UMK CSK

ORIENTAL MOTOR CATALOG

5-PHASE HIGH-TORQUE STEPPING MOTOR AND DRIVER PACKAGE

UPK·W Series

Features ······B-62
Product Line ·····B-66
Standard Type, High-Speed TypeB-68
Geared Type·····B-80
List of Motor and Driver CombinationsB-102
Wiring DiagramsB-103
Description of Input/Output SignalsB-105

UPK·W Series

EASY WIRING GEAR DIRECT REGENER- SAFETY PACK- AC INPUT

The **UPK•W** series is a new generation of compact, high torque, low vibration, 5-phase stepping motor and driver packages.

FEATURES

1. Compact Drivers

The **UPK • W** series drivers are only 5.31 inch (135mm) high and therefore keep the installation area small.

They also come with a buitin mounting bracket for easy installation.

2. High Torque

The **UPK • W** series is based on the **UPK** series of high-torque, 5-phase stepping motor package, so they have the same high torque.

Now devices can be made smaller and more lightweight.

3. Low Vibration

The **UPK • W** series does more than provide higher torque. It is also designed so that the motor produces less vibration, and a new driver has been developed to include a vibration control circuit to dramatically reduce vibration in the mid-speed range (1~5kHz).

4. Low Noise

The motor is designed on a new principle to produce excellent sound performance. The motor components are more rigid and the motor structure has been redesigned to achieve a significant reduction in audible noise.

5. Wide range of power supply voltage

In addition to single-phase 100-115VAC $\pm 15\%$ (50/60 Hz) power input, the product line also has 200-230VAC $^{+10\%}_{-15\%}$ (50/60 Hz) models

The models with installation dimensions of 1.65inch (42mm) square and the high-speed types only accept single-phase 100-115 VAC input.

6. Standard certified products

These products are certified to meet the world's most common standards. Also, the product has been CE marked according to the low voltage directive. (Certification for some products is pending, so for a list of certified products, see Page D-15.)

■ UPK•W SYSTEM CONFIGURATION

A high-torque 5-phase stepping motor and driver are combined to make high-precision positioning with open loop control possible.

ACCESSORIES (Sold separately)

The UPK·W Series Drivers. **Designed with User-Friendly Functions.**

The UPK·W series has four types of drivers. The functions listed below are common to all types. The drivers shown below are the UDK5114NW2 and the UDK5214NW.

4

6

A full range of driver functions are on the front panel.

Driver operating status is visible at a glance

Signal monitor display

Easy to confirm I/O signals.

POWER: Power input display

Excitation timing output display Overheat output display 0.H.:

Motor operating current adjustment switch Motor stop current adjustment switch

The motor current is easy to adjust with digital switches. No ammeter necessary.

RUN: Can be adjusted the motor running current.

STOP: Can be adjusted the current at the motor standstill.

Pulse input mode switch

Switches between 1-pulse input and 2-pulse input.

Step angle switch

1

2

Switches the motor's step angle. FULL: 0.72°/step, HALF: 0.36°/step

Automatic current off function switch

When the temperature inside the driver reaches 176°F (80°C), this function automatically switches the motor current off. The function can be set and released with this switch.

Power Supply Terminals

Drivers are available for use with single-phase 100-115VAC \pm 15% (50/60 Hz) and 200-230VAC $^{+10\%}_{-15\%}$ (50/60 Hz) models.

Protective Earthing Terminal 7

Single-Phase 100-115VAC Input Driver

Single-Phase 200-230VAC Input Driver

UPK • W Series Product Line *TH: Maximum Holding Torgue

Mounting Frame	Size inch (mm)		1.65(4	42)			
Standard Type	Tн* oz-in (N∙m)	18 (0.13)	24.9 (0.1	8)	33.3 (0.24)	58.3 (0.42)	
Page B-68	Single-Phase 100V-115VAC Input	UPK543AW UPK543BW	UPK544 UPK544		UPK545AW UPK545BW	UPK564AW2 UPK564BW2	
	Single-Phase 200V-230VAC Input					UPK564AJW UPK564BJW	
High-Speed Type Page B-68	Single-Phase 100V-115VAC Input						
TH Geared Type Page B-80	TH* Ib-in (N•m)	3.03 (0.35)	6.07 (0.7)	8.67 (1)	13 (1.5)	10.8 (1.25)	
Tago D oo	Single-Phase 100V-115VAC Input	UPK543AW-T3.6 UI UPK543BW-T3.6 UI				UPK564AW-T3.6 UPK564BW-T3.6	
	Single-Phase 200V-230VAC Input					UPK564AJW-T3.6 UPK564BJW-T3.6	
PN Geared Type Page B-80	TH* Ib-in (N•m)						
Tage 5 00	Single-Phase 100V-115VAC Input						
	Single-Phase 200V-230VAC Input						

2.36(60)			3.35(85)/3.54(90)					
115 (0.83)	230 (1.	66)	291 (2.1)	569 (4.1)	874 (6.3)			
UPK566AW2 UPK566BW2		UPK569AW2 UPK569BW2		UPK599AW2 UPK599BW2	UPK5913AW2 UPK5913BW2			
UPK566AJW UPK566BJW		UPK569AJW UPK569BJW		UPK599AJW UPK599BJW	UPK5913AJW UPK5913BJW			
	UPK569/ UPK569I		UPK596AHW2 UPK596BHW2	UPK599AHW2 UPK599BHW2	UPK5913AHW2 UPK5913BHW2			
21.6 (2.5) 26	(3) 30.3 (3.5)	34.7 (4)	39 (4.5)	78.1 (9)	104 (12)			
UPK564AW-T7.2 UPK564 UPK564BW-T7.2 UPK564		UPK564AW-T30 UPK564BW-T30	UPK596AW-T3.6 UPK596BW-T3.6	UPK596AW-T7.2 UPK596BW-T7.2 UPK596AW-T10 UPK596BW-T10	UPK596AW-T20 UPK596BW-T20 UPK596AW-T30 UPK596BW-T30			
UPK564AJW-T7.2 UPK564A UPK564BJW-T7.2 UPK564A		JPK564AJW-T30 JPK564BJW-T30	UPK596AJW-T3.6 UPK596BJW-T3.6	UPK596AJW-T7.2 UPK596BJW-T7.2 UPK596AJW-T10 UPK596BJW-T10	UPK596AJW-T20 UPK596BJW-T20 UPK596AJW-T30 UPK596BJW-T30			
30.3 (3.5)	52 (6	5)						
UPK566AW-N5 UPK566BW-N5 UPK566AW-N7.2 UPK566BW-N7.2 UPK566AW-N10 UPK566BW-N10	UPK564AV UPK564BV UPK564AV UPK564BV UPK564BV	N-N25 N-N36 N-N36 N-N50						
UPK566AJW-N5 UPK566BJW-N5 UPK566AJW-N7.2 UPK566BJW-N10 UPK566BJW-N10	UPK564AJ UPK564BJ UPK564BJ UPK564BJ UPK564BJ	W-N25 W-N36 W-N36 W-N50						

UPK·W Geared Type

In addition to the high resolution of 0.72°/step for full-step operation and 0.36°/step for half-step operation, the **UPK•W** series of 5-phase stepping motor packages include two types of gears units, **TH** and **PN**. In addition to single-phase 100-115VAC (50/60 Hz) models, there are also 200-230VAC (50/60 Hz) models and standard certified models. (Certification for some products is pending.)

SAFETY STANDARDS AND CE MARKING

Products	Applicable Standards	Authorizing Organization	Standards File No.	CE Marking	
Stepping Motor TH Geared	UL1004, UL519 CAN/CSA-C22.2 No.100 CNA/CSA-C22.2 No.77	UL	E64199	Low Voltage	
PN Geared	EN60950 EN60034-1, EN60034-5	VDE	6763ÜG	Directive	
Driver for Stepping	UL508C CAN/CSA-C22.2 No.14	UL	E171462	Low Voltage	
Motor	EN60950, EN50178	DEMKO	See page D-15	Directive	

- •See page D-9 for more information on operating conditions of EN/IEC standards.
- The EN/IEC standard certification depends on the type and installation size.
 For details, see Page D-15.
- Motor and drivers are recognized individually.

PRODUCT NUMBER CODE

TH Geared Type

*See page B-84 to B-95 for products specifications, characteristics and dimensions.

High-precision positioning

A tapered gear is used for the gear output stage and the gear that merges with it to obtain high precision and low backlash operation. The backlash is 35 arc minutes (0.584°) - 10 arc minutes (0.167°) for a motor installation dimension of 2.36 in. (60mm) square and 25 arc minutes (0.417°) - 10 arc minutes (0.167°) for 3.54 in. (90mm). Backlash decreases as the speed reduction ratio increases.

Five Gear Ratios

Five low gear ratios of 3.6:1, 7.2:1, 10:1, 20:1 and 30:1 are available. These gear ratios are convenient for applications requiring gearing without reducing of the motor speed.

PRODUCT LINE

Power	Packag	Permissil	bleTorque	
Source	Single Shaft	Double Shaft	lb-in	N∙m
	UPK543AW-T3.6	UPK543BW-T3.6	3.03	0.35
	UPK543AW-T7.2	UPK543BW-T7.2	6.07	0.7
	UPK543AW-T10	UPK543BW-T10	8.67	1
	UPK543AW-T20	UPK543BW-T20	13	1.5
	UPK543AW-T30	UPK543BW-T30	13	1.5
Single	UPK564AW-T3.6	UPK564BW-T3.6	10.8	1.25
Phase	UPK564AW-T7.2	UPK564BW-T7.2	21.6	2.5
100	UPK564AW-T10	UPK564BW-T10	26	3
-	UPK564AW-T20	UPK564BW-T20	30.3	3.5
115VAC	UPK564AW-T30	UPK564BW-T30	34.7	4
	UPK596AW-T3.6	UPK596BW-T3.6	39	4.5
	UPK596AW-T7.2	UPK596BW-T7.2	78.1	9
	UPK596AW-T10	UPK596BW-T10	78.1	9
	UPK596AW-T20	UPK596BW-T20	104	12
	UPK596AW-T30	UPK596BW-T30	104	12
	UPK564AJW-T3.6	UPK564BJW-T3.6	10.8	1.25
	UPK564AJW-T7.2	UPK564BJW-T7.2	21.6	2.5
Single	UPK564AJW-T10	UPK564BJW-T10	26	3
Phase	UPK564AJW-T20	UPK564BJW-T20	30.3	3.5
200	UPK564AJW-T30	UPK564BJW-T30	34.7	4
200	UPK596AJW-T3.6	UPK596BJW-T3.6	39	4.5
230VAC	UPK596AJW-T7.2	UPK596BJW-T7.2	78.1	9
ZOUVAU	UPK596AJW-T10	UPK596BJW-T10	78.1	9
	UPK596AJW-T20	UPK596BJW-T20	104	12
	UPK596AJW-T30	UPK596BJW-T30	104	12

PN Geared Type

* See page B-96 to B-101 for products specifications, characteristics and dimensions

•Low backlash of 3 arc minutes or less

The **PN** geared type uses a newly developed backlash reduction structure to obtain backlash of 3 arc minutes (0.05°) or less. This is a major increase in precision compared to conventional planetary geared types with typical backlash of 20 arc minutes (0.33°).

High permissible torque

Since the planetary gear structure transmits torque distributed over multiple planetary gears, it can provide large permissible torque.

For example **UPK564BW-N25** produces a maximum torque of 52 lb-in $(6 \text{ N} \cdot \text{m})$.

Six gear ratios

The **PN** geared type, six gear ratios are available: 5:1, 7.2:1, 10:1, 25:1, 36:1 and 50:1. When the gear ratio of 7.2:1 is used, a step angle of 0.1° can be obtained for full step operation.

PRODUCT LINE

Power	Packago	e Model	Permissi	bleTorque
Source	Single Shaft	Double Shaft	lb-in	N∙m
Single	UPK566AW-N5	UPK566BW-N5	30.3	3.5
Phase	UPK566AW-N7.2	UPK566BW-N7.2	30.3	3.5
100	UPK566AW-N10	UPK566BW-N10	30.3	3.5
100	UPK564AW-N25	UPK564BW-N25	52	6
- 115VAC	UPK564AW-N36	UPK564BW-N36	52	6
TIOVAG	UPK564AW-N50	UPK564BW-N50	52	6
Single	UPK566AJW-N5	UPK566BJW-N5	30.3	3.5
Phase	UPK566AJW-N7.2	UPK566BJW-N7.2	30.3	3.5
200	UPK566AJW-N10	UPK566BJW-N10	30.3	3.5
200	UPK564AJW-N25	UPK564BJW-N25	52	6
230VAC	UPK564AJW-N36	UPK564BJW-N36	52	6
	UPK564AJW-N50	UPK564BJW-N50	52	6

ABOUT THE GEARS

TH Gears

Tapered gears are used for the final stage of the spur gear speed reduction mechanism to reduce backlash.

Gaps are required between gears to allow them to rotate smoothly. However, on the gear output shaft, these gaps become play known as backlash, and this is a problem when a control gear motor is used in applications requiring high positioning precision. The tapered gears used in the final stage are adjusted in the direction of the arrows shown in the figure below to reduce backlash.

TH gear sectional diagram

The structure of the final stage of the TH gear

PN Gears

High-precision, high-strength **PN** (planetary) gears have been developed specially for five-phase stepping motors. Unlike ordinary spur gear mechanisms, planetary gears disperse torque over multiple planetary gears, so large torque can be obtained with minimal backlash. Moreover, since the gear output shaft is a center shaft, the same as the motor output shaft. This could be an advantage when mounting the motor.

Planetary gears have the following features.

- •The overall size is small.
- •High power can be continuously obtained.
- •Noise is low.
- •Weight is low.
- •The input shaft and output shaft are on the same axis.

The **PN** gear type uses newly developed gears that utilize a backlash reduction mechanism. In this new structure there are two stages, upper and lower, for the internal gears and planetary gears.

The upper level internal gears and planetary gears reduce clockwise backlash; the lower level internal gears and planetary gear reduce counterclockwise backlash to attain backlash of 3 arc minutes or less.

PN gear sectional diagram

Relationship between the internal gear and the planetary gear

The structure of the PN gear

Angular transmission error 6 arc minutes

The difference between the theoretical rotation angle of the output shaft and the actual rotation angle is expressed as the angular transmission error. With the **PN** geared types, special gear machining technology is used and major improvements have been made at the part and the assembly levels in order to attain high-precision positioning with an error of 6 arc minutes or less.

Low-vibration operation

When a geared motor is used, the motor's low-speed vibration region is avoided and vibration is reduced. Since **PN** gears have backlash of less than 3 arc minutes, further reduction in vibration in the low-speed region is attained.

PRECAUTIONS

When using the **UPK•W** Geared Type, please note the following:

1. Do not exceed the maximum permissible torque:

Permissible torque represents the maximum value of the mechanical strength of the gear unit. Be sure to keep the total value of acceleration/deceleration torque and load (friction) torque at the shaft under the permissible torque value. If torque exceeding the permissible torque is applied, the gear unit may fail.

2. Do not exceed the permissible speed range:

Do not exceed the maximum output speed of the gearhead indicated in the specifications on page B-84~B-88, B-96 and B-97. The speed affects the life the gearhead. Be sure to use the gear unit below the maximum permissible speed.

3. Be careful of backlash in positioning for both forward and reverse directions:

Backlash is the free rotation angle (i.e., play) of the output shaft when the input section of the reduction gear is fixed. The value for each geared type is shown below;

TH Geared: Backlash 10 arc minutes, 15 arc minutes, 25 arc minutes or 35 arc minutes depending on frame size and gear ratio

PN Geared: Backlash 3 arc minutes maximum

Each geared type of the **UPK•W** provides low backlash with high accuracy in positioning. If there is a problem with backlash in bi-directional positioning, be sure to stop the motor in one direction.

4. The direction of gear-shaft rotations differs according to the gear ratio:

When the **TH** geared type is used, the relationship between the rotating direction of the motor shaft and the rotating direction of the gear output shaft varies, depending on the gear ratio used.

Gear ratio 3.6:1, 7.2:1 and 10:1 Same as motor Gear ratio 20:1 and 30:1 Opposite to motor

When the **PN** geared type is used, the motor and the output shaft of the gear rotate in the same direction with all gear ratios.

■ SPECIFICATIONS TH GEARED TYPE Single-Phase 100-115V AC Input

CE

e Model um Holding Torque nertia Current Step Angle atio sible Torque sible Thrust Load sible Overhung Load sh Ar Sible Speed Range Output Shaft Speed) ion Class Source Current on Mode	Single Shaft Double Shaft Ib-in (N-m) oz-in² (kg·m²) A/phase Ib-in (N·m) Ib. (N) Ib. (N) Cominute (degree) Full Step A/phase A/phase Full Step	UPK543AW-T3.6 UPK543BW-T3.6 3.03 (0.35) 0.2° 3.6:1 3.03 (0.35) 45 (0.75°) 0~15000Hz (0~500r/min) 0~30000Hz (0~500r/min)	UPK543AW-T7.2 UPK543BW-T7.2 6.07 (0.7) 0.1° 7.2:1 6.07 (0.7) 24 (0. 0~15000Hz (0~250r/min) 0~3000Hz (0~250r/min)	0~15000Hz (0~180r/min)	UPK543AW-T20 UPK543BW-T20 13 (1.5) 0.036° 20:1 13 (1.5) 15 (0 0~15000Hz (0~90r/min)	0~15000Hz		
nertia Current Step Angle atio sible Torque sible Thrust Load sible Overhung Load sh Ar sible Speed Range Output Shaft Speed) ion Class Source Current	Ib-in (N·m) oz-in² (kg·m²) A/phase Ib-in (N·m) Ib. (N) Ib. (N) Cominute (degree) Full Step Half Step A/phase	3.03 (0.35) 0.2° 3.6:1 3.03 (0.35) 45 (0.75°) 0~15000Hz (0~500r/min) 0~30000Hz	6.07 (0.7) 0.1° 7.2:1 6.07 (0.7) 24 (0.00000000000000000000000000000000000	8.67 (1) 0.192 (35×10 ⁻⁷) 0.75 0.072° 10:1 8.67 (1) 3.3 (15) 4.4 (20) 417°) 0~15000Hz (0~180r/min)	13 (1.5) 0.036° 20:1 13 (1.5) 15 (0 0~15000Hz	13 (1.5) 0.024° 30:1 13 (1.5) 0.25°) 0~15000Hz		
nertia Current Step Angle atio sible Torque sible Thrust Load sible Overhung Load sh Ar sible Speed Range Output Shaft Speed) ion Class Source Current	oz-in² (kg·m²) A/phase Ib-in (N·m) Ib. (N) Ib. (N) Cominute (degree) Full Step Half Step A/phase	0.2° 3.6:1 3.03 (0.35) 45 (0.75°) 0~15000Hz (0~500r/min) 0~30000Hz	0.1° 7.2:1 6.07 (0.7) 24 (0.00000000000000000000000000000000000	0.192 (35×10 ⁻⁷) 0.75 0.072° 10:1 8.67 (1) 3.3 (15) 4.4 (20) 417°) 0~15000Hz (0~180r/min)	0.036° 20:1 13 (1.5) 15 (0 0~15000Hz	0.024° 30:1 13 (1.5) 0.25°) 0~15000Hz		
Current Current Step Angle atio sible Torque sible Thrust Load sible Overhung Load sh Ar sible Speed Range Output Shaft Speed) cion Class Source Current con Mode	A/phase Ib-in (N·m) Ib. (N) I	3.6:1 3.03 (0.35) 45 (0.75°) 0~15000Hz (0~500r/min) 0~30000Hz	7.2:1 6.07 (0.7) 24 (0. 0~15000Hz (0~250r/min) 0~30000Hz	0.75 0.072° 10:1 8.67 (1) 3.3 (15) 4.4 (20) .417°) 0~15000Hz (0~180r/min)	20:1 13 (1.5) 15 (0 0~15000Hz	30:1 13 (1.5) 0.25°) 0~15000Hz		
step Angle atio sible Torque sible Thrust Load sible Overhung Load sh Ar sible Speed Range Output Shaft Speed) ion Class Source Current	Ib-in (N·m) Ib. (N) Ib. (N) C minute (degree) Full Step Half Step A/phase	3.6:1 3.03 (0.35) 45 (0.75°) 0~15000Hz (0~500r/min) 0~30000Hz	7.2:1 6.07 (0.7) 24 (0. 0~15000Hz (0~250r/min) 0~30000Hz	10:1 8.67 (1) 3.3 (15) 4.4 (20) 417°) 0~15000Hz (0~180r/min)	20:1 13 (1.5) 15 (0 0~15000Hz	30:1 13 (1.5) 0.25°) 0~15000Hz		
atio sible Torque sible Thrust Load sible Overhung Load sh Ar sible Speed Range Output Shaft Speed) ion Class Source Current on Mode	Ib. (N) Ib. (N	3.03 (0.35) 45 (0.75°) 0~15000Hz (0~500r/min) 0~30000Hz	6.07 (0.7) 24 (0.00000000000000000000000000000000000	8.67 (1) 3.3 (15) 4.4 (20) 417°) 0~15000Hz (0~180r/min)	13 (1.5) 15 (0 0~15000Hz	13 (1.5) 0.25°) 0~15000Hz		
sible Torque sible Thrust Load sible Overhung Load sh Ar sible Speed Range Output Shaft Speed) ion Class Source Current on Mode	Ib. (N) Ib. (N	3.03 (0.35) 45 (0.75°) 0~15000Hz (0~500r/min) 0~30000Hz	6.07 (0.7) 24 (0.00000000000000000000000000000000000	8.67 (1) 3.3 (15) 4.4 (20) 417°) 0~15000Hz (0~180r/min)	13 (1.5) 15 (0 0~15000Hz	13 (1.5) 0.25°) 0~15000Hz		
sible Thrust Load sible Overhung Load sh Ar sible Speed Range Output Shaft Speed) ion Class Source Current on Mode	Ib. (N) Ib. (N	45 (0.75°) 0~15000Hz (0~500r/min) 0~30000Hz	24 (0. 0~15000Hz (0~250r/min) 0~30000Hz	3.3 (15) 4.4 (20) 417°) 0~15000Hz (0~180r/min)	15 (C 0~15000Hz	0.25°) 0~15000Hz		
sh Ar sible Speed Range Output Shaft Speed) ion Class Source Current	r minute (degree) Full Step Half Step A/phase	0~15000Hz (0~500r/min) 0~30000Hz	0~15000Hz (0~250r/min) 0~30000Hz	417°) 0~15000Hz (0~180r/min)	0~15000Hz	0~15000Hz		
sible Speed Range Output Shaft Speed) ion Class Source Current	Full Step Half Step A/phase	0~15000Hz (0~500r/min) 0~30000Hz	0~15000Hz (0~250r/min) 0~30000Hz	0~15000Hz (0~180r/min)	0~15000Hz	0~15000Hz		
Output Shaft Speed) ion Class Source Current ion Mode	Half Step A/phase	(0~500r/min) 0~30000Hz	(0~250r/min) 0~30000Hz	(0~180r/min)				
ion Class Source Current on Mode	A/phase					(0~60r/min)		
Source Current on Mode			(0 2001/111111)	0~30000Hz (0~180r/min)	0~30000Hz (0~90r/min)	0~30000Hz (0~60r/min)		
Current on Mode			Class B [266°F (130°C)] Recognized as Class A [221°F (105°C)] by UL and CSA standard					
on Mode					0/0Hz 1.5A			
				0.75				
		0.2°/step	0.1°/step	0.072°/step	0.036°/step	0.024°/step		
put Signal Circuit	Half Step	0.1°/step	0.05°/step	0.036°/step	0.018°/step	0.012°/step		
				nput current 20mA max Photocoupler OFF: 0~				
CW Pulse Signal (Pulse S	Signal)	CW direction step command pulse signal (Step command signal at 1-pulse input mode) Pulse width: 5µs minimum, Pulse rise/fall: 2µs maximum Motor moves when the photocoupler state changes from ON to OFF.						
CCW Pulse Signal (Rotation Direction Signa	al)	Pulse width: 5µs mini	CCW direction step command signal (Rotation direction signal at 1-pulse input mode, Photocoupler ON: CW, Photocoupler OFF: CCW) Pulse width: 5µs minimum, Pulse rise/fall: 2µs maximum Motor moves when the photocoupler state changes from ON to OFF.					
All Windings Off Signal		When in the "photocou	upler ON" state, the curre	ent to the motor is cut of rrent level set by the RL	ff and the motor shaft ca			
utput Signal Circuit		Photocoupler, Open-Collector Output (Emitter common) External use condition: 24V DC maximum, 10mA maximum						
Excitation Timing Signal		The signal is output every time the excitation sequence returns to the initial stage "0". (Photocoupler : ON) Full step: signal output every 10 pulses, Half step: signal output every 20 pulses						
Overheat Signal		The signal is output when the internal temperature of the driver rises above approximately 176°F (80°C). (Photocoupler: ON) The motor stops automatically if the "Automatic Current Off" function is ON						
ons								
				· · · · · · · · · · · · · · · · · · ·	· · · ·			
, ,		i ower source input, E	LAGITATION THINING SIGNAL	• •	υσιμαι			
Cooling Method	B. 4 . 1 . 11 . 22 . 2							
(Mass)								
	Motor Motor	100M Ω minimum under normal temperature and humidity, when measured by a DC500V megger between the						
ion Resistance	Driver	100M Ω minimum under normal temperature and humidity, when measured by a DC500V megger between th following places: • Power input terminal — Protective earthing terminal • Motor output terminal — Protective earthing terminal						
	Motor			between the motor co	oils and casing for one	minute, under norm		
ric Strength	Driver	Sufficient to withstand the following for one minute, under normal temperature and humidity. Power input terminal — Protective earthing terminal Motor output terminal — Protective earthing terminal Signal input/output terminal — Power input terminal AC1.5kV 60Hz AC3.0kV 60Hz						
	Motor	· · · · · ·	+14°	F~+122°F (-10°C~+5	50°C)			
I.T		+14°F~+122°F (-10°C~+50°C) +32°F~+122°F (0°C~+50°C)						
E O O O O O O O O O O O O O O O O O O O	xcitation Timing Signal verheat Signal is r (LED) cooling Method Mass) on Resistance	xcitation Timing Signal verheat Signal is r (LED) cooling Method Mass) Motor Ib. (kg) Driver Ib. (kg) Motor Driver Motor C Strength Driver Motor	Photocoupler, Open-C External use condition xcitation Timing Signal verheat Signal verheat Signal The signal is output e Full step: signal output The signal is output w (Photocoupler: ON) The motor stops auto Automatic current cut r (LED) Power source input, E poling Method Mass) Motor Motor Ib. (kg) Driver Ib. (kg) Driver Ib. (kg) Driver Ib. (kg) Driver Ib. (kg) Motor Motor Motor Signal input/output Sufficient to withstant emperature and hum Power input termina Signal input/output Signal input/output	Photocoupler, Open-Collector Output (Emitte External use condition: 24V DC maximum, 10 xcitation Timing Signal The signal is output every time the excitation Full step: signal output every 10 pulses, Half The signal is output when the internal tempe (Photocoupler: ON) The motor stops automatically if the "Automatics Current cutback, All windings off, r (LED) Power source input, Excitation timing signal motor lb. (kg) Driver lb. (kg) Motor Driver Motor Motor Motor Driver Motor Motor Driver Motor Motor Driver Motor Motor Driver Motor Motor Motor Motor Motor output terminal — Protective earthing Signal input/output terminal — Protective earthing Motor output terminal — Protective earthing Signal input/output terminal — Protective earthing Motor output terminal — Protective earthing Signal input/output terminal — Protective earthing Motor output terminal — Protective earthing Motor Motor output terminal — Pro	Photocoupler, Open-Collector Output (Emitter common) External use condition: 24V DC maximum, 10mA maximum	Photocoupler, Open-Collector Output (Emitter common) External use condition: 24V DC maximum, 10mA maximum The signal is output every time the excitation sequence returns to the initial stage "0". (Phot Full step: signal output every 10 pulses, Half step: signal output every 20 pulses The signal is output when the internal temperature of the driver rises above approximately (Photocoupler: ON) The motor stops automatically if the "Automatic Current Off" function is ON. Automatic current cutback, All windings off, Pulse input mode switch, Step angle switch Power source input, Excitation timing signal output, Overheat signal output Natural Ventilation Mass) Motor Ib. (kg) Driver Ib. (kg) Driver Ib. (kg) 100M Ω minimum under normal temperature and humidity, when measured by a DC500 motor coils and the motor casing. 100M Ω minimum under normal temperature and humidity, when measured by a DC500 following places: Power input terminal — Protective earthing terminal • Motor output terminal — Motor output terminal — Motor output terminal — Motor output terminal — Protective earthing terminal • Signal input/output terminal — Motor output terminal — Protective earthing terminal — AC1.5kV 60Hz Sufficient to withstand the following for one minute, under normal temperature and humidity. Sufficient to withstand — Protective earthing terminal — AC3.0kV 60Hz Signal input/output terminal — Protective earthing terminal — AC3.0kV 60Hz Signal input/output terminal — Protective earthing terminal — AC3.0kV 60Hz Signal input/output terminal — Protective earthing terminal — AC3.0kV 60Hz Signal input/output terminal — Protective earthing terminal — AC3.0kV 60Hz Signal input/output terminal — Motor output terminal — AC3.0kV 60Hz Signal input/output terminal — Motor output terminal — AC3.0kV 60Hz Signal input/output terminal — Motor output terminal — AC3.0kV 60Hz		

[•]Maximum holding torque refers to the holding torque at motor standstill when the rated current is supplied to the motor (5-phase excitation). Use this value to compare motor torque performance. When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.

Note: Do not measure insulation resistance or perform the dielectric strength test while the motor and driver are connected.

[•]The power source input current value represents the maximum current. (The input current varies according to the pulse frequency.)

[•]Permissible torque is the maximum value of the mechanical strength of the gear unit. Use the product with a total torque (load and acceleration) less than the permissible torque.

[•]Permissible overhung load indicates the value measured at 0.39 inch (10mm) from the tip of the gear output shaft.

[•]The direction of rotation of the motor and the gear output shaft are the same for the unit type with gear ratios of 3.6:1, 7.2:1 and 10:1. They are opposite for the 20:1 and 30:1 gear ratio types.

TH GEARED TYPE Single-Phase 100-115VAC Input

п	SEARED TIPE SING	le-Pilase 100-1	13VAC IIIput			74 74 C			
Pac	kage Model	Single Shaft	UPK564AW-T3.6	UPK564AW-T7.2	UPK564AW-T10	UPK564AW-T20	UPK564AW-T30		
		Double Shaft Ib-in (N•m)	UPK564BW-T3.6	UPK564BW-T7.2	UPK564BW-T10	UPK564BW-T20	UPK564BW-T30		
	ximum Holding Torque	oz-in² (kg•m²)	10.8 (1.25)	21.6 (2.5)	26 (3) 0.96 (175×10 ⁻⁷)	30.3 (3.5)	34.7 (4)		
	or Inertia	, ,			0.90 (175×10)				
	ed Current	A/phase	0.2°	0.1°	0.73 0.072°	0.036°	0.024°		
	ic Step Angle		-	-					
	r Ratio	Ih in (N m)	3.6:1	7.2:1	10:1	20:1	30:1		
	missible Torque	Ib-in (N•m)	10.8 (1.25)	21.6 (2.5)	26 (3) 8.81 (40)	30.3 (3.5)	34.7 (4)		
	missible Thrust Load	lb. (N)							
	missible Overhung Load	Ib. (N)	25 (0 504°)	15 (0	22 (100)	10 (0.	1670)		
Backlash Arc min		Arc minute (degree)	35 (0.584°)		,	,	· · · · · · · · · · · · · · · · · · ·		
	missible Speed Range ar Output Shaft Speed)	Full Step	0~15000Hz (0~500r/min)	0~15000Hz (0~250r/min)	0~15000Hz (0~180r/min)	0~15000Hz (0~90r/min)	0~15000Hz (0~60r/min)		
`		Half Step	0~30000Hz (0~500r/min)	0~30000Hz (0~250r/min)	0~30000Hz (0~180r/min)	0~30000Hz (0~90r/min)	0~30000Hz (0~60r/min)		
	ulation Class					s A [221°F (105°C)] by	UL and CSA standard		
	ver Source			Single-Phase		0/0Hz 5.5A			
Out	put Current	A/phase			0.75				
Exc	itation Mode	Full Step	0.2°/step	0.1°/step	0.072°/step	0.036°/step	0.024°/step		
		Half Step	0.1°/step	0.05°/step	0.036°/step	0.018°/step	0.012°/step		
	Input Signal Circuit			nput resistance 220 Ω , I coupler ON: $+4{\sim}+5$ V,					
ignals	• CW Pulse Signal (Pulse	e Signal)	CW direction step command pulse signal (Step command signal at 1-pulse input mode) Pulse width: 5µs minimum, Pulse rise/fall: 2µs maximum Motor moves when the photocoupler state changes from ON to OFF.						
Input Signals	CCW Pulse Signal (Rotation Direction Signal)	nal)	Pulse width: 5µs mini	CCW direction step command signal (Rotation direction signal at 1-pulse input mode, Photocoupler ON: CW, Photocoupler OFF: CCW) Pulse width: 5µs minimum, Pulse rise/fall: 2µs maximum Motor moves when the photocoupler state changes from ON to OFF.					
	• All Windings Off Signal		When in the "photocoupler ON" state, the current to the motor is cut off and the motor shaft can be when in the "photocoupler OFF" state, the current level set by the RUN switch is supplied to the						
S	Output Signal Circuit		Photocoupler, Open-Collector Output (Emitter common) External use condition: 24V DC maximum, 10mA maximum						
Output Signals	• Excitation Timing Signa	al	The signal is output every time the excitation sequence returns to the initial stage "0". (Photocoupler : ON) Full step: signal output every 10 pulses, Half step: signal output every 20 pulses						
Ontb	Overheat Signal		The signal is output when the internal temperature of the driver rises above approximately 176°F (80°C). (Photocoupler: ON) The motor stops automatically if the "Automatic Current Off" function is ON.						
	-1:		, ,						
	ctions		Automatic current cutback, All windings off, Pulse input mode switch, Step angle switch Power source input, Excitation timing signal output, Overheat signal output						
	icator (LED)		Power source input, E	excitation timing signal	. , ,	оигрит			
Dri	ver Cooling Method				Natural Ventilation				
We	ight (Mass)	Motor Ib. (kg)			2.1 (0.95)				
	.g ()	Driver Ib. (kg)	2.1 (0.95)						
		Motor	100M Ω minimum under normal temperature and humidity, when measured by a DC500V megger between th motor coils and the motor casing.						
Ins	ulation Resistance	Driver	100M Ω minimum under normal temperature and humidity, when measured by a DC500V megger between t following places: • Power input terminal — Protective earthing terminal • Signal input/output terminal — Motor output terminal — Motor output terminal — Motor output terminal						
		Motor	Sufficient to withstar temperature and hum	nd 1.5kV, 60Hz applied iidity.	between the motor co	ils and casing for one	minute, under norm		
Die	lectric Strength	Driver	Power input termina Motor output termina Signal input/output	d the following for one in al — Protective earthing nal — Protective earthing terminal — Power input terminal — Motor outp	g terminal AC1.5kV ng terminal AC1.5kV nt terminal AC3.0kV	60Hz 60Hz 60Hz	ty.		
	B.A1		Motor +14°F~+122°F (-10°C~+50°C)						
Λ	bient Temperature Range	Motor		+14°		50°C)			

- •Maximum holding torque refers to the holding torque at motor standstill when the rated current is supplied to the motor (5-phase excitation). Use this value to compare motor torque performance. When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.
- •The power source input current value represents the maximum current. (The input current varies according to the pulse frequency.)
- Permissible torque is the maximum value of the mechanical strength of the gear unit. Use the product with a total torque (load and acceleration) less than the permissible torque.
- •Permissible overhung load indicates the value measured at 0.39 inch (10mm) from the tip of the gear output shaft.
- •The direction of rotation of the motor and the gear output shaft are the same for the unit type with gear ratios of 3.6:1, 7.2:1 and 10:1. They are opposite for the 20:1 and 30:1 gear ratio types.

TH GEARED TYPE Single-Phase 100-115VAC Input

90(√ **200**) **100 10**

•••	SEAUED I THE SIII							
Pac	kage Model	Single Shaft	UPK596AW-T3.6	UPK596AW-T7.2	UPK596AW-T10	UPK596AW-T20	UPK596AW-T30	
		Double Shaft	UPK596BW-T3.6	UPK596BW-T7.2	UPK596BW-T10	UPK596BW-T20	UPK596BW-T30	
	ximum Holding Torque	Ib-in (N•m)	39 (4.5)	78.1 (9)	78.1 (9)	104 (12)	104 (12)	
	or Inertia	oz-in² (kg•m²)			7.66 (1400×10 ⁻⁷)			
	ed Current	A/phase	0.00	0.40	0.75	0.0000	0.0040	
	sic Step Angle		0.2°	0.1°	0.072°	0.036°	0.024°	
	ar Ratio		3.6:1	7.2:1	10:1	20:1	30:1	
	missible Torque	lb-in (N•m)	39 (4.5)	78.1 (9)	78.1 (9)	104 (12)	104 (12)	
_	missible Thrust Load	lb. (N)			22 (100)			
	missible Overhung Load	lb. (N)	05 (0.4179)	45.00	66.1 (300)	40.40	4.070)	
Backlash Arc		Arc minute (degree)	25 (0.417°) 0~15000Hz	15 (0 0∼15000Hz	0~15000Hz	10 (0 0∼15000Hz	.167°) 0∼15000Hz	
	missible Speed Range ar Output Shaft Speed)	Full Step	(0~500r/min)	(0~250r/min)	(0~180r/min)	(0~90r/min)	(0~60r/min)	
	. ,	Half Step	0~30000Hz (0~500r/min)	0~30000Hz (0~250r/min)	0~30000Hz (0~180r/min)	0~30000Hz (0~90r/min)	0~30000Hz (0~60r/min)	
	ulation Class				C)] Recognized as Clas		UL and CSA standard	
	ver Source			Single-Phase	100-115V±15% 5	0/0Hz 1.5A		
Out	put Current	A/phase			0.75	T		
Exc	itation Mode	Full Step	0.2°/step	0.1°/step	0.072°/step	0.036°/step	0.024°/step	
		Half Step	0.1°/step	0.05°/step	0.036°/step	0.018°/step	0.012°/step	
	Input Signal Circuit			nput resistance 220 Ω , I coupler ON: $+4{\sim}+5$ V,				
ignais	• CW Pulse Signal (Pulse	e Signal)	CW direction step command pulse signal (Step command signal at 1-pulse input mode) Pulse width: 5µs minimum, Pulse rise/fall: 2µs maximum Motor moves when the photocoupler state changes from ON to OFF.					
CCW Pulse Signal (Pulse Signal) CCW Pulse Signal (Rotation Direction Signal)			Pulse width: 5µs mini	mand signal (Rotation direct imum, Pulse rise/fall: 2µ ne photocoupler state cl	us maximum		Photocoupler OFF: CCW)	
	• All Windings Off Signa	I		upler ON" state, the curre upler OFF" state, the cu				
SI	Output Signal Circuit		Photocoupler, Open-Collector Output (Emitter common) External use condition: 24V DC maximum, 10mA maximum					
Output Signals	• Excitation Timing Signa	al	The signal is output every time the excitation sequence returns to the initial stage "0". (Photocoupler : ON) Full step: signal output every 10 pulses, Half step: signal output every 20 pulses					
Outp	Overheat Signal		The signal is output when the internal temperature of the driver rises above approximately 176°F (80°C). (Photocoupler: ON) The motor stops automatically if the "Automatic Current Off" function is ON.					
Fur	ictions		Automatic current cutback, All windings off, Pulse input mode switch, Step angle switch					
Ind	icator (LED)		Power source input, E	Excitation timing signal	output, Overheat signal	output		
	ver Cooling Method		, , ,	0 0 4	Natural Ventilation	•		
	vor occurring mounted	Motor lb. (kg)						
We	ight (Mass)	Driver lb. (kg)	6.29 (2.85) 2.1 (0.95)					
		Motor Motor	2.1 (0.95) 100M Ω minimum under normal temperature and humidity, when measured by a DC500V megger between th motor coils and the motor casing.					
Ins	ulation Resistance	Driver	100M Ω minimum under normal temperature and humidity, when measured by a DC500V megger between th following places: • Power input terminal — Protective earthing terminal • Signal input/output terminal — Motor output terminal — Motor output terminal					
		Motor	Sufficient to withstar temperature and hum	nd 1.5kV, 60Hz applied idity.	between the motor co	oils and casing for one	minute, under norm	
Die	lectric Strength	Driver	Sufficient to withstand the following for one minute, under normal temperature and humidity. Power input terminal — Protective earthing terminal Motor output terminal — Protective earthing terminal Signal input/output terminal — Power input terminal Signal input/output terminal — Motor output terminal AC1.5kV 60Hz AC3.0kV 60Hz AC3.0kV 60Hz					
B.A		Motor	+14°F~+122°F (-10°C~+50°C)					
۸	bient Temperature Range			1.17	1 - + 122 1 (- 10 0 - +	JU U)		

[•]Maximum holding torque refers to the holding torque at motor standstill when the rated current is supplied to the motor (5-phase excitation). Use this value to compare motor torque performance. When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.

•The power source input current value represents the maximum current. (The input current varies according to the pulse frequency.)

[•]Permissible torque is the maximum value of the mechanical strength of the gear unit. Use the product with a total torque (load and acceleration) less than the permissible torque.

[•]Permissible overhung load indicates the value measured at 0.39 inch (10mm) from the tip of the gear output shaft.

[•]The direction of rotation of the motor and the gear output shaft are the same for the unit type with gear ratios of 3.6:1, 7.2:1 and 10:1. They are opposite for the 20:1 and 30:1 gear ratio types.

TH GEARED TYPE Single-Phase 200-230VAC Input

		ie-Filase 200-23							
Pac	ckage Model	Single Shaft	UPK564AJW-T3.6	UPK564AJW-T7.2	UPK564AJW-T10	UPK564AJW-T20	UPK564AJW-T30		
		Double Shaft	UPK564BJW-T3.6	UPK564BJW-T7.2	UPK564BJW-T10	UPK564BJW-T20	UPK564BJW-T30		
	ximum Holding Torque	Ib-in (N•m)	10.8 (1.25)	21.6 (2.5)	26 (3) 0.96 (175×10 ⁻⁷)	30.3 (3.5)	34.7 (4)		
	tor Inertia	oz-in² (kg·m²)			0.90 (175×10)				
	ted Current	A/phase	0.2°	0.1°		0.0000	0.0048		
	sic Step Angle		-	-	0.072°	0.036°	0.024°		
	ar Ratio	H. S. (N)	3.6:1	7.2:1	10:1	20:1	30:1		
	missible Torque	Ib-in (N•m)	10.8 (1.25)	21.6 (2.5)	26 (3)	30.3 (3.5)	34.7 (4)		
_	missible Thrust Load	lb. (N)			8.81 (40)				
	missible Overhung Load	lb. (N)	25 (0.5048)	15 (0	22 (100)	10./0	1670\		
Backlash Arc minute		Arc minute (degree)	35 (0.584°)	15 (0	1	10 (0	,		
	rmissible Speed Range ear Output Shaft Speed)	Full Step	0~15000Hz (0~500r/min)	0~15000Hz (0~250r/min)	0~15000Hz (0~180r/min)	0~15000Hz (0~90r/min)	0~15000Hz (0~60r/min)		
		Half Step	0~30000Hz (0~500r/min)	0~30000Hz (0~250r/min)	0~30000Hz (0~180r/min)	0~30000Hz (0~90r/min)	0~30000Hz (0~60r/min)		
Ins	ulation Class		Class B [266°F (130°C)] Recognized as Class A [221°F (105°C)] by UL and CSA standard						
	wer Source			Single-Phas	1376	60Hz 3.5A			
0u	tput Current	A/phase			0.75				
Exr	citation Mode	Full Step	0.2°/step	0.1°/step	0.072°/step	0.036°/step	0.024°/step		
		Half Step	0.1°/step	0.05°/step	0.036°/step	0.018°/step	0.012°/step		
	Input Signal Circuit				input current 20mA max Photocoupler OFF: 0 \sim				
ignals	• CW Pulse Signal (Pulse	Signal)	CW direction step command pulse signal (Step command signal at 1-pulse input mode) Pulse width: 5µs minimum, Pulse rise/fall: 2µs maximum Motor moves when the photocoupler state changes from ON to OFF.						
Input Signals	CCW Pulse Signal (Rotation Direction Signal)	nal)	Pulse width: 5µs mini	CCW direction step command signal (Rotation direction signal at 1-pulse input mode, Photocoupler ON: CW, Photocoupler OFF: CCW) Pulse width: 5µs minimum, Pulse rise/fall: 2µs maximum Motor moves when the photocoupler state changes from ON to OFF.					
	• All Windings Off Signal		· '	ff and the motor shaft ca JN switch is supplied to					
S	Output Signal Circuit		Photocoupler, Open-Collector Output (Emitter common) External use condition: 24V DC maximum, 10mA maximum						
Output Signals	• Excitation Timing Signa	I	The signal is output every time the excitation sequence returns to the initial stage "0". (Photocoupler : ON) Full step: signal output every 10 pulses, Half step: signal output every 20 pulses						
Outpi	Overheat Signal		The signal is output when the internal temperature of the driver rises above approximately 176°F (80°C). (Photocoupler: ON) The motor stops automatically if the "Automatic Current Off" function is ON.						
Fur	nctions		Automatic current cut	back, All windings off.	Pulse input mode switc	h. Step angle switch			
	icator (LED)				output, Overheat signal	, i ,			
	ver Cooling Method		. ovor oouroo input, L		Natural Ventilation	Jacpur			
ווע	voi oooiiiiy ivietiiUu	Motor Ib (Ic-)							
We	ight (Mass)	Motor lb. (kg) Driver lb. (kg)	2.1 (0.95)						
		Motor	$2.1 (0.95)$ 100M Ω minimum under normal temperature and humidity, when measured by a DC500V megger between the mater social and the						
Ins	ulation Resistance	Driver	motor coils and the motor casing. 100M Ω minimum under normal temperature and humidity, when measured by a DC500V megger between the following places: • Power input terminal — Protective earthing terminal • Motor output terminal — Protective earthing terminal • Signal input/output terminal — Motor output terminal — Motor output terminal • Signal input/output terminal • Signal input/outpu						
		Motor	Sufficient to withstan temperature and hum		between the motor co	oils and casing for one	minute, under norm		
Dielectric Strength Driver			Sufficient to withstand the following for one minute, under normal temperature and humidity. Power input terminal — Protective earthing terminal Motor output terminal — Protective earthing terminal Signal input/output terminal — Power input terminal Signal input/output terminal — Motor output terminal AC3.2kV 60Hz AC3.2kV 60Hz						
	Matar		Motor +14°E∼+122°F (−10°C∼+50°C)						
Λ	bient Temperature Range	Motor	orginal impag sarpat	·					

- •Maximum holding torque refers to the holding torque at motor standstill when the rated current is supplied to the motor (5-phase excitation). Use this value to compare motor torque performance. When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.
- •The power source input current value represents the maximum current. (The input current varies according to the pulse frequency.)
- Permissible torque is the maximum value of the mechanical strength of the gear unit. Use the product with a total torque (load and acceleration) less than the permissible torque.
- •Permissible overhung load indicates the value measured at 0.39 inch (10mm) from the tip of the gear output shaft.
- •The direction of rotation of the motor and the gear output shaft are the same for the unit type with gear ratios of 3.6:1, 7.2:1 and 10:1. They are opposite for the 20:1 and 30:1 gear ratio types.

TH GEARED TYPE Single-Phase 200-230VAC Input

		Single Shaft	UPK596AJW-T3.6	UPK596AJW-T7.2	UPK596AJW-T10	UPK596AJW-T20	UPK596AJW-T30		
Pa	ckage Model	Double Shaft	UPK596BJW-T3.6	UPK596BJW-17.2	UPK596BJW-T10	UPK596BJW-T20	UPK596BJW-T30		
Ma	eximum Holding Torque	Ib-in (N•m)	39 (4.5)	78.1 (9)	78.1 (9)	104 (12)	104 (12)		
	tor Inertia	oz-in² (kg•m²)	55 ()	1011 (0)	7.66 (1400×10 ⁻⁷)	(/	101(12)		
	ted Current	A/phase			0.75				
	sic Step Angle		0.2°	0.1°	0.072°	0.036°	0.024°		
	ar Ratio		3.6:1	7.2:1	10:1	20:1	30:1		
Pe	rmissible Torque	lb-in (N•m)	39 (4.5)	78.1 (9)	78.1 (9)	104 (12)	104 (12)		
	rmissible Thrust Load	lb. (N)		,	22 (100)	()	,		
Pe	rmissible Overhung Load	lb. (N)			66.1 (300)				
Ва	cklash F	Arc minute (degree)	25 (0.417°)	15 (0).25°)	10 (0	.167°)		
Pe	rmissible Speed Range	Full Step	0~15000Hz (0~500r/min)	0~15000Hz (0~250r/min)	0~15000Hz (0~180r/min)	0~15000Hz (0~90r/min)	0~15000Hz (0~60r/min)		
	ear Output Shaft Speed)	Half Step	0~30000Hz (0~500r/min)	0~30000Hz (0~250r/min)	0~30000Hz (0~180r/min)	0~30000Hz (0~90r/min)	0~30000Hz (0~60r/min)		
Ins	sulation Class			Class B [266°F (130°C	C)] Recognized as Class	L s Δ [221°F (105°C)] hv	III and CSA standards		
	wer Source		Class B [266°F (130°C)] Recognized as Class A [221°F (105°C)] by UL and CSA standards. Single-Phase 200-230V ^{-10%} _{-15%} 60Hz 3.5A						
	tput Current	A/phase		Olligio I II	0.75	00112 0.071			
	·	Full Step	0.2°/step	0.1°/step	0.73 0.072°/step	0.036°/step	0.024°/step		
Ex	citation Mode	Half Step	0.1°/step	0.05°/step	0.036°/step	0.018°/step	0.012°/step		
	Input Signal Circuit	Tian Grop	Photocoupler input, I	nput resistance 220 Ω , I coupler ON: $+4\sim+5$ V,	nput current 20mA ma	ximum	0.012 / 0.00		
ignals	• CW Pulse Signal (Pulse	e Signal)	CW direction step command pulse signal (Step command signal at 1-pulse input mode) Pulse width: 5µs minimum, Pulse rise/fall: 2µs maximum Motor moves when the photocoupler state changes from ON to OFF.						
Input Signals	CCW Pulse Signal (Rotation Direction Signal)	nal)	Pulse width: 5µs mini	CCW direction step command signal (Rotation direction signal at 1-pulse input mode, Photocoupler ON: CW, Photocoupler OFF: CCW) Pulse width: 5µs minimum, Pulse rise/fall: 2µs maximum Motor moves when the photocoupler state changes from ON to OFF.					
	All Windings Off Signal		When in the "photocou	upler ON" state, the curre upler OFF" state, the cu	ent to the motor is cut o	ff and the motor shaft ca			
ls	Output Signal Circuit			Collector Output (Emitte n: 24V DC maximum, 10					
Output Signals	• Excitation Timing Signa	al	The signal is output every time the excitation sequence returns to the initial stage "0". (Photocoupler : ON) Full step: signal output every 10 pulses, Half step: signal output every 20 pulses						
Outpi	Overheat Signal		The signal is output when the internal temperature of the driver rises above approximately 176°F (80°C). (Photocoupler: ON) The motor stops automatically if the "Automatic Current Off" function is ON.						
Fu	nctions		Automatic current cutback, All windings off, Pulse input mode switch, Step angle switch						
	dicator (LED)		Power source input, Excitation timing signal output, Overheat signal output						
ווט	iver Cooling Method	Material D. O. S.			Natural Ventilation				
We	eight (Mass)	Motor lb. (kg)			6.29 (2.85)				
		Driver Ib. (kg) Motor	$2.1 \ (0.95)$ 100M Ω minimum under normal temperature and humidity, when measured by a DC500V megger between the motor coils and the motor casing.						
Ins	sulation Resistance	Driver	100M Ω minimum under normal temperature and humidity, when measured by a DC500V megger between the following places: • Power input terminal — Protective earthing terminal • Signal input/output terminal — Motor output terminal — Motor output terminal						
		Motor	Sufficient to withstar temperature and hum	4 11	between the motor co	oils and casing for one	minute, under normal		
Die	electric Strength	Driver	Power input terminaMotor output terminaSignal input/output	d the following for one al — Protective earthing nal — Protective earthin terminal — Power inpu terminal — Motor outp	g terminal AC1.8kV ng terminal AC1.8kV It terminal AC3.2kV	60Hz 60Hz 60Hz	ty.		
Δm	nbient Temperature Range	Motor			F~+122°F (−10°C~+				
ΛII	ibioni iomporature nange	Driver		+32°	F~+122°F (0°C~+50°	C)			

[•]Maximum holding torque refers to the holding torque at motor standstill when the rated current is supplied to the motor (5-phase excitation). Use this value to compare motor torque performance. When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.

•The power source input current value represents the maximum current. (The input current varies according to the pulse frequency.)

[•]Permissible torque is the maximum value of the mechanical strength of the gear unit. Use the product with a total torque (load and acceleration) less than the permissible torque.

[•]Permissible overhung load indicates the value measured at 0.39 inch (10mm) from the tip of the gear output shaft.

[•]The direction of rotation of the motor and the gear output shaft are the same for the unit type with gear ratios of 3.6:1, 7.2:1 and 10:1. They are opposite for the 20:1 and 30:1 gear ratio types.

■ SPEED vs. TORQUE CHARACTERISTICS

fs: Maximum Starting Pulse Rate

UPK543BW-T3.6

UPK543BW-T20

UPK543BW-T7.2

UPK543BW-T30

UPK543BW-T10

UPK564BW-T3.6

Note

- •Pay attention to heat dissipation from the motor and driver. The motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C). [Under 167°F (75°C) is required to comply with UL or CSA standards. **UPK54** w is under application.]
- •When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" at motor standstill reduces maximum holding torque by approximately 50%.

SPEED vs. TORQUE CHARACTERISTICS

UPK564BW-T7.2

UPK564BW-T10

UPK564BW-T20

fs: Maximum Starting Pulse Rate

UPK564BW-T30

UPK569BW-T3.6

UPK569BW-T7.2

Note

- •Pay attention to heat dissipation from the motor and driver. The motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C). [Under 167°F (75°C) is required to comply with UL or CSA standards.]
- •When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.

UPK596BW-T10

UPK596BW-T20

UPK596BW-T30

UPK564BJW-T3.6

UPK564BJW-T7.2

UPK564BJW-T10

Note:

- •Pay attention to heat dissipation from the motor and driver. The motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C). [Under 167°F (75°C) is required to comply with UL or CSA standards.]
- •When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.

SPEED vs. TORQUE CHARACTERISTICS

UPK564BJW-T20

UPK564BJW-T30

UPK596BJW-T3.6

fs: Maximum Starting Pulse Rate

UPK596BJW-T7.2

UPK596BJW-T10

UPK596BJW-T20

Note

- •Pay attention to heat dissipation from the motor and driver. The motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C). [Under 167°F (75°C) is required to comply with UL or CSA standards.]
- •When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.

UPK596BJW-T30

Note

- •Pay attention to heat dissipation from the motor and driver. The motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C). [Under 167°F (75°C) is required to comply with UL or CSA standards.]
- •When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.

DIMENSIONS scale 1/4, unit = inch (mm)

Motor

UPK543 W-T Type

Single shaft Weight 0.76 lb. (Mass 0.35kg)

UPK543AW-T3.6 Motor ModePK543AW-T3.6 UPK543AW-T7.2 Motor ModePK543AW-T7.2 UPK543AW-T10 Motor ModePK543AW-T10 UPK543AW-T20 Motor ModePK543AW-T20 UPK543AW-T30 Motor ModePK543AW-T30

Double shaft Weight 0.76 lb. (Mass 0.35kg)

UPK543BW-T3.6 Motor ModePK543BW-T3.6 UPK543BW-T7.2 Motor ModePK543BW-T7.2 UPK543BW-T10 Motor ModePK543BW-T10 UPK543BW-T20 Motor ModePK543BW-T20 UPK543BW-T30 Motor ModePK543BW-T30

* .59±.01 (15±0.25) indicates the length of milling on motor shaft.

UPK564□W-T Type

Single shaft Weight 2.1 lb. (Mass 0.95kg)

UPK564AW-T3.6 Motor ModePK564AW-T3.6 UPK564AJW-T3.6 Motor ModePK564AW-T3.6 UPK564AW-T7.2 Motor ModePK564AW-T7.2 UPK564AJW-T7.2 Motor ModePK564AW-T7.2 Motor ModePK564AW-T10 UPK564AW-T10 UPK564AJW-T10 Motor ModePK564AW-T10 UPK564AW-T20 Motor ModePK564AW-T20 UPK564AJW-T20 Motor ModePK564AW-T20 UPK564AW-T30 Motor ModePK564AW-T30 UPK564AJW-T30 Motor ModePK564AW-T30

Double shaft Weight 2.1 lb. (Mass 0.95kg)

UPK564BW-T3.6 Motor ModePK564BW-T3.6 UPK564BJW-T3.6 Motor ModePK564BW-T3.6 UPK564BW-T7.2 Motor ModePK564BW-T7.2 UPK564BJW-T7.2 Motor ModePK564BW-T7.2 UPK564BW-T10 Motor ModePK564BW-T10 UPK564BJW-T10 Motor ModePK564BW-T10 UPK564BW-T20 Motor ModePK564BW-T20 UPK564BJW-T20 Motor ModePK564BW-T20 UPK564BW-T30 Motor ModePK564BW-T30 UPK564BJW-T30 Motor ModePK564BW-T30

UPK596 W-T Type

Single shaft Weight 6.29 lb. (Mass 2.85kg)

UPK596AW-T3.6 Motor ModePK596AW-T3.6 UPK596AJW-T3.6 Motor ModePK596AW-T3.6 UPK596AW-T7.2 Motor ModePK596AW-T7.2 UPK596AJW-T7.2 Motor ModePK596AW-T7.2 UPK596AW-T10 Motor ModePK596AW1-T10 UPK596AJW-T10 Motor ModePK596AW1-T10 UPK596AW-T20 Motor ModePK596AW1-T20 UPK596AJW-T20 Motor ModePK596AW1-T20 UPK596AW-T30 Motor ModePK596AW1-T30 UPK596AJW-T30 Motor ModePK596AW1-T30

Double shaft Weight 6.29 lb. (Mass 2.85kg)

UPK596BW-T3.6 Motor ModePK596BW-T3.6 UPK596BJW-T3.6 Motor ModePK596BW-T3.6 UPK596BW-T7.2 Motor ModePK596BW-T7.2 UPK596BJW-T7.2 Motor ModePK596BW-T7.2 UPK596BW-T10 Motor ModePK596BW1-T10 Motor ModePK596BW1-T10 UPK596BJW-T10 UPK596BW-T20 Motor ModePK596BW1-T20 UPK596BJW-T20 Motor ModePK596BW1-T20 UPK596BW-T30 Motor ModePK596BW1-T30 UPK596BJW-T30 Motor ModePK596BW1-T30

 These external appearance drawings are for a double shaft models. For a single shaft, ignore the colored areas.

See page B-36 for information on motor installation.

Driver

Single-Phase 100-115VAC Input Standard Type

For UPK543 W-T

Driver Model: UDK5107NW2 Waight 2.1 lb. (Mass 0.95kg)

For **UPK564** W-T, **UPK596** W-T

Driver Model: UDK5114NW2 Waight 2.1 lb. (Mass 0.95kg)

• I/O Connector (Included) Connector : 54306-2011 (MOLEX) Connector : 54331-1201 (MOLEX)

Single-Phase 200-230VAC Input Standard Type

For **UPK564**□**JW-T**, **UPK596**□**JW-T**

Driver Model: UDK5214NW Weight 2.1 lb. (Mass 0.95kg)

• I/O Connector (Included) Connector: 54306-2011 (MOLEX) Connector: 54331-1201 (MOLEX)

See page B-38 for information on driver installation.

■ SPECIFICATIONS PN GEARED TYPE Single-Phase 100-115VAC Input

Par	ckage Model	Single Shaft		UPK566AW-N7.2				UPK564AW-N50
		Double Shaft	UPK566BW-N5	UPK566BW-N7.2	UPK566BW-N10	UPK564BW-N25	UPK564BW-N36	UPK564BW-N50
	ximum Holding Torque	lb-in (N•m)		30.3 (3.5)			52 (6)	
	tor Inertia	oz-in² (kg•m²)		1.54 (280×10 ⁻⁷)			0.96 (175×10 ⁻⁷)	
	ted Current	A/phase				1.4		
	sic Step Angle		0.144	0.1	0.072	0.0288	0.02	0.0144
	ar Ratio		5:1	7.2:1	10:1	25:1	36:1	50:1
	missible Torque	lb-in (N∙m)		30.3 (3.5)			52 (6)	
	missible Thrust Load	lb. (N)		Г	22 (100)		
Per	missible Overhung Load	lb. (N)	55.1 (250)	66.1 (300)	66.1 (300)		88.1 (400)	
Bac	cklash	Arc minute (degree)			3	(0.05°)		
	rmissible Speed Range ear Output Shaft Speed)	Full Step	0~15000Hz (0~360r/min)	0~15000Hz (0~250r/min)	0~15000Hz (0~180r/min)	0~15000Hz (0~72r/min)	0~15000Hz (0~50r/min)	0~15000Hz (0~36r/min)
(uc	sai Output Shart Speed)	Half Step	0~30000Hz (0~360r/min)	0~30000Hz (0~250r/min)	0~30000Hz (0~180r/min)	0~30000Hz (0~72r/min)	0~30000Hz (0~50r/min)	$0{\sim}30000$ Hz $(0{\sim}36$ r/min)
Ins	ulation Class			Class B [266°	F (130°C)] Recogni	zed as Class A [22	1°F (105°C)] by UL	and CSA standard
Po	wer Source			Sing	e-Phase 100–115V	′±15% 50/0Hz	5.5A	
Ou	tput Current	A/phase			1	.4		
Ev,	citation Mode	Full Step	0.144°/step	0.1°/step	0.072°/step	0.0288°/step	0.02 /step	0.0144 /step
ΕXU	station wode	Half Step	0.072°/step	0.05°/step	0.036°/step	0.0144°/step	0.01 /step	0.0072 /step
Input Signal Circuit Photocoupler input, Input resistance 220Ω , Input current 20mA maximum Signal voltage Photocoupler ON: $+4\sim+5$ V, Photocoupler OFF: $0\sim+0.5$ V								
ignals	• CW Pulse Signal (Pulse	e Signal)	CW direction step command pulse signal (Step command signal at 1-pulse input mode) Pulse width: 5µs minimum, Pulse rise/fall: 2µs maximum Motor moves when the photocoupler state changes from ON to OFF.					
Input Signals	• CCW Pulse Signal (Rotation Direction Sig	nal)	Pulse width: 5µs	command signal (Rotat minimum, Pulse ris en the photocoupler	e/fall: 2µs maximun	n	otocoupler ON: CW, Pho	tocoupler OFF: CCW)
	• All Windings Off Signa	I		ocoupler ON" state, t tocoupler OFF" state				
als	Output Signal Circuit		Photocoupler, Open-Collector Output (Emitter common) External use condition: 24V DC maximum, 10mA maximum					
Output Signals	• Excitation Timing Signa	al		out every time the ex output every 10 puls				upler : ON)
Outp	• Overheat Signal		(Photocoupler: O		·			°F (80°C).
Fur	nctions		The motor stops automatically if the "Automatic Current Off" function is ON. Automatic current cutback, All windings off, Pulse input mode switch, Step angle switch					
	icator (LED)		Power source input, Excitation timing signal output, Overheat signal output					
	ver Cooling Method		. owor oource imp	בה באסונננוטוו נווווווון		Ventilation		
ווע	ver oboining ivieniou			0.04 (4.5)	ivatufal	ventiliation	0.01 (1.7)	
We	ight (Mass)	Motor Ib. (kg)		3.31 (1.5)	0.1.1	0.05)	3.31 (1.5)	
		Driver lb. (kg) Motor		m under normal ter he motor casing.	,	0.95) nidity, when measu	red by a DC500V n	negger between th
Insulation Resistance Driver			motor coils and the motor casing. 100M Ω minimum under normal temperature and humidity, when measured by a DC500V megger between the following places: • Power input terminal — Protective earthing terminal • Signal input/output terminal — Motor output terminal — Motor output terminal					
Ins		Driver	•		•	•		•
Ins		Driver Motor	Signal input/ou	tput terminal — Pov nstand 1.5kV, 60Hz	wer input terminal	Signal input/outp	ut terminal — Moto	output terminal
	lectric Strength		 Signal input/ou Sufficient to with temperature and Sufficient to with Power input ter Motor output te Signal input/ou 	tput terminal — Pov nstand 1.5kV, 60Hz	wer input terminal applied between the for one minute, und earthing terminal e earthing terminal wer input terminal	P Signal input/outpute motor coils and ler normal temperate AC1.5kV 60Hz AC1.5kV 60Hz AC3.0kV 60Hz	ut terminal — Moto casing for one mi	output terminal
Die	lectric Strength	Motor	 Signal input/ou Sufficient to with temperature and Sufficient to with Power input ter Motor output te Signal input/ou 	tput terminal — Povistand 1.5kV, 60Hz humidity. stand the following minal — Protective erminal — Protectivt tput terminal — Povistant terminal — Povistant — Povi	wer input terminal applied between the for one minute, und earthing terminal e earthing terminal wer input terminal	e motor coils and er normal temperar AC1.5kV 60Hz AC3.0kV 60Hz AC3.0kV 60Hz	ut terminal — Moto casing for one mi	r output terminal

[•]Maximum holding torque refers to the holding torque at motor standstill when the rated current is supplied to the motor (5-phase excitation). Use this value to compare motor torque performance. When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.

[•]The power source input current value represents the maximum current. (The input current varies according to the pulse frequency.)

Permissible torque is the maximum value of the mechanical strength of the gear unit. Use the product with a total torque (load and acceleration) less than the permissible torque.

[•]Permissible overhung load indicates the value measured at 0.39 inch (10mm) from the tip of the gear output shaft.

Da	ackane Model	Single Shaft	UPK566AJW-N5	UPK566AJW-N7.2	UPK566AJW-N10	UPK564AJW-N25	UPK564AJW-N36	UPK564AJW-N50	
Package Model		Double Shaft	UPK566BJW-N5	UPK566BJW-N7.2	UPK566BJW-N10	UPK564BJW-N25	UPK564BJW-N36	UPK564BJW-N50	
Maximum Holding Torque Ib-in (N•m)			30.3 (3.5)			52 (6)			
Rotor Inertia oz-in² (kg·m²)			1.54 (280×10 ⁻⁷)			0.96 (175×10 ⁻⁷)			
Rated Current A/phase				1	.4				
Bas	sic Step Angle		0.144	0.1	0.072	0.0288	0.02	0.0144	
Ge	ar Ratio		5:1	7.2:1	10:1	25:1	36:1	50:1	
Pe	missible Torque	lb-in (N•m)		30.3 (3.5)			52 (6)		
Pe	missible Thrust Load	lb. (N)		, ,	22 (100)	, ,		
Pe	rmissible Overhung Load	lb. (N)	55.1 (250) 66.1 (300) 66.1 (300) 88.1 (400)						
Ba	cklash	Arc minute (degree)	3 (0.05°)						
Permissible Speed Range (Gear Output Shaft Speed) Full Step Half Step		Full Step	0~15000Hz (0~360r/min)	0~15000Hz (0~250r/min)	0~15000Hz (0~180r/min)	0~15000Hz (0~72r/min)	0~15000Hz (0~50r/min)	0~15000Hz (0~36r/min)	
		Half Step	0~30000Hz (0~360r/min)	0~30000Hz (0~250r/min)	0~30000Hz (0~180r/min)	$0{\sim}30000$ Hz ($0{\sim}72$ r/min)	0~30000Hz (0~50r/min)	0~30000Hz (0~36r/min)	
Ins	ulation Class						1°F (105°C)] by UL	and CSA standards	
Po	wer Source		Single-Phase 200-230V ^{+10%} _{-15%} 50/60Hz 3.5A						
Ou	tput Current	A/phase	1,4						
Fx	citation Mode	Full Step	0.144°/step	0.1°/step	0.072°/step	0.0288°/step	0.02 /step	0.0144 /step	
LA		Half Step	0.072°/step	0.05°/step	0.036°/step	0.0144°/step	0.01 /step	0.0072 /step	
	Input Signal Circuit		Photocoupler input, Input resistance 220 Ω , Input current 20mA maximum Signal voltage Photocoupler ON: $+4\sim+5V$, Photocoupler OFF: $0\sim+0.5V$						
ignals	• CW Pulse Signal (Puls	e Signal)	CW direction step command pulse signal (Step command signal at 1-pulse input mode) Pulse width: 5µs minimum, Pulse rise/fall: 2µs maximum Motor moves when the photocoupler state changes from ON to OFF.						
Input Signals	CCW Pulse Signal (Rotation Direction Signal)	gnal)	CCW direction step command signal (Rotation direction signal at 1-pulse input mode, Photocoupler ON: CW, Photocoupler OFF: CCW) Pulse width: 5µs minimum, Pulse rise/fall: 2µs maximum Motor moves when the photocoupler state changes from ON to OFF.						
•	All Windings Off Signal		When in the "photocoupler ON" state, the current to the motor is cut off and the motor shaft can be rotated manually. When in the "photocoupler OFF" state, the current level set by the RUN switch is supplied to the motor.						
als	Output Signal Circuit		Photocoupler, Open-Collector Output (Emitter common) External use condition: 24V DC maximum, 10mA maximum						
Output Signals	• Excitation Timing Sign	al	The signal is output every time the excitation sequence returns to the initial stage "0". (Photocoupler : ON) Full step: signal output every 10 pulses, Half step: signal output every 20 pulses						
Ontp	Overheat Signal		The signal is output when the internal temperature of the driver rises above approximately 176°F (80°C). (Photocoupler: ON) The motor stops automatically if the "Automatic Current Off" function is ON.						
Functions			Automatic current cutback, All windings off, Pulse input mode switch, Step angle switch						
			Power source input, Excitation timing signal output, Overheat signal output						
Indicator (LED)									
Driver Cooling Method		Natural Ventilation							
Weight (Wass) ——		Motor Ib. (kg)		3.31 (1.5)	<u> </u>	0.05)	3.31 (1.5)		
		Driver lb. (kg) Motor	$\frac{2.1(0.95)}{100M\Omega\text{minimum under normal temperature and humidity, when measured by a DC500V megger between the motor coils and the motor casing.}$						
		Driver	100M Ω minimum under normal temperature and humidity, when measured by a DC500V megger between the following places: • Power input terminal — Protective earthing terminal • Signal input/output terminal — Motor output terminal — Motor output terminal						
	Motor		Sufficient to withstand 1.5kV, 60Hz applied between the motor coils and casing for one minute, under norma temperature and humidity.						
Dielectric Strength		Driver	Sufficient to withstand the following for one minute, under normal temperature and humidity. Power input terminal — Protective earthing terminal Motor output terminal — Protective earthing terminal Signal input/output terminal — Power input terminal Signal input/output terminal — Motor output terminal AC3.2kV 60Hz AC3.2kV 60Hz						
	Motor		+14°F~+122°F (-10°C~+50°C)						
	bient Temperature Range	Motor			$+14^{\circ}F \sim +122^{\circ}F$	$(-10^{\circ}C \sim +50^{\circ}C)$			

- Maximum holding torque refers to the holding torque at motor standstill when the rated current is supplied to the motor (5-phase excitation). Use this value to compare motor torque performance. When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.
- •The power source input current value represents the maximum current. (The input current varies according to the pulse frequency.)
- Permissible torque is the maximum value of the mechanical strength of the gear unit. Use the product with a total torque (load and acceleration) less than the permissible torque.
- •Permissible overhung load indicates the value measured at 0.39 inch (10mm) from the tip of the gear output shaft.

SPEED vs. TORQUE CHARACTERISTICS

fs: Maximum Starting Pulse Rate

UPK566BW-N5

UPK564BW-N25

UPK566BW-N7.2

UPK564BW-N36

UPK566BW-N10

UPK564BW-N50

Note

- •Pay attention to heat dissipation from the motor and driver. The motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C). [Under 167°F (75°C) is required to comply with UL or CSA standards.]
- •When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.

UPK566BJW-N5

UPK564BJW-N25

UPK566BJW-N7.2

UPK564BJW-N36

UPK566BJW-N10

UPK564BJW-N50

Note

- •Pay attention to heat dissipation from the motor and driver. The motor will produce a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 212°F (100°C). [Under 167°F (75°C) is required to comply with UL or CSA standards.]
- •When using the motor with the dedicated driver, the driver's "Automatic Current Cutback" function at motor standstill reduces maximum holding torque by approximately 50%.

DIMENSIONS scale 1/4, unit = inch (mm)

Motor

Single shaft Weight 3.31 lb. (Mass 1.5kg)

UPK564AW-N25 Motor Model: PK564AW-N25 UPK564AJW-N25 Motor Model: PK564AW-N25 **UPK564AW-N36** Motor Model: PK564AW-N36 UPK564AJW-N36 Motor Model: PK564AW-N36 Motor Model: PK564AW-N50 UPK564AW-N50 UPK564AJW-N50 Motor Model: PK564AW-N50

Double shaft Weight 3.31 lb. (Mass 1.5kg)

UPK564BW-N25 Motor Model: PK564BW-N25 Motor Model: PK564BW-N25 UPK564BJW-N25 **UPK564BW-N36** Motor Model: PK564BW-N36 UPK564BJW-N36 Motor Model: PK564BW-N36 Motor Model: PK564BW-N50 **UPK564BW-N50** UPK564BJW-N50 Motor Model: PK564BW-N50

See page B-36 for information on motor installation.

[•]These external appearance drawings are for a double shaft models. For a single shaft, ignore the colored areas.

Driver

Single-Phase 100-115VAC Input Standard Type

For UPK566 W-N, UPK564 W-N

Driver Model: UDK5114NW2 Waight 2.1 lb. (Mass 0.95kg)

I/O Connector (Included)
 Connector: 54306-2011 (MOLEX)
 Connector: 54331-1201 (MOLEX)

Single-Phase 200-230VAC Input Standard Type

For UPK566 JW-N, UPK564 JW-N

Driver Model: UDK5214NW Weight 2.1 lb. (Mass 0.95kg)

I/O Connector (Included)
 Connector: 54306-2011 (MOLEX)
 Connector: 54331-1201 (MOLEX)

See page B-38 for information on driver installation.

■ LIST OF MOTOR AND DRIVER COMBINATIONS

		Stepping Mo	Driver Model	
Туре	Package Model	Model Current A/phase		
	UPK543□W	PK543□W		
	UPK544□W	PK544□W	0.75	UDK5107NW2
	UPK545□W	PK <i>545</i> □W		
	UPK564□W2	PK564□W		
	UPK566□W2	PK566□W		
	UPK569□W2	PK569□W		
	UPK596□W2	PK596□W	1.4	UDK5114NW2
Standard	UPK599□W2	PK599□W		
	UPK5913□W2	PK5913□W		
	UPK564□JW	PK564□W		
	UPK566□JW	PK566□W		
	UPK569□JW	PK569□W		
	UPK596□JW	PK596□W	1.4	UDK5214NW
	UPK599□JW	PK599□W		
	UPK5913□JW	PK5913□W		
		PK569□HW		
	UPK569□HW2 UPK596□HW2	PK596□HW		UDK5128NW2
High-Speed	UPK599□HW2	PK599□HW	2.8	
	UPK5913□HW2	PK5913□HW		
		_		
	UPK543□W-T3.6 UPK543□W-T7.2	PK543□W-T3.6 PK543□W-T7.2		
	UPK543□W-17.2 UPK543□W-T10		0.75	UDK5107NW2
	UPK543□W-110	PK543□W-T10 PK543□W-T20	0.75	ODK310/INW2
	UPK543□W-T30	PK543□W-T30		
		_		
	UPK564□W-T3.6	PK564□W-T3.6		
	UPK564□W-T7.2	PK564□W-T7.2		
	UPK564□W-T10	PK564□W-T10		
	UPK564□W-T20	PK564□W-T20		
	UPK564□W-T30	PK564□W-T30	1.4	UDK5114NW2
	UPK596□W-T3.6 UPK596□W-T7.2	PK596□W-T3.6		
TH Geared	UPK596□W-T10	PK596□W-T7.2 PK596□W1-T10		
III Gealeu	UPK596□W-T20	PK596□W1-T20		
	UPK596□W-T30	PK596□W1-T30		
	UPK564□JW-T3.6 UPK564□JW-T7.2	PK564□W-T3.6 PK564□W-T7.2		
	UPK564□JW-T10	PK564□W-T10		
	UPK564□JW-T20	PK564□W-T20		
	UPK564□JW-T30	PK564□W-T30		
	UPK596□JW-T3.6	PK596□W-T3.6	1.4	UDK5214NW
	UPK596□JW-T7.2	PK596□W-T7.2		
	UPK596□JW-T10	PK596□W-T10		
	UPK596□JW-T20	PK596□W-T20		
	UPK596□JW-T30	PK596□W-T30		
	UPK566□W-N5	PK566□W-N5		
	UPK566□W-N7.2	PK566□W-N7.2		
	UPK566□W-N10	PK566□W-N10		LIDIZE11 (1.0.470
	UPK564□W-N25	PK564□W-N25	1.4	UDK5114NW2
	UPK564□W-N36	PK564□W-N36		
DNI Coored	UPK564□W-N50	PK564□W-N50		
PN Geared	UPK566□JW-N5	PK566□W-N5		
	UPK566□JW-N7.2	PK566□W-N7.2		
	UPK566□JW-N10	PK566□W-N10		LIDIZEO1 ANAZ
	UPK564□JW-N25	PK564□W-N25	1.4	UDK5214NW
	UPK564□JW-N36	PK564□W-N36		

Enter ${\bf A}$ (single shaft) or ${\bf B}$ (double shaft) in the \square within the model numbers.

WIRING DIAGRAMS

Single-Phase 100-115VAC Input

Power Supply

Use a power supply that can supply sufficient input current.

When power supply capacity is insufficient, a decrease in motor output can cause the following malfunctions:

- Motor does not rotate properly at high-speed (insufficient torque)
- •Motor startup and stopping is slow.

Note:

- . Keep the voltage Vo between DC 5V and DC 24V.
- When they are equal to DC 5V, the external resistances $R_{1}\ \text{and}\ R_{2}$ are not necessary.
- When they are above DC 5V, connect R_1 to keep the current bellow 20mA, and connect R_2 to keep the current bellow 10mA.
- Use twisted-pair wire of 3×10^{-4} in² (0.2mm²) or thicker and 6.6 feet (2m) or iess in length for the signal line.
- Use wire 7.8×10^{-4} in² (0.5mm²) or thicker for motor lines (when extended) and power supply lines, and use 1.2×10^{-3} in² (0.75mm²) or thicker for the wire for the protective earthing line.
- Use spot grounding for the grounding of the driver and external controller.
- Signal lines should be kept at least 3.94inch (10cm) away from power lines (power supply lines and motor lines). Do not bind the signal line and power line together.

Caution

The driver incorporates double-pole/neutral fusing for the power input. If the driver POWER LED is off, it is possible that only the neutral fuse is tripped. High voltage supplied on the hot side may cause electric shock. Turn the power off immediately and request service.

Use open collector transistors (sink type) for the signal output sections of the controller.

WIRING DIAGRAMS

Single-Phase 200-230VAC Input

Power Supply

Use a power supply that can supply sufficient input current.

When power supply capacity is insufficient, a decrease in motor output can cause the following malfunctions:

- Motor does not rotate properly at high-speed (insufficient torque)
- Motor startup and stopping is slow.

Note:

Keep the voltage Vo between DC 5V and DC 24V.

When they are equal to DC 5V, the external resistances R₁ and R2 are not necessary.

When they are above DC 5V, connect R1 to keep the current bellow 20mA, and connect R2 to keep the current bellow 10mA.

- Use twisted-pair wire of 3×10^{-4} in² (0.2mm²) or thicker and 6.6 feet (2m) or iess in length for the signal line.
- Use wire 7.8×10⁻⁴ in² (0.5mm²) or thicker for motor lines (when extended) and power supply lines, and use 1.2×10^{-3} in² (0.75mm²) or thicker for the wire for the protective earthing line.
- Use spot grounding for the grounding of the driver and external controller.
- Signal lines should be kept at least 3.94inch (10cm) away from power lines (power supply lines and motor lines). Do not bind the signal line and power line

The driver incorporates double-pole/neutral fusing for the power input. If the driver POWER LED is off, it is possible that only the neutral fuse is tripped. High voltage supplied on the hot side may cause electric shock. Turn the power off immediately and request service.

Use open collector transistors (sink type) for the signal output sections of the controller.

DESCRIPTION OF INPUT/OUTPUT SIGNALS

1. Pulse Input

Input circuit and sample connection

Keep the voltage between DC 5V and DC 24V.

When voltage is equal to DC 5V, external resistance (R) is not necessary. When voltage is above DC 5V, connect external resistance (R) and keep the input current below 20mA

1. 1-Pulse Input Mode

Pulse Signal

"Pulse" signal is input to the pulse signal terminal. When the photocoupler state changes from "ON" to "OFF", the motor rotates one step. The direction of rotation is determined by the following rotation direction signal.

Rotation Direction Signal

The "Rotation Direction" signal is input to the rotation direction signal input terminal. A "photocoupler ON" signal input commands a clockwise direction rotation. A "photocoupler OFF" signal input commands a counterclockwise direction rotation.

2. 2-Pulse Input Mode

CW Pulse Signal

When the photocoupler state changes from "ON" to "OFF", the motor rotates one step in the clockwise direction.

CCW Pulse Signal

When the photocoupler state changes from "ON" to "OFF", the motor rotates one step in the counterclockwise direction.

CW and CCW refer to clockwise and counterclockwise direction respectively, from a reference point of facing the motor output shaft.

Pulse Waveform Characteristics

(Photocoupler state corresponding the input pulse)

The shaded area indicates when the photocoupler is ON. The motor moves when the photocoupler state changes from ON to OFF as indicated by the arrow.

Pulse Signal Characteristics

- The pulse voltage is 4~5V in the "photocoupler ON" state, and 0~0.5V in the "photocoupler OFF" state.
- Input pulse signals should have a pulse width over 5µs, pulse rise/fall below 2µs, and a pulse duty below 50%.

- Keep the pulse signal at "photocoupler OFF" when no pulse is being input.
- The minimum interval time when changing rotation direction is 10µs.
 This value varies greatly depending on the motor type, pulse frequency and load inertia. It may be necessary to increase this time interval.
- In 1-pulse input mode, leave the pulse signal at rest ("photocoupler OFF") when changing rotation directions.

2. A.W.OFF (All Windings Off) Input

Input circuit and sample connection

Keep the voltage between DC 5V and DC 24V.

When voltage is equal to DC 5V, external resistance (R) is not necessary. When voltage is above DC 5V, connect external resistance (R) and keep the input current below 20mA.

When the "All Windings Off" signal is in the "photocoupler ON" state, the current to the motor is cut off and motor torque is reduced to zero. The motor output shaft can then be rotated freely by hand.

When the "All Windings Off" signal is in the "photocoupler OFF" state, the motor holding torque is proportional to the current set by the current adjustment rotary switches. During motor operation, be sure to keep the signal in the "photocoupler OFF" state.

This signal is used when moving the motor by external force or manual home position is desired. If this function is not needed, it is not necessary to connect this terminal.

Switching the "All Windings Off" signal from "photocoupler ON" to "photocoupler OFF" does not alter the excitation sequence. When the motor shaft is manually adjusted with the "All Windings Off" signal input, the shaft will shift up to $\pm 3.6^\circ$ from the position set after the "All Windings Off" signal is released.

Manual Setting of the Home Position

Input the "All Windings Off" signal, set the motor to the desired position, then release the "All Windings Off" signal.

3. TIM. (Excitation Timing) Output

Output Circuit and Sample Connection

Keep the voltage between DC 5V and DC 24V. Keep the current below 10mA. If the current exceeds 10mA, connect external resistance (R).

The "Excitation Timing" signal is output to indicate when the motor excitation (current flowing through the winding) is in the initial stage (step "0" at power up).

The "Excitation Timing" signal can be used to increase the accuracy of home position detection by setting the mechanical home position of your equipment (for example, a photo-sensor) to coincide with the excitation sequence initial stage (step "0").

The motor excitation stage changes simultaneously with pulse input, and returns to the initial stage for each 7.2° rotation of the motor

When power is turned ON, the excitation sequence is reset to step "0".

The TIM. LED lights when the "Excitation Timing" signal is output. While the motor is rotating, the LED will turn ON and OFF at a high speed and will appear to be continuously lit.

The "Excitation Timing" signal is output simultaneously with a pulse input each time the excitation sequence returns to step "0".

The excitation sequence will complete one cycle for every 7.2° rotation of the motor output shaft.

Full Step (the switch is set to F position): Signal is output once every 10 pulses.

Half Step (the switch is set to H position): Signal is output once every 20 pulses.

Timing Chart at Full Step

4. O. HEAT (Overheat) Output

Output circuit and sample of connection

Keep the voltage between DC 5V and DC 24V. Keep the current below 10mA. If the current exceeds 10mA, connect external resistance (R).

The "Overheat" signal is output to protect the driver from heat damage if the internal temperature of the driver rises above 176°F (80°C). When connected as shown in the example connection, the signal will be "photocoupler OFF" during normal conditions, and "photocoupler ON" when the temperature exceeds 176°F (80°C).

When the "Overheat" signal is output, turn the driver power OFF, then adjust the operating conditions (ambient temperature, driver/ controller settings), or use a fan to cool the driver. After taking appropriate measures, turn the power ON. Turning the power ON will reset the "Overheat" signal and release the "Automatic Current Off" condition.