br>A<br>SA, 4GN\[]SA, | oppos<br>on dep<br>irectio            | site di<br>bendin<br>head i<br>on of<br>iear Rati | irectiong on the short of the s | on. Th<br>the g<br>own ir<br>rheac<br>3.6  | e dire<br>lear ra<br>h the t<br>d<br>5 | 6 7.                      | of ge<br>the g<br>below | earhea<br>gearh<br>v.<br>12.5 | ad sha<br>ead. 1 | aft ro<br>The g | r shaf<br>tation<br>ear ra | may<br>tio<br><b>36</b> |        | 60 7  | ,     |          | Opposit   | e direct | (CW)<br>as the<br>ion as t | motor s<br>he moto | haft<br>or shaft | Motors<br>Electromag<br>Brake Moto<br>Clutch &<br>Brake Moto<br>Low-Spec<br>Synchron<br>Motors     |

| Product Name   | Gear Ratio | 5 | 10 | 15 | 20 | 30 | 50 | 100 | 200 |
|----------------|------------|---|----|----|----|----|----|-----|-----|
| GFV2G A, GFS2G | ]          |   |    |    |    |    |    |     |     |
| GFV4G A, GFS4G | ]          |   |    |    |    |    |    |     |     |
| GFV5G A, GFS5G | ]          |   |    |    |    |    |    |     |     |
| GFV6G A, GFS6G | ]          |   |    |    |    |    |    |     |     |

Right-Angle Gearheads

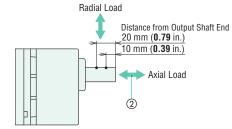
Brake Pack

Accessories

Installation

Linear Heads

## C-16 Constant Speed Motors/Overview


#### Permissible Radial Load and Permissible Axial Load of Gearheads

#### Specifications Table for Permissible Radial Load and Permissible Axial Load (Example)

|              |            |                |              |                      |                     |                      | Ų                   | Q           |            |
|--------------|------------|----------------|--------------|----------------------|---------------------|----------------------|---------------------|-------------|------------|
|              |            | Max Pormic     | sible Torque |                      | Permissible         | Radial Load          | 1                   | Permissible | Avial Load |
| Product Name | Gear Ratio | IVIAN. FOITING | Sible Iolyde | 10 mm (0.39 in.) fro | om Output Shaft End | 20 mm (0.79 in.) fro | om Output Shaft End | Fermissible | ANIAI LUAU |
|              |            | N∙m            | lb-in        | N                    | lb.                 | N                    | lb.                 | N           | lb.        |
| 4GN SA       | 3~18       | 8.0            | 70           | 100                  | 22                  | 150                  | 33                  | 50          | 11.2       |
| 40NLJA       | 25~180     | 0.0            | 70           | 200                  | 45                  | 300                  | 67                  | 50          | 11.2       |

① Permissible Radial Load: The value ① shown in the table above is the one for the permissible radial load. This term refers to the permissible value of the load applied in a direction perpendicular to the gearhead output shaft as shown in the figure to the right.

② Permissible Axial Load: The value ② shown in the table above is the one for permissible axial load. This term refers to the permissible value of the load applied in the axial direction to the gearhead output shaft as shown in the figure to the right.



୭

When a chain, gear, belt, etc. is used as the transmission mechanism, the radial load is always applied on the gearhead output shaft. The radial load is calculated with the following formula.

Radial load 
$$W = \frac{K \times T \times f}{\gamma}$$

- K : Load coefficient for driving method (on the right)
- T : Torque at gearhead output shaft [N·m]
- f : Service factor (on the right)
- $\gamma$  : Effective radius of gear or pulleys [m]

#### $\bigcirc$ Load Coefficient for Driving Method (K)

| •                         | •    |
|---------------------------|------|
| Drive System              | K    |
| Chain or synchronous belt | 1    |
| Gear                      | 1.25 |
| V-belt                    | 1.5  |
| Flat belt                 | 2.5  |

#### $\bigcirc$ Service Factor (f)

| Load Type     | Example                                                                                                                                                                                                                                                                   | Factor $f$ |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Uniform Load  | Uni-directional continuous operation     For driving belt conveyors and film rollers that are subject     to minimal load fluctuation                                                                                                                                     | 1.0        |
| Light Impact  | <ul> <li>Frequent starting and stopping</li> <li>Cam drive and inertial body positioning</li> </ul>                                                                                                                                                                       | 1.5        |
| Medium Impact | <ul> <li>Frequent instantaneous bi-directional operation, starting<br/>and stopping of reversible motors</li> <li>Frequent instantaneous stopping by brake pack of AC<br/>motors</li> <li>Frequent instantaneous starting and stopping by<br/>brushless motors</li> </ul> | 2.0        |

#### Permissible Inertia J of Gearhead

This refers to the permissible value for inertia (J) at the gearhead output shaft. Convert the permissible value at the motor output shaft into the permissible value at the gearhead output shaft with the following formula.

| Gear ratio 3:1~50:1        | $J_G = J_M \times i^2$                               |
|----------------------------|------------------------------------------------------|
| Gear ratio 60:1 or higher  | $J_G = J_M \times 2500$                              |
| $I_{C}$ · Permissible iner | tia at the gearbead output shaft $1[\times 10^{-4}]$ |

 $\mathit{J_{G}}$  : Permissible inertia at the gearhead output shaft J [×10^{-4} kg \cdot m^{2} (oz-in^{2})]

- $\mathit{J}_{\mathit{M}}$  : Permissible inertia at the motor shaft J [×10^{-4} kg \cdot m^2 (oz-in^2)]
- *i* : Gear ratio (Example: i = 3 means the gear ratio of 3:1)

#### Permissible Inertia at the Motor Shaft (Example)

| Number of Phase | Frame Size         | Output Power   | Permissible Inertia at the Motor Shaft $J [\times 10^{-4} \text{ kg} \cdot \text{m}^2 \text{ (oz-in}^2)]$ |
|-----------------|--------------------|----------------|-----------------------------------------------------------------------------------------------------------|
| Single-Phase    | □80 mm (□3.15 in.) | 25 W (1/30 HP) | 0.31 (1.70)                                                                                               |

For some products that are combination types, the permissible inertia at the gearhead output shaft is shown as the specifications values, divided with each gear ratio.

# **Common Specifications**

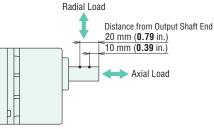
Some specifications other than those for constant speed motors are listed.

### Permissible Radial Load and Permissible Axial Load of Motors

#### Permissible Radial Load

| Mo         | otor                  | Permissible Radial Load |                     |                                      |      |  |  |  |  |  |
|------------|-----------------------|-------------------------|---------------------|--------------------------------------|------|--|--|--|--|--|
| Frame Size | Output Shaft Diameter | 10 mm (0.39 in.) fro    | om Output Shaft End | 20 mm (0.79 in.) from Output Shaft I |      |  |  |  |  |  |
| 🗌 mm (in.) | φ mm (in.)            | N                       | lb.                 | N                                    | lb.  |  |  |  |  |  |
| 60 (2.36)  | 6 (0.2362)            | 50                      | 11.2                | 110                                  | 24   |  |  |  |  |  |
| 70 (2.76)  | 6 (0.2362)            | 40                      | 9.0                 | 60                                   | 13.5 |  |  |  |  |  |
| 00 (0 15)  | 8 (0.3150)            | 90                      | 20                  | 140                                  | 31   |  |  |  |  |  |
| 80 (3.15)  | 10 (0.3937)           | 110                     | 24                  | 120                                  | 27   |  |  |  |  |  |
| 00 (2 5 4) | 10 (0.3937)           | 140                     | 31                  | 200                                  | 45   |  |  |  |  |  |
| 90 (3.54)  | 12 (0.4724)           | 240                     | 54                  | 270                                  | 60   |  |  |  |  |  |
| 104 (4.09) | 14 (0.5512)           | 320                     | 72                  | 350                                  | 78   |  |  |  |  |  |

#### Permissible Axial Load


Avoid axial load as much as possible. If axial load is unavoidable, keep it to half or less of the motor mass.

## Permissible Radial Load and Permissible Axial Load of Gearheads

| Product Name    | Gear Ratio                             | Max. Permis | sible Torque | 10 mm (0.39 in.) fro | Permissible Axial Load |          |           |     |      |  |
|-----------------|----------------------------------------|-------------|--------------|----------------------|------------------------|----------|-----------|-----|------|--|
|                 | deal hallo                             | N·m         | lb-in        | N                    | N                      | lb.      |           |     |      |  |
|                 | 5~25                                   |             |              | 150                  | lb.<br>33              | N<br>200 | lb.<br>45 |     |      |  |
| 2GV⊟A           | 30~360                                 | 6.0         | 53           | 200                  | 45                     | 300      | 67        | 40  | 9    |  |
|                 | 5~25                                   |             |              | 200                  | 45                     | 300      | 67        |     |      |  |
| 3GV⊡A           | 30~360                                 | - 10        | 88           | 300                  | 67                     | 400      | 90        | 80  | 18   |  |
|                 | 5~25<br>30~360<br>5~9<br>12.5~18<br>30 |             |              | 300                  | 67                     | 350      | 78        |     |      |  |
| 4GV⊡A           |                                        | 16          | 141          | 450                  | 101                    | 550      | 123       | 100 | 22   |  |
|                 |                                        |             |              | 400                  | 90                     | 500      | 112       |     |      |  |
| 5GV□A<br>5GVH□A | 12.5~18                                | 30          | 260          | 450                  | 101                    | 600      | 135       | 150 | 33   |  |
| 5GVH∐A          |                                        | -           |              | 500                  | 112                    | 700      | 157       |     |      |  |
|                 | 5~9                                    |             | 350          | 400                  | 90                     | 500      | 112       |     |      |  |
| 5GVR□A          | 1 <b>2.5</b> ~18                       | 40          |              | 450                  | 101                    | 600      | 135       | 150 | 33   |  |
|                 | 25~180                                 | 1           |              | 500                  | 112                    | 700      | 157       |     |      |  |
| 2GN□SA          | 3~18                                   |             | 00           | 50                   | 11.2                   | 80       | 18        | 00  | 0.7  |  |
|                 | 25~180                                 | 3.0         | 26           | 120                  | 27                     | 180      | 40        | 30  | 6.7  |  |
|                 | 25~180<br>3~18                         | 5.0         | 44           | 80                   | 18                     | 120      | 27        | 40  | 9    |  |
| JGN_JA          | 25~180                                 | 5.0         | 44           | 150                  | 33                     | 250      | 56        | 40  | 9    |  |
| 4GN□SA          | 3N_SA 25~180<br>SN□SA 3~18             | 8.0         | 70           | 100                  | 22                     | 150      | 33        | 50  | 11.2 |  |
| 4GN_3A          | 25~180                                 | 0.0         | 70           | 200                  | 45                     | 300      | 67        | 50  | 11.2 |  |
| 5GN□SA          | 3~18                                   | 10          | 88           | 250                  | 56                     | 350      | 78        | 100 | 22   |  |
| JGN_JA          | <b>25~180</b>                          | 10          | 00           | 300                  | 67                     | 450      | 101       | 100 | 22   |  |
|                 | 3~9                                    |             |              | 400                  | 90                     | 500      | 112       |     |      |  |
| 5GE_SA          | 12.5~18                                | 20          | 177          | 450                  | 101                    | 600      | 135       | 150 | 33   |  |
|                 | 25~180                                 |             |              | 500                  | 112                    | 700      | 157       |     |      |  |
| BH6G2           | 3~36                                   | 40          | 350          | 550                  | 123                    | 800      | 180       | 200 | 45   |  |
|                 | 50~180                                 | 0           | 000          | 650                  | 146                    | 1000     | 220       | 200 | 07   |  |
| BH6G2-□RH       | 5~36                                   | 60          | 530          | 1200*                | 270                    | 1100*    | 240       | 300 | 67   |  |
|                 | 50~180                                 | 50          | 000          | 2200*                | 490                    | 2000*    | 450       | 000 |      |  |
| BH6G2-□RA       | 5~36                                   | 60          | 530          | 900                  | 200                    | 1000     | 220       | 300 | 67   |  |
| DI IUUZ-LINA    | 50~18 <b>0</b>                         | 00          | 000          | 1700                 | 380                    | 1850     | 410       | 500 | 07   |  |

\* For **BH6G2-\_RH** (Gearhead for **BH** Series right-angle, hollow shaft combination type), the permissible radial load is the value at the distance from the flange mounting surface. The permissible radial load at each distance is calculated with the formula below.

> Technical Support



ullet A number indicating the gear ratio is entered where the box  $\Box$  is located within the product name.



Overview, Product Series

Constant Speed Motors

Three-Phase Induction Motors

Single-Phase Induction Motors

Reversible Motors

Electromagnetic Brake Motors

Clutch & Brake Motors

Low-Speed Synchronous Motors

Torque Motors

Watertight, Dust-Resistant Motors

Right-Angle Gearheads

Linear Heads

Brake Pack

Accessories

Installation

#### **C-18 Constant Speed Motors/Overview**

#### ♦ Calculating the Permissible Radial Load for Hollow Shaft Type

When the end of the shaft being driven is not supported by a bearing as shown in the figure below, calculate the permissible radial load using the following formula. (This mechanism is the most demanding state in terms of radial load.)

• **KIIS** Series Right-Angle Geared Type

• Gear ratio 5:1~40:1

 $W[N (lb.)] = \frac{83.5 \text{ mm} (3.29 \text{ in.})}{83.5 \text{ mm} (3.29 \text{ in.}) + L_P} \times 1340 \text{ N} (300 \text{ lb.})$ Permissible radial load

1340 N (300 lb.) : Permissible radial load at the flange mounting surface

• Gear ratio 50:1~240:1 Permissible radial load

W [N (lb.)] =  $\frac{83.5 \text{ mm} (3.29 \text{ in.})}{83.5 \text{ mm} (3.29 \text{ in.}) + L_P} \times 2460 \text{ N} (550 \text{ lb.})$ 

2460 N (550 lb.) : Permissible radial load at the flange mounting surface

#### ● BH6G2-□RH

• Gear ratio 5:1~36:1

 $W[N (lb.)] = \frac{87.5 \text{ mm } (3.44 \text{ in.})}{87.5 \text{ mm } (3.44 \text{ in.}) + L_P} \times 1350 \text{ N} (300 \text{ lb.})$ Permissible radial load

1350 N (300 lb.) : Permissible radial load at the flange mounting surface

• Gear ratio 50:1~180:1

 $W[N (lb.)] = \frac{87.5 mm (3.44 in.)}{87.5 mm (3.44 in.) + L_P} \times 2450 N (550 lb.)$ Permissible radial load

2450 N (550 lb.) : Permissible radial load at the flange mounting surface



### Permissible Inertia J of Gearhead

When a high inertia (J) is connected to a gearhead, high torque is exerted instantaneously on the gearhead when starting in frequent, intermittent operations (or when stopped by an electromagnetic brake, or when stopped instantaneously by a brake pack).

The table below gives values for permissible inertia at the motor shaft. Use the motor and gearhead within these parameters. The permissible inertia for three-phase motors is the value when reversing after a stop.

The permissible inertia (J) at the gearhead output shaft is calculated with the following formula.

The life of the gearhead when operating at the permissible inertia with instantaneous stop of motors with electromagnetic brakes, brake pack or speed control motors is approximately two million cycles.

#### Permissible Inertia at the Gearhead Output Shaft

| Gear ratio 3:1~50:1       | $J_G = J_M \times i^2$  | $J_G$ | : Pe  |
|---------------------------|-------------------------|-------|-------|
| Gear ratio 60:1 or higher | $J_G = J_M \times 2500$ | $J_M$ | : Per |

ermissible inertia at the gearhead output shaft J [×10<sup>-4</sup> kg·m<sup>2</sup> (oz-in<sup>2</sup>)]

Load Point

to Radial Load Point

ermissible inertia at the motor shaft J [×10<sup>-4</sup> kg·m<sup>2</sup> (oz-in<sup>2</sup>)]

*i* : Gear ratio (Example: i = 3 means the gear ratio of 3:1)

#### Permissible Inertia at the Motor Shaft

| Number of Phase | Frame Size          | Output Power   | Permissible Inertia at the Motor Shaft<br>J [×10 <sup>-4</sup> kg·m <sup>2</sup> (oz-in <sup>2</sup> )] |
|-----------------|---------------------|----------------|---------------------------------------------------------------------------------------------------------|
|                 | □60 mm (□2.36 in.)  | 6 W (1/125 HP) | 0.062 (0.34)                                                                                            |
|                 | □70 mm (□2.76 in.)  | 15 W (1/50 HP) | 0.14 (0.77)                                                                                             |
|                 | □80 mm (□3.15 in.)  | 25 W (1/30 HP) | 0.31 (1.70)                                                                                             |
| Three-Phase     |                     | 40 W (1/19 HP) | 0.75 (4.1) [1.1 (6.0)]*                                                                                 |
|                 | □90 mm (□3.54 in.)  | 60 W (1/12 HP) | 1.1 (6.0)                                                                                               |
|                 |                     | 90 W (1/8 HP)  | 1.1 (6.0)                                                                                               |
|                 | □104 mm (□4.09 in.) | 200 W (1/4 HP) | 2.0 (10.9)                                                                                              |
|                 | □60 mm (□2.36 in.)  | 6 W (1/125 HP) | 0.062 (0.34)                                                                                            |
|                 | □70 mm (□2.76 in.)  | 15 W (1/50 HP) | 0.14 (0.77)                                                                                             |
|                 | □80 mm (□3.15 in.)  | 25 W (1/30 HP) | 0.31 (1.70)                                                                                             |
| Single-Phase    |                     | 40 W (1/19 HP) | 0.75 (4.1) [1.1 (6.0)]*                                                                                 |
|                 | □90 mm (□3.54 in.)  | 60 W (1/12 HP) | 1.1 (6.0)                                                                                               |
|                 |                     | 90 W (1/8 HP)  | 1.1 (6.0)                                                                                               |
|                 | □104 mm (□4.09 in.) | 200 W (1/4 HP) | 2.0 (10.9)                                                                                              |

\* Values in the brackets are for the KI Series.

| <ul> <li>Permis</li> </ul> | sible Inertia                      | Jot         | f Co         | mbir         | atio        | n Typ       | bes         |             |              |              |               |               |               |               |                | U              | nit: Uppe      | r values:       | $\times 10^{-4}$ | ⟨g·m²/Lo        | wer value       | es: oz-in <sup>2</sup> |                                |
|----------------------------|------------------------------------|-------------|--------------|--------------|-------------|-------------|-------------|-------------|--------------|--------------|---------------|---------------|---------------|---------------|----------------|----------------|----------------|-----------------|------------------|-----------------|-----------------|------------------------|--------------------------------|
| Product Name               | Gear Ratio                         | 5           | 6            | 7.5          | 9           | 12.5        | 15          | 18          | 25           | 30           | 36            | 50            | 60            | 75            | 90             | 100            | 120            | 150             | 180              | 250             | 300             | 360                    |                                |
| 2GV⊡A                      |                                    | 12<br>66    | 18<br>98     | 28<br>153    | 40<br>220   | 78<br>430   | 110<br>600  | 160<br>880  | 260<br>1420  | 370<br>2000  | 540<br>3000   | 920<br>5000   | 1300<br>7100  | 1700<br>9300  | 2000<br>10900  | 2500<br>13700  | 3600<br>19700  | 5000<br>27000   | 5000<br>27000    | 5000<br>27000   | 5000<br>27000   | 5000<br>27000          |                                |
| ZGVLA                      | When performing instantaneous stop | 1.55<br>8.5 | 2.23<br>12.2 | 3.49<br>19.1 | 5.02<br>27  | 9.69<br>53  | 14<br>77    | 20.1<br>110 | 38.8<br>210  | 55.8<br>310  | 80.4<br>440   | 155<br>850    | 155<br>850    | 155<br>850    | 155<br>850     | 155<br>850     | 155<br>850     | 155<br>850      | 155<br>850       | 155<br>850      | 155<br>850      | 155<br>850             | Overview,<br>Product<br>Series |
| 3GV⊡A                      |                                    | 20<br>109   | 28<br>153    | 45<br>250    | 65<br>360   | 120<br>660  | 180<br>980  | 260<br>1420 | 440<br>2400  | 630<br>3400  | 900<br>4900   | 1500<br>8200  | 2100<br>11500 | 2800<br>15300 | 3200<br>17500  | 4000<br>22000  | 5700<br>31000  | 8000<br>44000   | 8000<br>44000    | 8000<br>44000   | 8000<br>44000   | 8000<br>44000          | Constant                       |
|                            | When performing instantaneous stop | 3.5<br>19.1 | 5.04<br>28   | 7.88<br>43   | 11.3<br>62  | 21.9<br>120 | 31.5<br>172 | 45.4<br>250 | 87.5<br>480  | 126<br>690   | 181<br>990    | 350<br>1910   | 350<br>1910   | 350<br>1910   | 350<br>1910    | 350<br>1910    | 350<br>1910    | 350<br>1910     | 350<br>1910      | 350<br>1910     | 350<br>1910     | 350<br>1910            | Speed<br>Motors                |
| 4GV⊟A                      |                                    | 22<br>120   | 32<br>175    | 50<br>270    | 72<br>390   | 150<br>820  | 220<br>1200 | 310<br>1700 | 550<br>3000  | 800<br>4400  | 1100<br>6000  | 2200<br>12000 | 3200<br>17500 | 4000<br>22000 | 5000<br>27000  | 6200<br>34000  | 8900<br>49000  | 12000<br>66000  | 12000<br>66000   | 12000<br>66000  | 12000<br>66000  | 12000<br>66000         | Three-Phas<br>Induction        |
| 401 LA                     | When performing instantaneous stop | 7.75<br>42  | 11.2<br>61   | 17.4<br>95   | 25.1<br>137 | 48.4<br>260 | 69.8<br>380 | 100<br>550  | 194<br>1060  | 279<br>1530  | 402<br>2200   | 775<br>4200   | 775<br>4200   | 775<br>4200   | 775<br>4200    | 775<br>4200    | 775<br>4200    | 775<br>4200     | 775<br>4200      | 775<br>4200     | 775<br>4200     | 775<br>4200            | Motors<br>Single-Pha           |
| 5GV⊡A                      |                                    | 45<br>250   | 65<br>360    | 100<br>550   | 150<br>820  | 300<br>1640 | 420<br>2300 | 620<br>3400 | 1100<br>6000 | 1600<br>8800 | 2300<br>12600 | 4500<br>25000 | 6000<br>33000 | 8000<br>44000 | 10000<br>55000 | 12000<br>66000 | 17000<br>93000 | 25000<br>137000 | 25000<br>137000  | 25000<br>137000 | 25000<br>137000 | -                      | Induction<br>Motors            |
| 5GVH⊡A                     | When performing instantaneous stop | 27.5<br>150 | 39.6<br>220  | 61.9<br>340  | 89.1<br>490 | 172<br>940  | 248<br>1360 | 356<br>1950 | 688<br>3800  | 990<br>5400  | 1426<br>7800  | 2750<br>15000 | 2750<br>15000 | 2750<br>15000 | 2750<br>15000  | 2750<br>15000  | 2750<br>15000  | 2750<br>15000   | 2750<br>15000    | 2750<br>15000   | 2750<br>15000   | -                      | Reversible                     |
|                            |                                    | 45<br>250   | 65<br>360    | 100<br>550   | 150<br>820  | 300<br>1640 | 420<br>2300 | 620<br>3400 | 1100<br>6000 | 1600<br>8800 | 2300<br>12600 | 4500<br>25000 | 6000<br>33000 | 8000<br>44000 | 10000<br>55000 | 12000<br>66000 | 17000<br>93000 | 25000<br>137000 | 25000<br>137000  | -               | -               | -                      | Motors                         |
| 5GVR⊡A                     | When performing instantaneous stop | 27.5<br>150 | 39.6<br>220  | 61.9<br>340  | 89.1<br>490 | 172<br>940  | 248<br>1360 | 356<br>1950 | 688<br>3800  | 990<br>5400  | 1426<br>7800  | 2750<br>15000 | 2750<br>15000 | 2750<br>15000 | 2750<br>15000  | 2750<br>15000  | 2750<br>15000  | 2750<br>15000   | 2750<br>15000    | -               | -               | _                      | Electromagne<br>Brake Motors   |

Note

• Do not perform instantaneous bi-directional operations on three-phase motors.

ectromagnetic rake Motors

Clutch & Brake Motors

Low-Speed Synchronous Motors

Torque Motors

Watertight, Dust-Resistant Motors

Right-Angle Gearheads

Linear Heads

Brake Pack

Accessories

Installation



. . . . . . . . . . . .