Motorized Actuators

Compact Linear Actuators

DRL Series

Accessories Installation

DRL Series
Accessories
Installation

RoHS RoHS-Compliant **Compact Linear Actuators**

The drive mechanism adopts a 5-phase stepping motor with ball screw. The **DRL** Series achieves high positioning accuracy in a space-saving design.

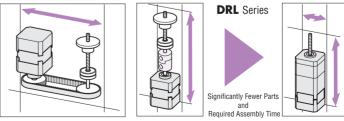
→ Page G-11

Features

Compact Design and High Positioning Accuracy

The actuator size was reduced using Oriental Motor's original technology. The compact and lightweight body houses the linear motion mechanism as well as the rotating components of the stepping motor. The DRL Series helps to achieve a significant reduction in the size of your equipment and system.

To meet the user's requirements for higher positioning accuracy, all models can be ordered with a ground ball screw specification [repetitive positioning accuracy: ± 0.005 mm (± 0.0002 in.)].


Significantly Fewer Parts and Required Assembly Time

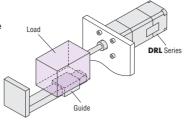
The compact body houses the entire linear-motion mechanism, with some of the conventional parts eliminated for a more streamlined structure. This substantially reduces the man-hours required for design and assembly of your equipment, so you will enjoy higher production efficiency.

Reliable Design and Structure

The hollow rotor shaft incorporates large bore thrust bearings for the direct handling of thrust loads. Minimizing the number of parts involved in linear conversion results in higher reliability.

Comparison with "Screw Mechanism and Motor"

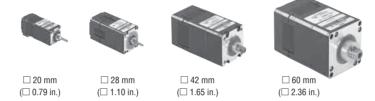
Large Bore Thrust Bearing Hollow Rotor



Actuator Types

Install a load transfer guide externally to the actuator.

An actuator comes with a guide provided as an anti-spin mechanism.

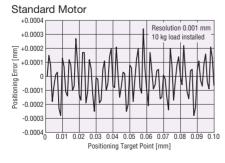

Lead Screw Types

Ideal for applications where high positioning accuracy and low vibration are required, such as optical devices and semiconductor systems that use fine-feed pitches. The **DRL** ground ball screw type achieves high reliability by maximizing the performance advantages of a 5-phase stepping motor.

Ideal for general positioning applications where reliability and ease of use are given priority.

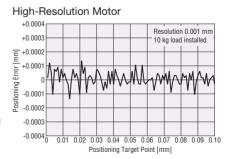
Improved Positioning Accuracy Achieved with the High-Resolution Motor

The high-resolution motors achieve high accuracy and reliability based on Oriental Motor's latest precision machining technology. The motor resolution is increased to double the level of a standard model to reduce the displacement angle against load torque, thereby achieving high positioning accuracy. Frame sizes of 28 mm (1.10 in.), 42 mm (1.65 in.) and 60 mm (2.36 in.) are available.


Ideal for Applications Requiring Fine-Feed and Fine Adjustment

Under normal microstepping operation, the actuator will not operate until the initial motor torque exceeds the friction load.

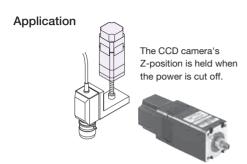
The high-resolution motor, with its high output torque, allows the torque to pick up quickly and thereby ensures smooth operation even with fine-feed.

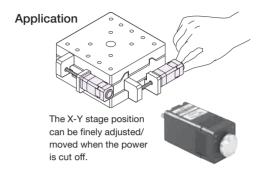

Comparison of Positioning Error (Comparison in the DRL42 type)

Positioning error is reduced by nearly half!

Comparison with the standard motor

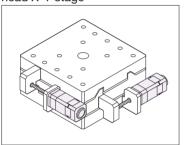
Additional Functions

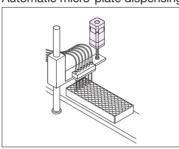

The standard type and guide type are available with an electromagnetic brake or adjusting knob as additional functions.



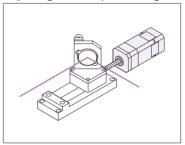
The load position can be held when the power is cut off. Since the work will not fall in case of power failure or disconnection, you can safely use equipment in which the work moves vertically.

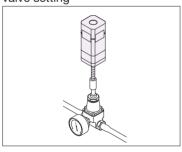
♦ With Adjusting Knob

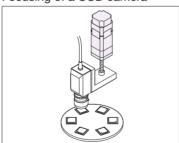

The load position can be adjusted manually when the power is cut off. This function is useful during servicing of the equipment.

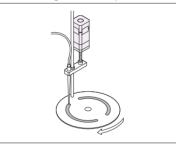


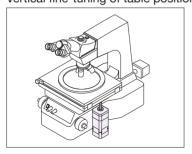
Applications

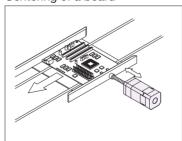

Drive mechanism for a micrometer head X-Y stage

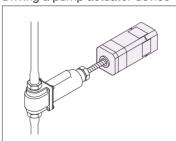

Automatic micro-plate dispensing


Adjusting a mirror positioning device


Fine-tuning of flow-rate regulator valve setting


Focusing of a CCD camera


Fine-tuning of nozzle position


Vertical fine-tuning of table position

Centering of a board

Driving a pump actuator device

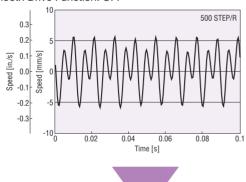
Motorized Cylinders

DG

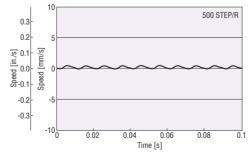
Compact DC Input Board Driver Meeting the Space-Saving Needs

The compact, lightweight driver implements microstep drive. The new IC provides a wide range of functions, including the following:

- Smooth Drive Function
- 1-pulse/2-pulse input mode switching
- 25 microstep drive resolutions
- Power LED
- Photocoupler input
- Connector with lock (by MOLEX)
- Conforming to major safety standards

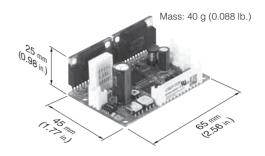

The microstep drive system allows you to set high resolutions up to one-250th of the basic resolution of the actuator. This function is effective in meeting your low-vibration/low-noise operation needs at low speeds. The high-performance driver is also compact and lightweight, achieving a reduction of approximately 47% in size compared with a conventional microstep driver.

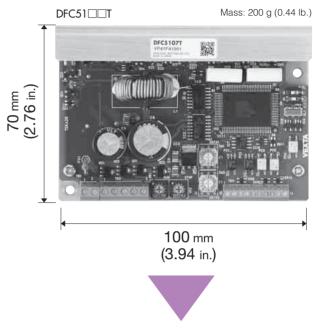
Smooth Drive Function Embodies Quieter Operation

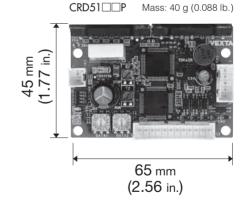

The Smooth Drive Function automatically controls the motor's microstep drive operation at the same travel and speed as in the full-step mode, without the operator having to change the pulse input settings. This function is especially useful when used in the full-step or half-step mode.

Comparison of Speed Fluctuation

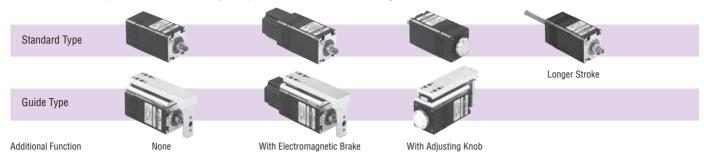
Smooth Drive Function: OFF


Smooth Drive Function: ON


• RoHS RoHS-Compliant


The **DRL** Series conforms to the RoHS Directive that prohibits the use of six chemical substances including lead and cadmium.

● Details of RoHS Directive → Page G-38


Comparison of Driver Size and Mass

Selection of the DRL Series

You can choose the product that best suits your specific needs from a wide range of functions.

Fram	ne Size	Thrust Force	Actuator Type	Stroke Length
□20	□20 mm	15 N	Standard Type	25 mm (0.98 in.)
(□0.	79 in.)	(3.3 lb.)	Guide Type	25 mm (0.98 in.)
			Standard Type	60 mm (2.36 in.)
	8 mm	30 N		30 mm (1.18 in.)
(□1.	10 in.)	(6.7 lb.)	Guide Type	30 mm (1.18 in.)
		100 N (22 lb.)	Standard Type	100 mm (3.94 in.)
□4 2	2 mm		G	40 mm (1.57 in.)
(□1.	65 in.)		Guide Type	40 mm (1.57 in.)
			Standard Type	100 mm (3.94 in.)
□6	0 mm	300 N	G	50 mm (1.97 in.)
(□2.	(□2.36 in.)	(67 lb.)	Guide Type	50 mm (1.97 in.)

Lead Screw Type	Ro Repetitive Po	lled Ball Screw Ty sitioning Accuracy (±0.00079 in.)	pe y: ±0.02 mm	Ground Ball Screw Type Repetitive Positioning Accuracy: ±0.005 mm (±0.0002 in.)					
	CRD51 P (Microstep drive			CRD51 P (Microstep driver)					
Driver	į	3						#>	
Motor Type		Standard Motor		Sta	ındard M	otor	High-F	Resolution	Motor
Additional Functions	None	With Electromagnetic Brake	With Adjusting Knob	None	With Electromagnetic Brake	With Adjusting Knob	None	With Electromagnetic Brake	With Adjusting Knob
	_	_	_	•	_	•	_	_	_
	-	-	-	•	_	•	_	_	_
	•	_	_	•	_	_	_	_	_
	•	_	•	•	_	•	•	_	•
	•	-	•	•	_	•	•	_	•
	•	_	_	•	_	_	_	_	_
	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•
	•	_	-	•	_	_	_	_	_
	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•

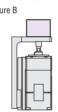
How to Read Specifications

Actuator: Guide Type

		Model		DRL42PB2G-04G DRL42PB2G-04NG	DRL42PB2G-04MG	DRL60PB4G-05G DRL60PB4G-05NG	DRL60PB4G-05MG	
	Electromagnetic	: Brake		Not equipped	Equipped	Not equipped	Equipped	
1)—	- Max. Horizontal Tra	ansportable Mass (Fig. A)	kg (lb.)	2 (4	1.4)	3 (6	5.6)	
2)—	Max. Vertical Trans	portable Mass (Fig.B)	kg (lb.)	5 (11) 15 (33)			
3—	- Maximum Spee	d mn	n/s (in./s)	30 (1	1.18)	32 (1	1.26)	
4—	Maximum Accel	eration m	/s² (ft./s²)	0.4	(1.3)	0.26	(0.85)	
<u>(5)</u> —	- Maximum Thrus	st Force	N (lb.)	100	(22)	300	(67)	
	Marrian	At Excitation —6	N (lb.)	100	00 (22) 300 (67)			
	Maximum Holding Force	At Non-Excitation — 7	N (lb.)	0	0	0	0	
	riolaling roice	Electromagnetic Brake—8	N (lb.)	_	100 (22)	_	300 (67)	
9—	- Maximum Load	Moment N-	m (oz-in)	M _P : 0.5 (71) M _Y : 0.2	5 (35) M _R : 0.8 (113)	M _P : 0.6 (85) M _Y : 0.35 (49) M _R : 2.2 (310)		
10-	Repetitive Positi	oning Accuracy	mm (in.)		①±0.005 (0.0002)	②±0.01 (0.00039)	_	
11)—	Lost Motion		mm (in.)		0.05 (0.002)		
12-	Resolution		mm (in.)	0.004 (0	0.00016)	0.008 (0	0.00031)	
13-	- Lead mm (in.)		mm (in.)	2 (0.	079)	4 (0.	157)	
(14)	Stroke		mm (in.)	40 (1	1.57)	50 (1	1.97)	
	Mass [Mass wit	h adjusting knob]	kg (lb.)	0.8 (1.76) [0.8 (1.76)]	1 (2.2)	1.8 (3.9) [1.85 (4.0)]	2.2 (4.8)	
	Actuator Dimens	sions No.		24	25	26	27	

①Maximum Transportable Mass (Horizontal direction)

Maximum mass that can be moved under rated conditions in the horizontal direction.


Transportable mass depends on the frictional resistance of load supporting mechanism.

Therefore, the value of max. horizontal transportable mass cannot be shown for the standard type.

2 Maximum Transportable Mass (Vertical direction)

Maximum mass that can be moved under rated conditions in the vertical direction.

3 Maximum Speed

Maximum speed allowed to be moved with the maximum transportable mass.

4 Maximum Acceleration

Maximum acceleration rate allowed to move with the maximum transportable mass.

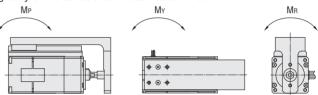
5Maximum Thrust Force

Maximum thrust force at constant speed with no load.

6) Maximum Holding Force at Excitation

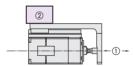
Maximum holding force with the power on.

Maximum Holding Force at Non-Excitation


Maximum holding force with the power off.

®Maximum Holding Force (Electromagnetic brake)

Maximum holding force of the electromagnetic brake.


Maximum Load Moment

Maximum force that can be applied to the guide when the center of gravity of the actuator and load has an offset.

®Repetitive Positioning Accuracy

A value indicating the degree of error that generates when positioning is performed repeatedly to the same position in the same direction.

 $\textcircled{\rotage n} \textbf{Repetitive positioning accuracy is measured at the tip of the guide.}$

②Repetitive positioning accuracy is measured on the linear-guide.

If footnote ① or ② is not indicated, then the accuracy values are identical

11Lost Motion

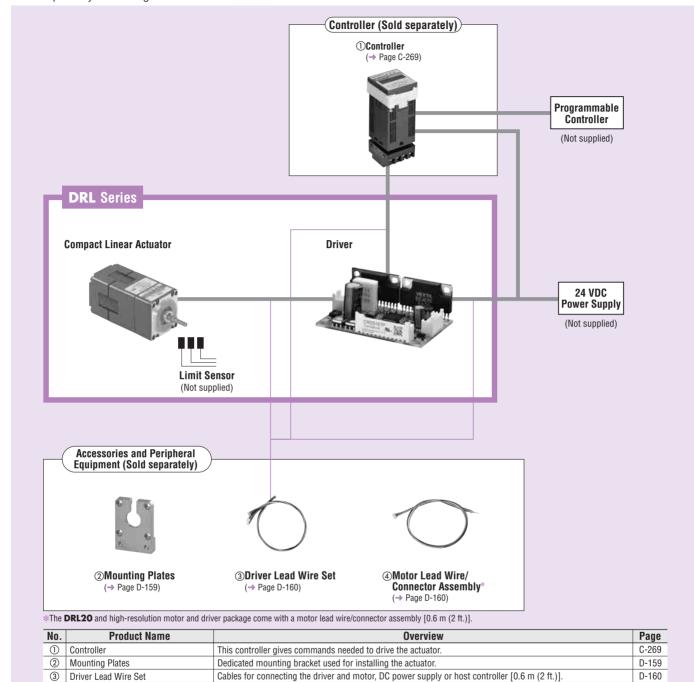
Positioning error that occurs when positioning to a specific point in the opposite direction.

⁽¹²⁾Resolution

Distance the screw shaft moves with one pulse input.

(13)Lead

Distance the screw shaft moves linearly in one motor rotation.


(14)Stroke

Maximum distance the load can be moved.

D-160

■System Configuration

An example of system configuration with the SG8030J controller.

●Example of System Configuration

(Sold separately)

DRL Series	+	Controller	Driver Lead Wire Set [0.6 m (2 ft.)]	Mounting Plate
DRL28PB1-03G		SG8030J-U	LCS04SD5	PADRL-28

• The system configuration shown above is an example. Other combinations are available.

(4) Motor Lead Wire/Connector Assembly Lead wire with a connector crimped for connector-coupled actuators [0.6 m, 1 m (2 ft., 3.3 ft.)]

■ Product Number Code

DRL 28 P B 1 G - 03 N G

1	2	3 4	5 6	7	8	9

1	Series	DRL: DRL Series
2	Frame Size	20 : □20 mm (□0.79 in.) 28 : □28 mm (□1.10 in.) 42 : □42 mm (□1.65 in.) 60 : □60 mm (□2.36 in.)
3	Motor Type	M: High-Resolution Motor P: Standard Motor
4	Lead Screw Type	A: Rolled Ball Screw Type B: Ground Ball Screw Type
(5)	Lead	1: 1 mm (0.039 in.) [□20 mm, 28 mm (□0.79 in, 1.10 in.)] 2: 2 mm (0.079 in.) [□42 mm (□1.65 in.)] 4: 4 mm (0.157 in.) [□60 mm (□2.36 in.)]
6	Actuator Type	None: Standard Type (Without guide) G : Guide Type
7	Stroke	02 : 25 mm (0.98 in.) [□20 mm (□0.79 in.)] 03 : 30 mm (1.18 in.) [□28 mm (□1.10 in.)] 04 : 40 mm (1.57 in.) [□42 mm (□1.65 in.)] 05 : 50 mm (1.97 in.) [□60 mm (□2.36 in.)] 06 : 60 mm (2.36 in.) [□28 mm (□1.10 in.)] 10 : 100 mm (3.94 in.) [□42 mm, 60 mm (□1.65 in, 2.36 in.)]
8	Additional Functions	Blank: Without Additional Functions M: With Electromagnetic Brake N: With Adjusting Knob
9	Driver Type	G· CRD51□□P

Product Line

Rolled Ball Screw, Standard Motor

Frame Size	Additional Functions	None	With Electromagnetic Brake	With Adjusting Knob
mm (in.)	Actuator Type	Model	Model	Model
	Standard Type	DRL28PA1-03G	-	DRL28PA1-03NG
□28 (□1.10)	Stanuaru Type	DRL28PA1-06G	-	-
(□1.10)	Guide Type	DRL28PA1G-03G	-	DRL28PA1G-03NG
	Ctandard Tuna	DRL42PA2-04G	DRL42PA2-04MG	DRL42PA2-04NG
□42 (□1.65)	Standard Type	DRL42PA2-10G	-	-
(□1.03)	Guide Type	DRL42PA2G-04G	DRL42PA2G-04MG	DRL42PA2G-04NG
	Ctandard Tuna	DRL60PA4-05G	DRL60PA4-05MG	DRL60PA4-05NG
□60 (□2.36)	Standard Type	DRL60PA4-10G	-	_
(_2.50)	Guide Type	DRL60PA4G-05G	DRL60PA4G-05MG	DRL60PA4G-05NG

Ground Ball Screw, High-Resolution Motor

Frame Size	Additional Functions	None	With Electromagnetic Brake	With Adjusting Knob
mm (in.)	Actuator Type	Model	Model	Model
□28	Standard Type	DRL28MB1-03G	_	DRL28MB1-03NG
(□1.10)	Guide Type	DRL28MB1G-03G	-	DRL28MB1G-03NG
□42	Standard Type	DRL42MB2-04G	DRL42MB2-04MG	DRL42MB2-04NG
(□1.65)	Guide Type	DRL42MB2G-04G	DRL42MB2G-04MG	DRL42MB2G-04NG
□60	Standard Type	DRL60MB4-05G	DRL60MB4-05MG	DRL60MB4-05NG
(□2.36)	Guide Type	DRL60MB4G-05G	DRL60MB4G-05MG	DRL60MB4G-05NG

Ground Ball Screw, Standard Motor

Frame Size	Additional Functions	None	With Electromagnetic Brake	With Adjusting Knob
mm (in.)	Actuator Type	Model	Model	Model
□20	Standard Type	DRL20PB1-02G	-	DRL20PB1-02NG
(□0.79)	Guide Type	DRL20PB1G-02G	-	DRL20PB1G-02NG
	Standard Type	DRL28PB1-03G	-	DRL28PB1-03NG
□28 (□1.10)	Standard Type	DRL28PB1-06G	-	_
(□1.10)	Guide Type	DRL28PB1G-03G	-	DRL28PB1G-03NG
	Ctandard Tuna	DRL42PB2-04G	DRL42PB2-04MG	DRL42PB2-04NG
□42 (□1.65)	Standard Type	DRL42PB2-10G	-	-
(□1.03)	Guide Type	DRL42PB2G-04G	DRL42PB2G-04MG	DRL42PB2G-04NG
	Ctandard Tuna	DRL60PB4-05G	DRL60PB4-05MG	DRL60PB4-05NG
□60 (□2.36)	Standard Type	DRL60PB4-10G	-	-
(Ш2.30)	Guide Type	DRL60PB4G-05G	DRL60PB4G-05MG	DRL60PB4G-05NG

-The following items are included in each product.-

Actuator, Driver, Driver Connector, Motor Lead Wire/Connector Assembly*1, Operating Manual, Surge Suppressor*2

*1 Only for Actuator Frame Size 20 mm (0.79 in.) and High-Resolution Motor

 $\ensuremath{ *2}$ Only for Electromagnetic Brake Type

Specifications

Actuator

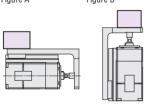
♦ Ground Ball Screw, High-Resolution Motor RoHS

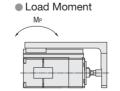
₽1°us €€

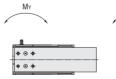
Model			DRL28MB1-03G DRL28MB1-03NG			DRL60MB4-05G DRL60MB4-05NG	DRL60MB4-05MG	
Electromagnetic	Brake		Not equipped	Not equipped	Equipped	Not equipped	Equipped	
Max. Vertical Tra	nsportable Mass*1	kg (lb.)	3 (6.6)	10	(22)	30	(66)	
Maximum Speed	1 *2	mm/s (in./s)	24 (0.94)	15 (0.59)	22 (0.87)	
Maximum Accel	eration	m/s ² (ft./s ²)	0.2 (0.66)	0.2 (0.66)	0.26	(0.85)	
Maximum Thrus	t Force*3	N (lb.)	30 (6.7)	100	(22)	300 (67)		
	At Excitation*4	N (lb.)	30 (6.7)	100 (22)		300 (67)		
Maximum Holding Force	At Non-Excitation	N (lb.)	0	0	0	0	0	
notality Force	Electromagnetic Brake	N (lb.)	-	- 100 (22)		_	300 (67)	
Repetitive Positi	oning Accuracy	mm (in.)			±0.005 (0.0002)			
Lost Motion		mm (in.)			0.05 (0.002)			
Resolution*5		mm (in.)	0.001 (0.000039)	0.002 (0	.000079)	0.004 (0	0.00016)	
Lead		mm (in.)	1 (0.039)	2 (0.	079)	4 (0.	157)	
Stroke mm (in.)		mm (in.)	30 (1.18)	40 (1.57)	50 (50 (1.97)	
Mass [Mass with	n adjusting knob]	kg (lb.)	0.18 (0.39) [0.19 (0.41)]	0.6 (1.32) [0.6 (1.32)]	0.8 (1.76)	1.3 (2.8) [1.35 (2.9)]	1.7 (3.7)	
Actuator Dimens	sions No.		1	2	3	4	5	

♦ Ground Ball Screw, High-Resolution Motor, Guide Type RoHS

	Model		DRL28MB1G-03G DRL28MB1G-03NG	DRL42MB2G-04G DRL42MB2G-04NG	DRL42MB2G-04MG	DRL60MB4G-05G DRL60MB4G-05NG	DRL60MB4G-05MG
Electromagnetic	Brake		Not equipped	Not equipped	Equipped	Not equipped	Equipped
Max. Horizontal Tran	sportable Mass (Fig. A)	kg (lb.)	1 (2.2)	2 (4	4.4)	3 (6	6.6)
Max. Vertical Trans	portable Mass (Fig. B)	*1 kg (lb.)	1.5 (3.3)	5 (11)	15	(33)
Maximum Speed	j *2	mm/s (in./s)	24 (0.94)	15 (0.59)	22 (0	0.87)
Maximum Accel	eration	m/s ² (ft./s ²)	0.2 (0.66)	0.2 (0.66)	0.26	(0.85)
Maximum Thrus	t Force*3	N (lb.)	30 (6.7)	100	(22)	300	(67)
Marrian	At Excitation*4	N (lb.)	30 (6.7)	100 (22)		300 (67)	
Maximum Holding Force	At Non-Excitation	N (lb.)	0	0	0	0	0
riolality roice	Electromagnetic Brake	N (lb.)	-	- 100 (22)		- 300 (67)	
Maximum Load	Moment	N·m (oz-in)	M _P : 0 M _Y : 0 M _R : 0	M _P : 0.5 (71) M _Y : 0.2	5 (35) M _R : 0.8 (113)	M _P : 0.6 (85) M _Y : 0.3	5 (49) M _R : 2.2 (310)
Repetitive Positi	oning Accuracy	mm (in.)	①±0.005 (0.0002) ②±0.02 (0.00079)		①±0.005 (0.0002)	②±0.01 (0.00039)	
Lost Motion		mm (in.)			0.05 (0.002)		
Resolution*5		mm (in.)	0.001 (0.000039)	0.002 (0	.000079)	0.004 (0	0.00016)
Lead		mm (in.)	1 (0.039)	2 (0.	079)	4 (0.	.157)
Stroke		mm (in.)	30 (1.18)	40 (1.57)	50 (⁻	1.97)
Mass [Mass with	n adjusting knob]	kg (lb.)	0.25 (0.55) [0.26 (0.57)]	0.8 (1.76) [0.8 (1.76)]	1.0 (2.2)	1.8 (3.9) [1.85 (4.0)]	2.2 (4.8)
Actuator Dimens	sions No.		6	7	8	9	10

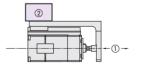

How to read specifications → Page D-132


- *1 When the power is turned off, or output current is turned off (non-excitation state), the actuator loses its thrust force or holding force. As such, it can no longer keep the load in position or withstand an external force
- *2 Use the actuator at or below the following maximum speed in a low-temperature environment [0~+10°C (+32~+50°F)]. DRL28: 12 mm/s (0.47 in./s)
- *3 The maximum thrust force is measured during constant-speed operation in horizontal operation with no load applied to the moving parts (screw shaft and joint). Thrust force varies with load mass and acceleration
- *4 The maximum holding force at excitation is the value when the automatic current cutback function is ON (50% of the rated current).
- *5 25 resolutions can be set.


Note:

• Use the actuator in conditions where its surface temperature will not exceed 90°C (194°F). The repetitive positioning accuracy is measured at a constant temperature under a constant load.

Maximum Transportable MassFigure A Figure B



Repetitive Positioning Accuracy

- Repetitive positioning accuracy is measured at the end of the quide.
- $\ensuremath{\textcircled{2}}$ Repetitive positioning accuracy is measured on the linear-guide.

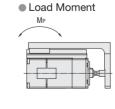
If footnote $\textcircled{\scriptsize 1}$ or $\textcircled{\scriptsize 2}$ is not indicated, then the accuracy values are identical.

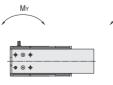
♦ Ground Ball Screw, Standard Motor (RoHS)

	Model		DRL20PB1-02G DRL20PB1-02NG	DRL28PB1-03G DRL28PB1-06G DRL28PB1-03NG	DRL42PB2-04G DRL42PB2-10G DRL42PB2-04NG	DRL42PB2-04MG	DRL60PB4-05G DRL60PB4-10G DRL60PB4-05NG	DRL60PB4-05MG	
Electromagnetic	Brake		Not equipped	Not equipped	Not equipped	Equipped	Not equipped	Equipped	
Max. Vertical Tran	nsportable Mass*1	kg (lb.)	1.5 (3.3)	3 (6.6)	10	(22)	30	(66)	
Maximum Speed	*2	mm/s (in./s)	20 (0.79)	24 (0.94)	30 (1.18)	32 (*	1.26)	
Maximum Accele	eration	m/s ² (ft./s ²)	0.2 (0.66)	0.2 (0.66)	0.4	(1.3)	0.26	(0.85)	
Maximum Thrust	Force*3	N (lb.)	15 (3.3)	30 (6.7)	100	(22)	300	(67)	
M	At Excitation*4	N (lb.)	15 (3.3)	30 (6.7)	100	100 (22)		300 (67)	
Maximum Holding Force	At Non-Excitation	N (lb.)	0	0	0	0	0	0	
riolaling roice	Electromagnetic Brake	N (lb.)	_	_	_	100 (22)	_	300 (67)	
Repetitive Position	ning Accuracy	mm (in.)			±0.005	(0.0002)			
Lost Motion		mm (in.)		0.05 (0.002)					
Resolution*5		mm (in.)	0.002 (0.000079)	0.002 (0.000079)	0.004 (0	1.00016)	0.008 (0	.00031)	
Lead		mm (in.)	1 (0.	039)	2 (0.	079)	4 (0.	157)	
Stroke mm (in.)		25 (0.98)	03 : 30 (1.18) 06 : 60 (2.36)	04 : 40 (1.57) 10 : 100 (3.94)	40 (1.57)	05 : 50 (1.97) 10 : 100 (3.94)	50 (1.97)		
Mass [Mass with adjusting knob] kg (lb		kg (lb.)	0.08 (0.17) [0.08 (0.17)]	03 : 0.18 (0.39) [0.19 (0.41)] 06 : 0.18 (0.39)	04 : 0.6 (1.32) [0.6 (1.32)] 10 : 0.63 (1.38)	0.8 (1.76)	05 : 1.3 (2.8) [1.35 (2.9)] 10 : 1.38 (3.0)	1.7 (3.7)	
Actuator Dimens	ions No.		11	03: 12 06: 13	04: 16 10: 17	18	05: 19 10: 20	21	

♦ Ground Ball Screw, Standard Motor, Guide Type RoHS

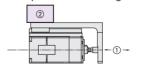
			_				
Model		DRL20PB1G-02G DRL20PB1G-02NG	DRL28PB1G-03G DRL28PB1G-03NG	DRL42PB2G-04G DRL42PB2G-04NG	DRL42PB2G-04MG	DRL60PB4G-05G DRL60PB4G-05NG	DRL60PB4G-05MG
Brake		Not equipped	Not equipped	Not equipped	Equipped	Not equipped	Equipped
sportable Mass (Fig. A)	kg (lb.)	0.5 (1.1)	1 (2.2)	2 (4	4.4)	3 (0	6.6)
ortable Mass (Fig. B)	kg (lb.)	1 (2.2)	1.5 (3.3)	5 (11)	15	(33)
*2	mm/s (in./s)	20 (0.79)	24 (0.94)	30 (1.18)	32 (1.26)
eration	m/s ² (ft./s ²)	0.2 (0.66)	0.2 (0.66)	0.4	(1.3)	0.26	(0.85)
Force*3	N (lb.)	15 (3.3)	30 (6.7)	100	(22) 300 (67)		(67)
At Excitation*4	N (lb.)	15 (3.3)	30 (6.7)	100 (22)		300 (67)	
At Non-Excitation	N (lb.)	0	0	0	0	0	0
Electromagnetic Brake	N (lb.)	-	_	-	100 (22)	-	300 (67)
Noment	N·m (oz-in)	M _P : 0 M _Y : 0 M _R : 0	M _P : 0 M _Y : 0 M _R : 0	M _P : 0.5 (71) M _Y : 0.25 (35) M _R : 0.8 (113)		M _P : 0.6 (85) M _Y : 0.35 (49) M _B : 2.2 (310)	
ning Accuracy	mm (in.)	①±0.005 (0.0002) ②±0.01 (0.00039)	①±0.005 (0.0002) ②±0.02 (0.00079)		①±0.005 (0.0002)	②±0.01 (0.00039)	
	mm (in.)			0.05 (0.002)		
Resolution*5 mm (in		0.002 (0.000079)	0.002 (0.000079)	0.004 (0.00016)		0.008 (0	0.00031)
Lead mm (in.)		1 (0.	039)	2 (0.	079)	4 (0.	157)
Stroke mm (in.)		25 (0.98)	30 (1.18)	40 (1.57)	50 (1.97)
adjusting knob]	kg (lb.)	0.14 (0.3) [0.15 (0.33)]	0.25 (0.55) [0.26 (0.57)]	0.8 (1.76) [0.8 (1.76)]	1.0 (2.2)	1.8 (3.9) [1.85 (4.0)]	2.2 (4.8)
ions No.		22	23	24	25	26	27
3 1 1	Brake portable Mass (Fig. A) portable Mass (Fig. B) Fortable Mass (Fig. B) Fortable At Excitation Force*3 At Excitation*4 At Non-Excitation Electromagnetic Brake forment ning Accuracy adjusting knob]	### Parake ### P	DRL20PB1G-02NG	DRL20PB1G-02NG DRL28PB1G-03NG	DRL20PB1G-02NG DRL28PB1G-03NG DRL42PB2G-04NG	DRL20PB1G-02NG DRL28PB1G-03NG DRL42PB2G-04NG DRL	DRL20PB1G-02NG DRL28PB1G-03NG DRL42PB2G-04NG DRL


How to read specifications → Page D-132


- *1 When the power is turned off, or output current is turned off (non-excitation state), the actuator loses its thrust force or holding force. As such, it can no longer keep the load in position or withstand an external force.
- *2 Use each actuator at or below the following maximum speed in a low-temperature environment $[0\sim+10^{\circ}\text{C}~(+32\sim+50^{\circ}\text{F})]$. **DRL20**: 13 mm/s (0.51 in./s), **DRL28**: 15 mm/s (0.59 in./s), **DRL42**: 20 mm/s (0.79 in./s), **DRL60**: 24 mm/s (0.94 in./s)
- *3 The maximum thrust force is measured during constant-speed operation in horizontal operation with no load applied to the moving parts (screw shaft and joint). Thrust force varies with load mass and acceleration
- *4 The maximum holding force at excitation is the value when the automatic current cutback function is ON (50% of the rated current).
- *5 25 resolutions can be set.

Note:

• Use the actuator in conditions where its surface temperature will not exceed 90°C (194°F). The repetitive positioning accuracy is measured at a constant temperature under a constant load.


Maximum Transportable Mass Figure A Figure B

Repetitive Positioning Accuracy

- Repetitive positioning accuracy is measured at the end of the guide.
- ② Repetitive positioning accuracy is measured on the linear-guide.

If footnote $\ensuremath{\textcircled{\textbf{0}}}$ or $\ensuremath{\textcircled{\textbf{2}}}$ is not indicated, then the accuracy values are identical.

c**FU**°us €€

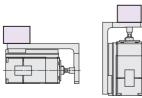
♦ Rolled Ball Screw, Standard Motor (RoHS)

Model		DRL28PA1-03G DRL28PA1-06G DRL28PA1-03NG	DRL42PA2-04G DRL42PA2-10G DRL42PA2-04NG	DRL42PA2-04MG	DRL60PA4-05G DRL60PA4-10G DRL60PA4-05NG	DRL60PA4-05MG	
Electromagnetic	Brake		Not equipped	Not equipped	Equipped	Not equipped	Equipped
Max. Vertical Tra	nsportable Mass*1	kg (lb.)	3 (6.6)	10	(22)	30	(66)
Maximum Spee	d *2	mm/s (in./s)	24 (0.94)	30 (1.18)	32 (1.26)
Maximum Acce	eration	m/s ² (ft./s ²)	0.2 (0.66)	0.4	(1.3)	0.26	(0.85)
Maximum Thrus	st Force*3	N (lb.)	30 (6.7)	100	(22)	300	(67)
	At Excitation*4	N (lb.)	30 (6.7)	100 (22)		300 (67)	
Maximum Holding Force	At Non-Excitation	N (lb.)	0	0	0	0	0
riolaling rolle	Electromagnetic Brake	N (lb.)	_	_	100 (22)	- 300 (67)	
Repetitive Posit	ioning Accuracy	mm (in.)			±0.02 (0.00079)		
Lost Motion		mm (in.)	0.1 (0.0039)				
Resolution*5		mm (in.)	0.002 (0.000079)	0.004 (0.00016)		0.008 (0	0.00031)
Lead		mm (in.)	1 (0.039)	2 (0.079)		4 (0	157)
Stroke mm (in.)		03 : 30 (1.18) 06 : 60 (2.36)	04 : 40 (1.57) 10 : 100 (3.94)	40 (1.57)	05 : 50 (1.97) 10 : 100 (3.94)	50 (1.97)	
Mass [Mass with adjusting knob] kg (lb.)		03 : 0.18 (0.39) [0.19 (0.41)] 06 : 0.18 (0.39)	04 : 0.6 (1.32) [0.6 (1.32)] 10 : 0.63 (1.38)	0.8 (1.76)	05 : 1.3 (2.8) [1.35 (2.9)] 10 : 1.38 (3.0)	1.7 (3.7)	
Actuator Dimen	sions No.		03: 14 06: 15	04: 16 10: 17	18	05: 19 10: 20	21

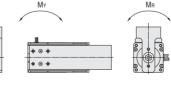
A Rollad Ball Scraw Standard Motor Guida Type (ROHS)

♦ Rolled Ball Screw, Standard Motor, Guide Type (RoHS)								
	Model		DRL28PA1G-03G DRL28PA1G-03NG	DRL42PA2G-04G DRL42PA2G-04NG	DRL42PA2G-04MG	DRL60PA4G-05G DRL60PA4G-05NG	DRL60PA4G-05MG	
Electromagneti	c Brake		Not equipped	Not equipped	Equipped	Not equipped	Equipped	
Max. Horizontal Tra	nsportable Mass (Fig. A)	kg (lb.)	1 (2.2)	2 (4.4)	3 (5.6)	
Max. Vertical Tran	sportable Mass (Fig. B)	*1 kg (lb.)	1.5 (3.3)	5 (11)	15	(33)	
Maximum Spee	d*2	mm/s (in./s)	24 (0.94)	30 (1.18)	32 (1.26)	
Maximum Acce	leration	m/s ² (ft./s ²)	0.2 (0.66)	0.4	(1.3)	0.26 (0.85)		
Maximum Thru	Maximum Thrust Force*3 N (lb.)		30 (6.7)	100 (22)		300 (67)		
Marrian	At Excitation*4	N (lb.)	30 (6.7)	100 (22)		300 (67)		
Maximum Holding Force	At Non-Excitation	N (lb.)	0	0	0	0	0	
riolality roice	Electromagnetic Brake	N (lb.)	-	_	100 (22)	-	300 (67)	
Maximum Load	Moment	N·m (oz-in)	M _P : 0 M _Y : 0 M _R : 0	M _P : 0.5 (71) M _Y : 0.2	25 (35) M _R : 0.8 (113)	M _P : 0.6 (85) M _Y : 0.3	5 (49) M _R : 2.2 (310)	
Repetitive Posit	ioning Accuracy	mm (in.)			±0.02 (0.00079)			
Lost Motion		mm (in.)		0.1 (0.0039)				
Resolution*5 mm (in.)		0.002 (0.000079)	0.004 (0.00016)		0.008 (0.00031)			
Lead mm (in.)		1 (0.039)	2 (0.079)		4 (0.157)			
Stroke mm (in.)		30 (1.18)	40 (1.57)		50 (1.97)			
Mass [Mass wi	th adjusting knob]	kg (lb.)	0.25 (0.55) [0.26 (0.57)]	0.8 (1.76) [0.8 (1.76)]	1.0 (2.2)	1.8 (3.9) [1.85 (4.0)]	2.2 (4.8)	
Actuator Dimen	sions No.		23	24	25	26	27	

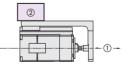
How to read specifications → Page D-132


- *1 When the power is turned off, or output current is turned off (non-excitation state), the actuator loses its thrust force or holding force. As such, it can no longer keep the load in position or withstand an external force.
- *2 Use each actuator at or below the following maximum speed in a low-temperature environment $[0 \sim +10^{\circ}\text{C} (+32 \sim +50^{\circ}\text{F})]$.

DRL28: 15 mm/s (0.59 in./s), DRL42: 20 mm/s (0.79 in./s), DRL60: 24 mm/s (0.94 in./s)


- *3 The maximum thrust force is measured during constant-speed operation in horizontal operation with no load applied to the moving parts (screw shaft and joint). Thrust force varies with load mass and acceleration.
- *4 The maximum holding force at excitation is the value when the automatic current cutback function is ON (50% of the rated current).
- *5 25 resolutions can be set.

Use the actuator in conditions where its surface temperature will not exceed 90°C (194°F). The repetitive positioning accuracy is measured at a constant temperature under a constant load.


Maximum Transportable Mass Figure A Figure B

Load Moment

Repetitive Positioning Accuracy

- ① Repetitive positioning accuracy is measured at the end of the
- ② Repetitive positioning accuracy is measured on the linear-guide.

If footnote ① or ② is not indicated, then the accuracy values are identical.

Electromagnetic Brake

Type of Brake	Power off activated type
Power Input Voltage/Current	DRL42: 24 VDC±5% 0.08 A DRL60: 24 VDC±5% 0.25 A
Brake Activate/Release Time	Activate time: 20 msec Release time: 30 msec
Time Rating	Continuous

Driver

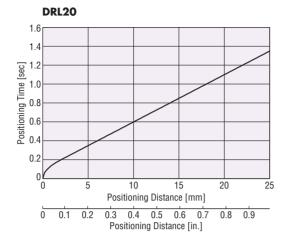
	Driver Model	CRD5103P	CRD5103P CRD5107P C			
Power Source Voltage			24 VDC±10%			
rower source	Current	0.7 A	1.4 A	2.5 A		
	Input Mode	Photocoupler input, Input resistance 220 Ω . Photocoupler ON: $+4.5{\sim}5.25$ V, Photocoup	, Input current 10 \sim 20 mA ler OFF: 0 \sim 1 V (Voltage between terminals)			
Input Signals	Pulse Signal (CW Pulse Signal)	Pulse width: 1 µs minimum, Pulse rise/fall:	e input is switched from photocoupler ON to			
	Rotation Direction Signal (CCW Pulse Signal)	CCW direction operation command pulse Pulse width: 1 µs minimum, Pulse rise/fa Screw shaft moves one step backward v	Rotation direction signal, Photocoupler ON: CW, Photocoupler OFF: CCW CCW direction operation command pulse signal when in 2-pulse input mode, Negative logic pulse input, Pulse width: 1 µs minimum, Pulse rise/fall: 2 µs maximum, Pulse duty 50% maximum Screw shaft moves one step backward when the pulse input is switched from photocoupler ON to OFF. Maximum input pulse frequency: 500 kHz (when the pulse duty is 50%)			
	Resolution Select Signal	Resolution specified in DATA1 when "photocoupler OFF" Resolution specified in DATA2 when "photocoupler ON"				
	All Windings Off Signal	When in the "photocoupler ON" state, the output current to the actuator is cut off. When in the "photocoupler OFF" state, the output current is supplied to the actuator.				
	Automatic Current Cutback Release Signal	When in the "photocoupler ON" state, the automatic current cutback function at actuator standstill is released. When in the "photocoupler OFF" state, the automatic current cutback function is activated after actuator stops (approximately 100 msec).				
	Output Mode	Photocoupler, Open-collector output External use condition: 24 VDC maximum, 10 mA maximum				
Output Signal	Excitation Timing Signal	The signal is output every time the excitation sequence returns to the initial stage "0." (photocoupler ON) When microsteps/step set at 1: Signal is output every 10 pulses When microsteps/step set at 10: Signal is output every 100 pulses				
Functions		Automatic current cutback, Resolution select, Pulse input mode switch, Smooth drive function, All windings off, Excitation timing				
Cooling Method			Natural Ventilation			
Mass		0.04 kg (0.088 lb.)				
Dimensions No.		28				

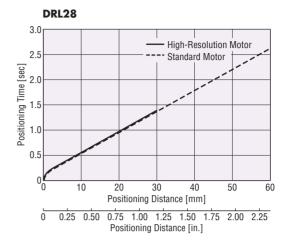
■General Specifications

This is the value after rated operation under normal ambient temperature and humidity.

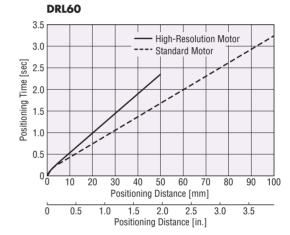
Item		Actuator	Driver	
Motor Insulation Class		Class B [130°C (266°F)] [Recognized as Class A 105°C (221°F) by UL/CSA Standards.]	_	
Insulation Resistance		100 ${\rm M}\Omega$ or more when 500 VDC megger is applied between the motor windings and case.	_	
Dielectric Strength		Sufficient to withstand 0.5 kV* at 50 Hz or 60 Hz applied between the motor windings and case for 1 minute. *DRL42P, DRL60M: 1.0 kVAC, DRL60P: 1.5 kVAC	_	
Ambient Temperature		$0 \sim +40^{\circ} \text{C} (+32 \sim +104^{\circ} \text{F}) \text{ (non-freezing)}$		
Operating Environment	Ambient Humidity 85% or less (non-condensing)			
	Atmosphere	No corrosive gases, dust, water or oil		

Note:

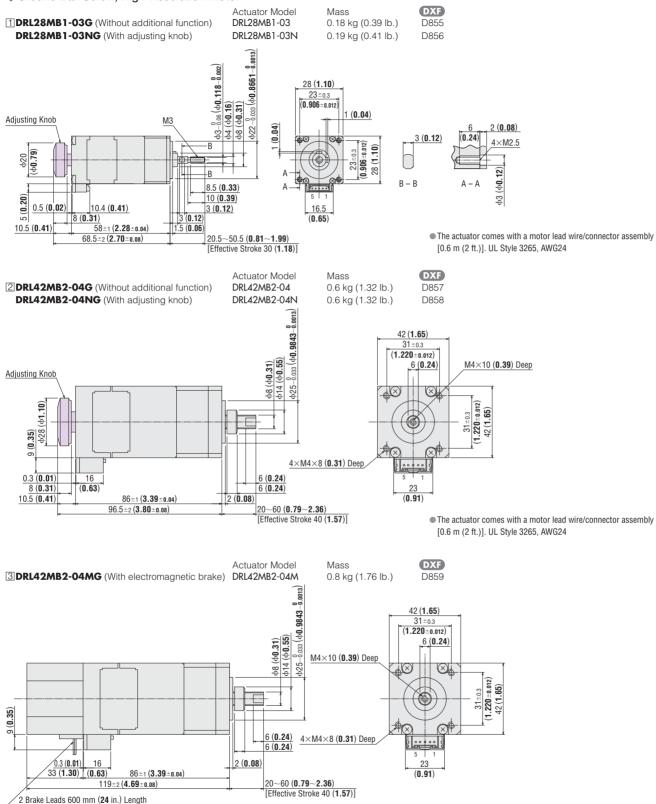

• Do not measure insulation resistance or perform the dielectric strength test while the actuator and driver are connected.


Motorized Cylinders

DG


Positioning Distance - Positioning Time (Reference)

The graphs below represent the characteristics when operated at maximum speed and maximum acceleration.

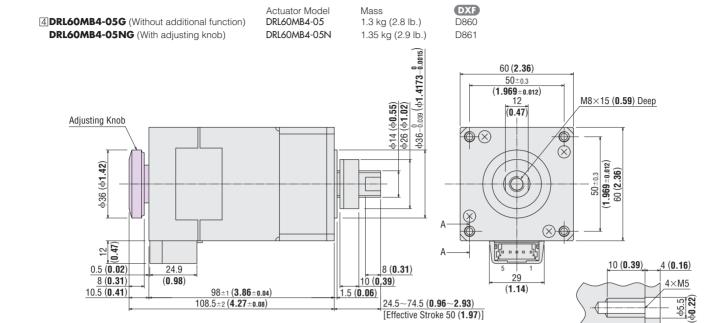

• Use each actuator at the following starting speed.

DRL20, DRL28: 0.2 mm/s or less **DRL42**: 0.4 mm/s or less DRL60: 0.8 mm/s or less

Dimensions Unit = mm (in.)

Actuator

♦ Ground Ball Screw, High-Resolution Motor

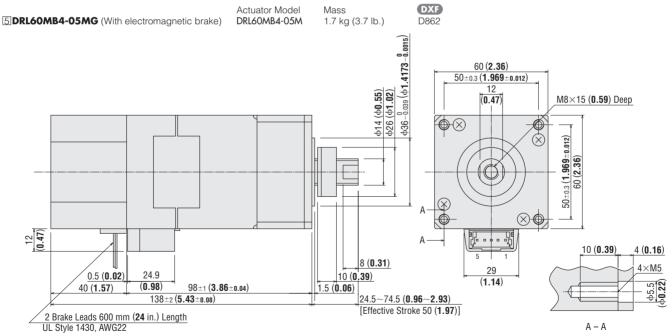

The actuator comes with a motor lead wire/connector assembly [0.6 m (2 ft.)]. UL Style 3265, AWG22

• Dimensions 🗓 and 📵 apply to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in _____ areas should be ignored.

UL Style 1430, AWG22

Motorized Cylinders

P

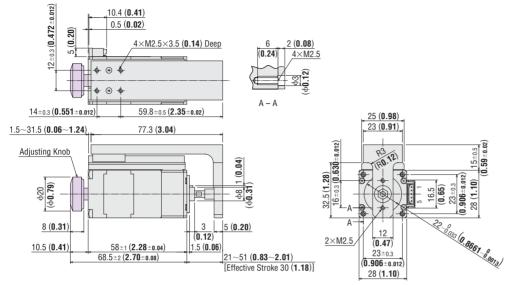


24.5~74.5 (0.96~2.93) [Effective Stroke 50 (1.97)]

108.5±2 (4.27±0.08)

 The actuator comes with a motor lead wire/connector assembly [0.6 m (2 ft.)]. UL Style 3266, AWG22

A - A

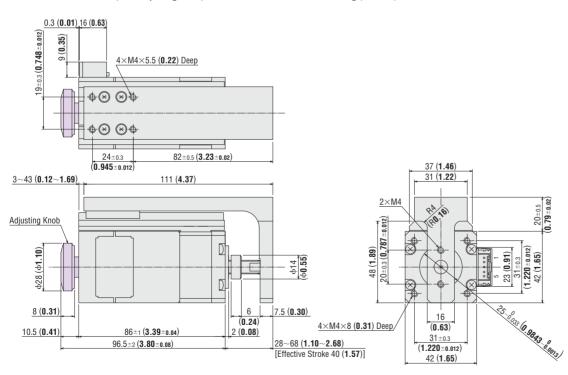

 The actuator comes with a motor lead wire/connector assembly [0.6 m (2 ft.)]. UL Style 3266, AWG22

Dimension 4 applies to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in _____ areas should be ignored.

♦ Ground Ball Screw, High-Resolution Motor, Guide Type

©DRL28MB1G-03G (Without additional function)
DRL28MB1G-03NG (With adjusting knob)

Actuator Model DRL28MB1G-03 DRL28MB1G-03N Mass 0.25 kg (0.55 lb.) 0.26 kg (0.57 lb.) DXF D863 D864

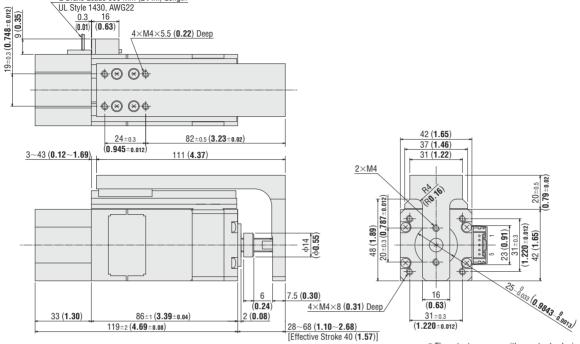


 The actuator comes with a motor lead wire/connector assembly [0.6 m (2 ft.)]. UL Style 3265, AWG24

☐ DRL42MB2G-04G (Without additional function)
DRL42MB2G-04NG (With adjusting knob)

Actuator Model DRL42MB2G-04 DRL42MB2G-04N

Mass 0.8 kg (1.76 lb.) 0.8 kg (1.76 lb.) DXF D865 D866


 The actuator comes with a motor lead wire/connector assembly [0.6 m (2 ft.)]. UL Style 3265, AWG22

• Dimensions 🜀 and 🔞 apply to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in _____ areas should be ignored.

EZlimo

Motorized Cylinders

DXF D867 Actuator Model Mass **8 DRL42MB2G-04MG** (With electromagnetic brake) DRL42MB2G-04M 1 kg (2.2 lb.) 2 Brake Leads 600 mm (24 in.) Length
UL Style 1430, AWG22
0.3 16
0.01 (0.63)

 The actuator comes with a motor lead wire/connector assembly [0.6 m (2 ft.)]. UL Style 3265, AWG22

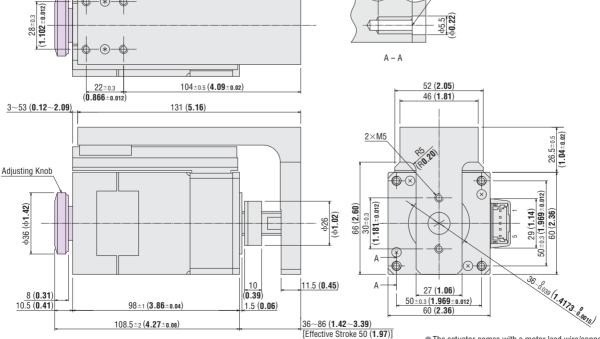
9DRL60MB4G-05G (Without additional function) DRL60MB4G-05NG (With adjusting knob)

0.5 (0.02) 24.9 (0.98)

12 (0.47)

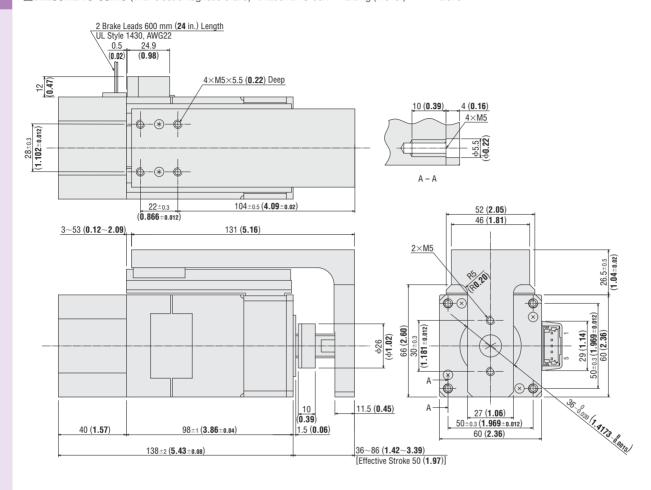
Actuator Model DRL60MB4G-05 DRL60MB4G-05N

4×M5×5.5 (0.22) Deep


Mass 1.8 kg (3.9 lb.) 1.85 kg (4.0 lb.)

> 4 (0.16) 10 (**0.39**) $4 \times M5$ φ5.5 φ**0.22**)

DXF

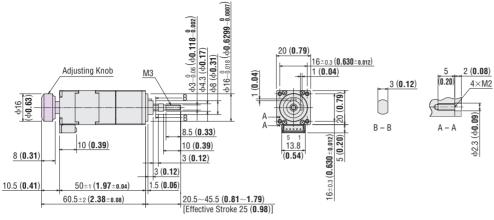

D868

D869

 The actuator comes with a motor lead wire/connector assembly [0.6 m (2 ft.)]. UL Style 3266, AWG22

Dimension 🗓 applies to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in 🚃 areas should be ignored.

 The actuator comes with a motor lead wire/connector assembly [0.6 m (2 ft.)]. UL Style 3266, AWG22


Motorized Cylinders

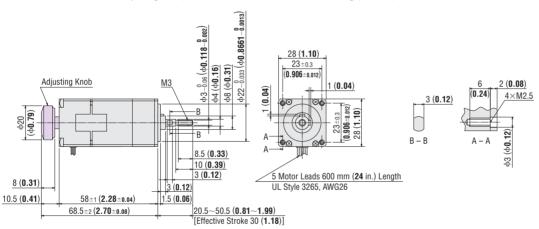
[1] DRL20PB1-02G (Without additional function) DRL20PB1-02NG (With adjusting knob)

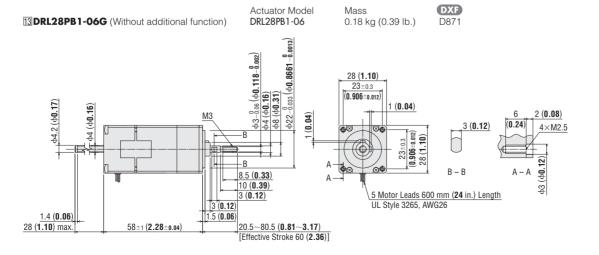
Actuator Model DRL20PB1-02 DRL20PB1-02N

Mass 0.08 kg (0.17 lb.) 0.08 kg (0.17 lb.)

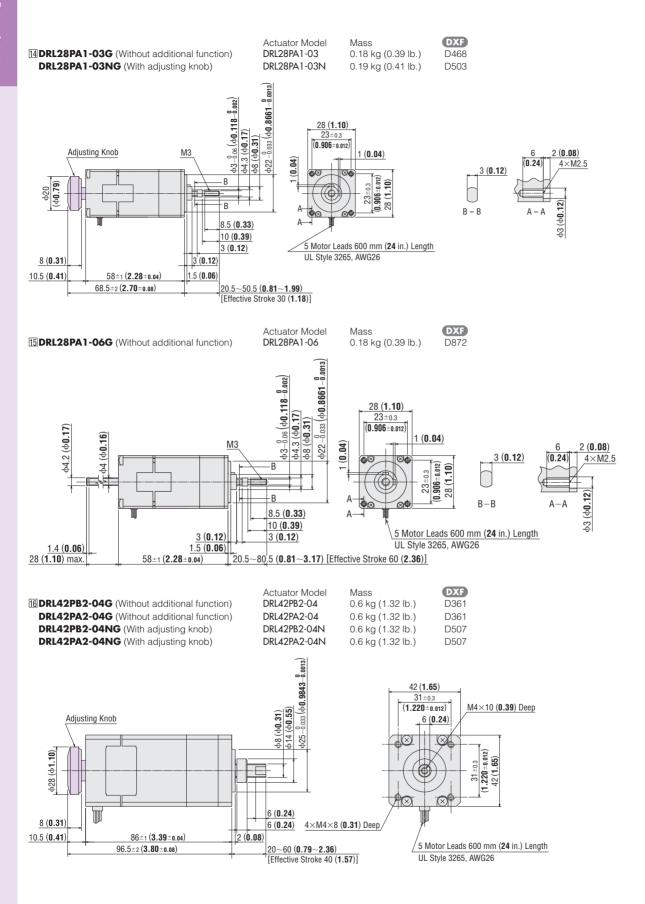
 The actuator comes with a motor lead wire/connector assembly [0.6 m (2 ft.)]. UL Style 3265, AWG24

12 DRL28PB1-03G (Without additional function) **DRL28PB1-03NG** (With adjusting knob)

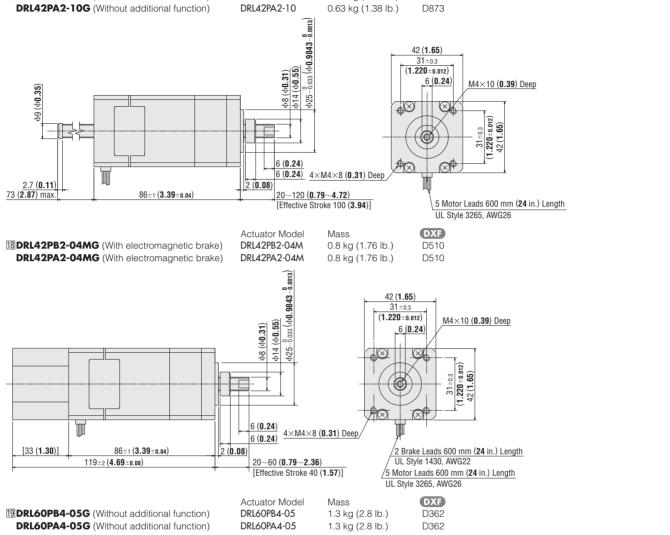

Actuator Model DRL28PB1-03 DRL28PB1-03N


Mass 0.18 kg (0.39 lb.) 0.19 kg (0.41 lb.) DXF D455 D504

DXF


D520

D521



• Dimensions 🗓 and 🗓 apply to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in ____ areas should be ignored.

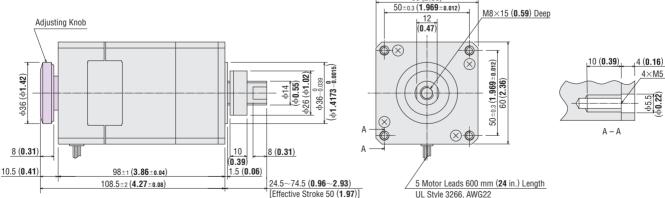
Motorized Cylinders

Mass

0.63 kg (1.38 lb.)

Actuator Model

DRL42PB2-10

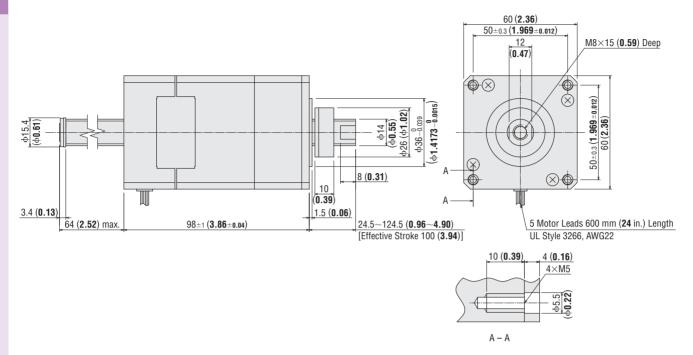

DXF D873

DRL60PB4-05NG (With adjusting knob) DRL60PA4-05NG (With adjusting knob)

DRL42PB2-10G (Without additional function)

DRL60PB4-05N 1.35 kg (2.9 lb.) D511 DRL60PA4-05N 1.35 kg (2.9 lb.) D511

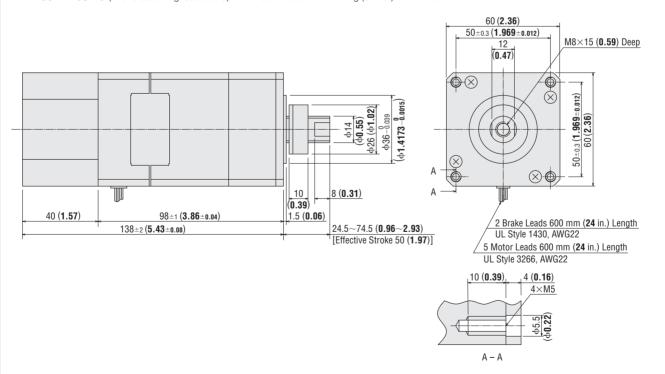
60 (2.36)



• Dimension 🗓 applies to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in ____ area should be ignored.

DRL60PB4-10G (Without additional function)
DRL60PA4-10G (Without additional function)

Actuator Model DRL60PB4-10 DRL60PA4-10


Mass 1.38 kg (3.0 lb.) 1.38 kg (3.0 lb.) **DXF** D874 D874

21 DRL60PB4-05MG (With electromagnetic brake)
DRL60PA4-05MG (With electromagnetic brake)

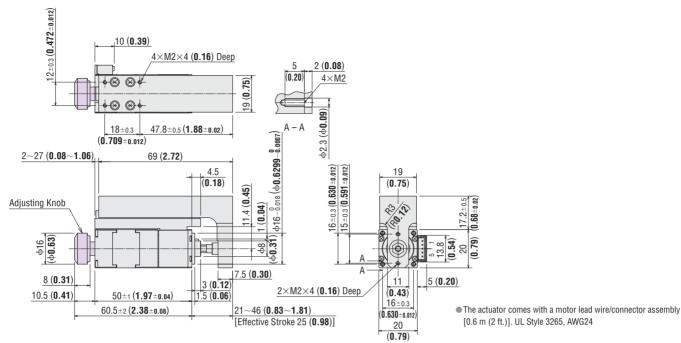
Actuator Model DRL60PB4-05M DRL60PA4-05M

Mass 1.7 kg (3.7 lb.) 1.7 kg (3.7 lb.) DXF D512 D512

Motorized Cylinders

Hollow Rotary Actuators

♦ Ground Ball Screw/Rolled Ball Screw, Standard Motor, Guide Type


22 DRL20PB1G-02G (Without additional function) DRL20PB1G-02NG (With adjusting knob)

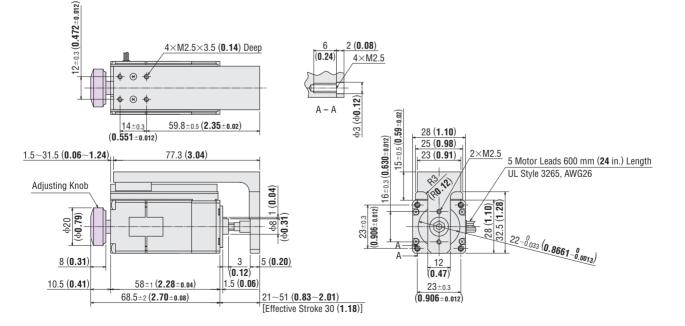
Actuator Model DRL20PB1G-02 DRL20PB1G-02N

Mass 0.14 kg (0.3 lb.) 0.15 kg (0.33 lb.) DXF

D522

D523

☑ DRL28PB1G-03G (Without additional function)
DRL28PA1G-03G (Without additional function)
DRL28PB1G-03NG (With adjusting knob)
DRL28PA1G-03NG (With adjusting knob)


 Actuator Model
 Mass
 DXF

 DRL28PB1G-03
 0.25 kg (0.55 lb.)
 D456

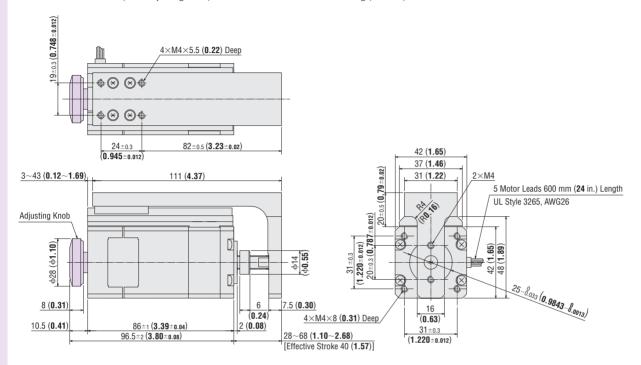
 DRL28PA1G-03
 0.25 kg (0.55 lb.)
 D456

 DRL28PB1G-03N
 0.26 kg (0.57 lb.)
 D513

 DRL28PA1G-03N
 0.26 kg (0.57 lb.)
 D513

• Dimensions 😰 and 🔯 apply to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in _____ areas should be ignored.

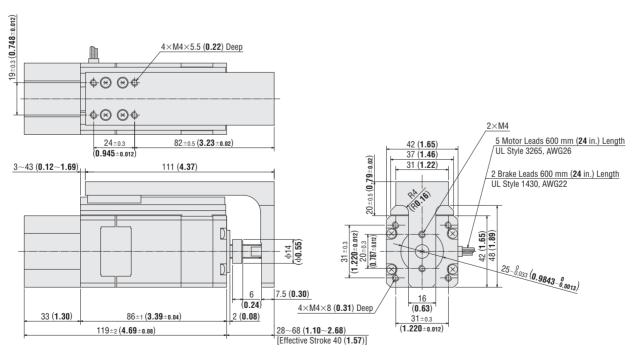
DRL42PB2G-04G (Without additional function)
 DRL42PA2G-04G (Without additional function)
 DRL42PB2G-04NG (With adjusting knob)
 DRL42PA2G-04NG (With adjusting knob)

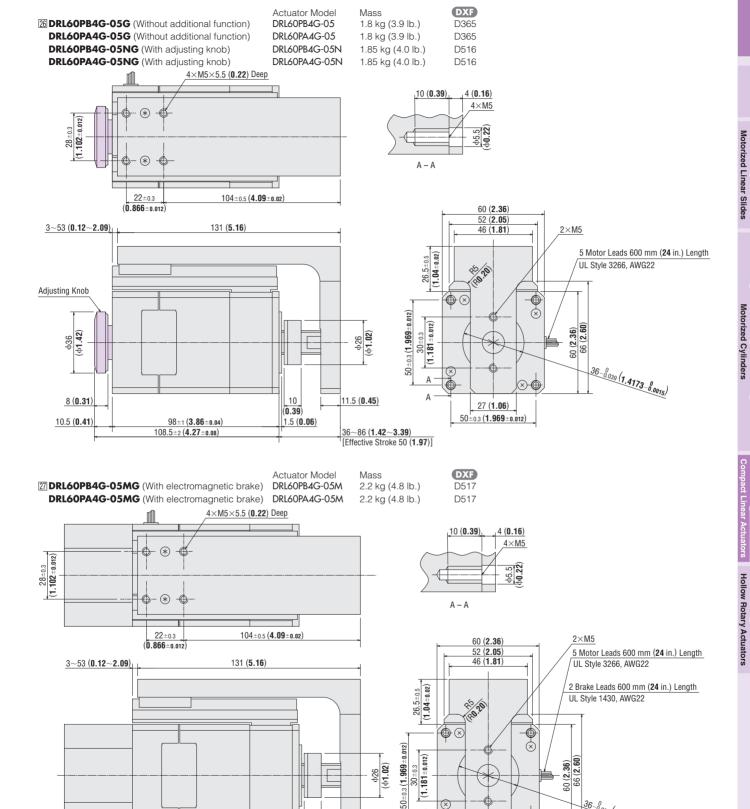

 Actuator Model
 Mass
 DXF

 DRL42PB2G-04
 0.8 kg (1.76 lb.)
 D364

 DRL42PA2G-04
 0.8 kg (1.76 lb.)
 D364

 DRL42PB2G-04N
 0.8 kg (1.76 lb.)
 D514


 DRL42PA2G-04N
 0.8 kg (1.76 lb.)
 D514


DRL42PB2G-04MG (With electromagnetic brake)
DRL42PA2G-04MG (With electromagnetic brake)

Actuator Model DRL42PB2G-04M DRL42PA2G-04M

Mass 1 kg (2.2 lb.) 1 kg (2.2 lb.) DXF D515 D515

• Dimension 🗵 applies to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in 🚃 areas should be ignored.

Dimension 🗃 applies to a configuration with adjusting knob. For models without adjusting knob, the shaft and adjusting knob shown in ____ areas should be ignored.

10

(0.39)

1.5 (0.06)

98±1 (3.86±0.04)

 138 ± 2 (5.43 ±0.08)

40 (1.57)

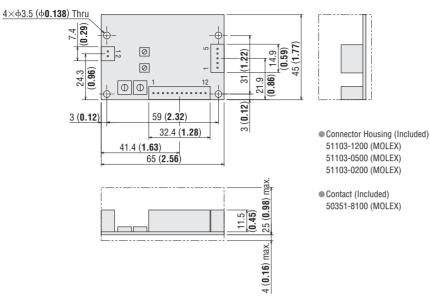
φ26 (φ**1.02**)

11.5 (**0.45**)

36~86 (1.42~3.39) [Effective Stroke 50 (1.97)]

Α igl(igl) 36-0039 (1.4173-00015)

⊗⊕

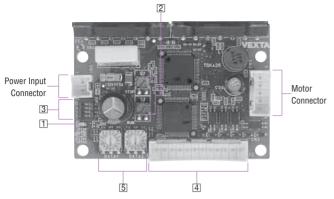

27 (1.06) 50±0.3 (1.969±0.012)

Driver

28 CRD5103P, CRD5107P, CRD5114P

Mass: 0.04 kg (0.088 lb.)

DXF B363


Note:

• When assembling the connector, use the hand-operated crimp tool for contact 57295-5000 (MOLEX) or the crimped driver lead wire set (sold separately). The crimp tool is not provided with the product. It must be purchased separately.

Driver lead wire set → Page D-160

■Connection and Operation

Names and Functions of Driver Parts

1 Power Input Display

Color	Function	When Activated		
Green	Power Supply Indication	Lights when power is on		

2 Current Adjustment Potentiometers

Indication	Potentiometer Name	Function		
RUN	Motor Operating Current Adjustment Potentiometer	For adjusting the operating current of the motor		
ST0P	Motor Standstill Current Adjustment Potentiometer	For adjusting the standstill current of the motor		

3 Function Switches

Indication	Switch Name	Function	
1P/2P	Pulse Input Mode Switch	Switches between 1-pulse input mode and 2-pulse input mode	
OFF/SD	Smooth Drive Function Switch	Enables or disables the smooth drive function	
R2/R1	Resolution Select Switch	Switches the base resolution between R1 and R2	

4 Input/Output Signals

Indication	Input/ Output	Pin No.	Signal Name	Function		
		1	Pulse Signal	Operation command pulse signal		
		2	(CW Pulse Signal)	(The motor will rotate in the CW direction when in 2-pulse input mode.)		
		3	Rotation Direction Signal	Rotation direction signal Photocoupler OFF: CCW, photocoupler ON: CW		
		4	(CCW Pulse Signal)	(The motor will rotate in the CCW direction when in 2-pulse input mode.)		
	Input	5	All Windings Off Signal	Turns off the output current to the motor so that the motor shaft can be rotated by external force Switches to the resolution set in DATA1 and DATA2		
CN2		6	Resolution Select Signal			
		7				
		8	nesolution select signal	SWILLIES ID THE TESOIUTION SET IN DATA I AND DATAZ		
		9	Automatic Current Cutback	Disables the automatic current cutback function		
		10	Release Signal	Disables the automatic current cutback function		
	Output	11	Excitation Timing Signal	This signal is output when the excitation acquence is in step "0."		
	Output	12	Excitation filling Signal	This signal is output when the excitation sequence is in step "0."		

5 Resolution Setting Switches

Indication	Switch Name	Function		
DATA1	Desclution Cotting Cuitab	Each switch can be set to the desired resolution from the 16 resolution levels.		
DATA2	Resolution Setting Switch			

Tables of each product settings Page → D-154

DRL20, **DRL28** •With the high-resolution motor, the resolution is one-half the values specified below.

	R1		R2		
Resolution Setting Switch	Microsteps/	Resolution 1	Resolution Setting Switch	Microsteps/	Resolution 2
DATA1 DATA2	Step 1	mm (in.)	DATA1 DATA2	Step 2	mm (in.)
0	1	0.002 (0.000079)	0	×2.5	0.005 (0.00020)
1	2	0.001 (0.000039)	1	×1.25	0.0025 (0.000098)
2	2.5	0.0008 (0.000031)	2	1.6	0.00125 (0.000049)
3	4	0.0005 (0.00002)	3	2	0.001 (0.000039)
4	5	0.0004 (0.000016)	4	3.2	0.000625 (0.000025)
5	8	0.00025 (0.0000098)	5	4	0.0005 (0.000020)
6	10	0.0002 (0.0000079)	6	6.4	0.0003125 (0.000012)
7	20	0.0001 (0.0000039)	7	10	0.0002 (0.0000079)
8	25	0.00008 (0.0000031)	8	12.8	0.00015625 (0.0000062)
9	40	0.00005 (0.000002)	9	20	0.0001 (0.0000039)
Α	50	0.00004 (0.0000016)	Α	25.6	0.000078125 (0.0000031)
В	80	0.000025 (0.00000098)	В	40	0.00005 (0.0000020)
С	100	0.00002 (0.00000079)	С	50	0.00004 (0.0000016)
D	125	0.000016 (0.00000063)	D	51.2	0.0000390625 (0.0000015)
E	200	0.00001 (0.00000039)	E	100	0.00002 (0.00000079)
F	250	0.000008 (0.00000031)	F	102.4	0.00001953125 (0.00000077)

DRL42 •With the high-resolution motor, the resolution is one-half the values specified below.

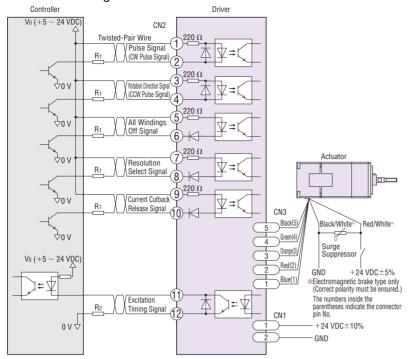
	R1			R2		
Resolution Setting Switch	Microsteps/	Resolution 1	Resolution Setting Switch	Microsteps/	Resolution 2	
DATA1 DATA2	Step 1	mm (in.)	DATA1 DATA2	Step 2	mm (in.)	
0	1	0.004 (0.00016)	0	×2.5	0.01 (0.00039)	
1	2	0.002 (0.000079)	1	×1.25	0.005 (0.00020)	
2	2.5	0.0016 (0.000063)	2	1.6	0.0025 (0.000098)	
3	4	0.001 (0.000039)	3	2	0.002 (0.000079)	
4	5	0.0008 (0.000031)	4	3.2	0.00125 (0.000049)	
5	8	0.0005 (0.00002)	5	4	0.001 (0.000039)	
6	10	0.0004 (0.000016)	6	6.4	0.000625 (0.000025)	
7	20	0.0002 (0.0000079)	7	10	0.0004 (0.000016)	
8	25	0.00016 (0.0000063)	8	12.8	0.0003125 (0.000012)	
9	40	0.0001 (0.0000039)	9	20	0.0002 (0.0000079)	
А	50	0.00008 (0.0000031)	A	25.6	0.00015625 (0.0000062)	
В	80	0.00005 (0.000002)	В	40	0.0001 (0.0000039)	
С	100	0.00004 (0.0000016)	С	50	0.00008 (0.0000031)	
D	125	0.000032 (0.0000013)	D	51.2	0.000078125 (0.0000031)	
Е	200	0.00002 (0.00000079)	E	100	0.00004 (0.0000016)	
F	250	0.000016 (0.00000063)	F	102.4	0.0000390625 (0.0000015)	

DRL60 •With the high-resolution motor, the resolution is one-half the values specified below.

	R1		R2			
Resolution Setting Switch	Microsteps/	Resolution 1	Resolution Setting Switch	Microsteps/	Resolution 2	
DATA1 DATA2	Step 1	mm (in.)	DATA1 DATA2	Step 2	mm (in.)	
0	1	0.008 (0.00031)	0	×2.5	0.02 (0.00079)	
1	2	0.004 (0.00016)	1	×1.25	0.01(0.00039)	
2	2.5	0.0032 (0.00013)	2	1.6	0.005 (0.00020)	
3	4	0.002 (0.000079)	3	2	0.004 (0.00016)	
4	5	0.0016 (0.000063)	4	3.2	0.0025 (0.000098)	
5	8	0.001 (0.000039)	5	4	0.002 (0.000079)	
6	10	0.0008 (0.000031)	6	6.4	0.00125 (0.000049)	
7	20	0.0004 (0.000016)	7	10	0.0008 (0.000031)	
8	25	0.00032 (0.000013)	8	12.8	0.000625 (0.000025)	
9	40	0.0002 (0.0000079)	9	20	0.0004 (0.000016)	
Α	50	0.00016 (0.0000063)	Α	25.6	0.0003125 (0.000012)	
В	80	0.0001 (0.0000039)	В	40	0.0002 (0.0000079)	
С	100	0.00008 (0.0000031)	С	50	0.00016 (0.0000063)	
D	125	0.000064 (0.0000025)	D	51.2	0.00015625 (0.0000062)	
Е	200	0.00004 (0.0000016)	E	100	0.00008 (0.0000031)	
F	250	0.000032 (0.0000013)	F	102.4	0.000078125 (0.0000031)	

Notes:

[•] The resolutions are theoretical values.


[•] The resolution is calculated by dividing the base resolution by the number of microstep.

[•] The numbers of microsteps that can be specified by the "Resolution Select" signal are limited to those selected in resolution 1 or resolution 2.

[●] Do not change the "Resolution Select" signal input or resolution select switch while the actuator is operating. It may cause malfunction.

DG

Connection Diagram

♦ Input/Output Signal Connection

■ Keep the input signal V₀ between 5 VDC and 24 VDC

When Vo is equal to 5 VDC, the external resistor R₁ is not necessary. When Vo is above 5 VDC, connect R₁ to keep the current between 10 mA and 20 mA.

Example: When V_0 is 24 VDC R₁: 1.5 to 2.2 k Ω , 0.5 W or more

■ Keep the output signal voltage V₀ between 5 VDC and 24 VDC, current 10 mA or less. When V_0 is above 10 mA, connect R_2 to keep the current 10 mA or less.

♦ Power Supply

Use a power supply that can supply sufficient input current.

When power supply capacity is insufficient, a decrease in actuator output can cause the following malfunctions

- Actuator does not move properly at high-speed (insufficient thrust).
- Slow actuator startup and stopping

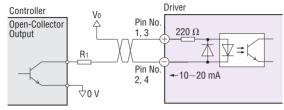
♦ Connecting the Electromagnetic Brake to Power Supply

- Connect the red/white lead from the actuator to the +24 VDC terminal on the DC power supply and the black/white lead to the GND terminal. (The electromagnetic brake leads have polarity. The electromagnetic brake will not operate if the leads are connected in reverse polarity.)
- For the electromagnetic brake, use a power supply of 24 VDC±5%, 0.1 A or more for **DRL42**, or 24 VDC $\pm5\%$, 0.3 A or more for **DRL60**.
- To connect the electromagnetic brake to the DC power supply, use a shielded cable of AWG24 or thicker and keep the wiring distance to a minimum. Be sure to use the supplied surge suppressor to protect switch contact and suppress noise.

♦ Notes on Wiring

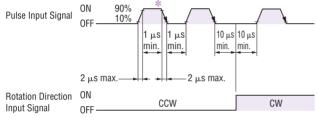
- Use twisted-pair wires of AWG24 to 22 and 2 m (6.6 ft.) or less in length for the signal lines.
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases. Technical reference → F-67
- Use wires of AWG22 for the power supply lines.
- When assembling the connector, use the hand-operated crimp tool or the crimped driver lead wire set (sold separately). The crimp tool is not provided with the package. It must be purchased separately.
- Signal lines should be kept at least 2 cm (0.79 in.) away from power lines (power supply lines and motor lines). Do not wire the signal lines with the power lines in the same duct or bundle them together
- Extension of the motor leads should be within 10 m (32.8 ft.).
- If noise generated by the wiring and layout of motor cables and/or power cables causes a problem, try shielding the cables or insert ferrite cores.
- Incorrect connection of DC power input will lead to driver damage. Make sure that the polarity is correct before turning the power on.

Description of Input/Output Signals


Indication of Input/Output Signal "ON""OFF"

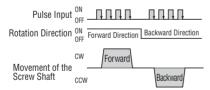
Input (output) "ON" indicates that the current is sent into the photocoupler (transistor) inside the driver. Input (output) "OFF" indicates that the current is not sent into the photocoupler (transistor) inside the driver.

Pulse (CW) and Rotation Direction (CCW) Input Signal


♦ Input Circuit and Sample Connection

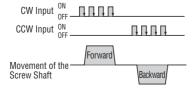
Notes

- Keep the input signal voltage V₀ between 5 VDC and 24 VDC.
- lacktriangle When V_0 is equal to 5 VDC, the external resistor R_1 is not necessary. When V_0 is above 5 VDC, connect R_1 to keep the current between 10 mA and 20 mA.

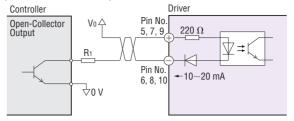

Pulse Duty: 50% and below

- * The shaded area indicates when the photocoupler diode is ON. The actuator moves when the photocoupler state changes from ON to OFF.
- \blacksquare The minimum interval time when changing rotation direction 10 μs is shown as a response time of circuit. This value varies greatly depending on the actuator type and load inertia.

◇Pulse Input Mode


• 1-Pulse Input Mode

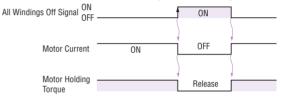
The 1-pulse input mode uses "Pulse" and "Rotation Direction" signals. When the "Pulse" input is switched from ON to OFF while the "Rotation Direction" input is ON, the screw shaft moves one step forward. When the "Pulse" input is switched from ON to OFF while the "Rotation Direction" input is OFF, the screw shaft moves one step backward.


• 2-Pulse Input Mode

The 2-pulse input mode uses "CW" and "CCW" pulse signals. When the "CW" input is switched from ON to OFF, the screw shaft moves one step forward. When the "CCW" input is switched from ON to OFF, the screw shaft moves one step backward.

All Windings Off (A.W.OFF)/Resolution Select (C/S)/ Automatic Current Cutback Release (C.D.INH) Input Signal

♦ Input Circuit and Sample Connection

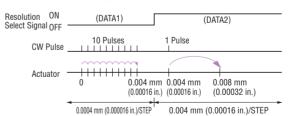


Note:

■ Keep the input signal voltage V₀ between 5 VDC and 24 VDC. When V₀ is equal to 5 VDC, the external resistor R₁ is not necessary. When V₀ is above 5 VDC, connect R₁ to keep the current between 10 mA and 20 mA.

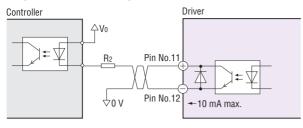
♦ All Windings Off (A.W.OFF) Input Signal Pin No.(5), (6)

- This signal is used when moving the screw shaft for manual positioning.
- When the "All Windings Off" input is turned "ON," the motor current turns off and the actuator loses its holding torque.
- When the "All Windings Off" input is turned "OFF," the motor current turns on and the actuator regains its holding torque.


Note:

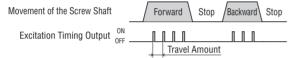
• When operating the actuator, this switch must be "OFF."

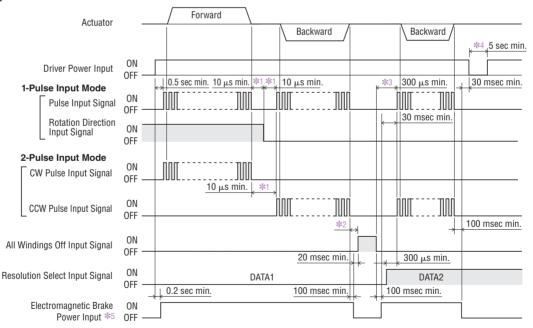
This signal is used to switch between two resolutions set by resolution setting switch (DATA1, DATA2). When the "Resolution Select" input is in the "photocoupler OFF" state, the resolution set by resolution setting switch DATA1 is selected. When the "Resolution Select" input is in the "photocoupler ON" state, the resolution set by resolution setting switch DATA2 is selected.


Example: Changing the resolution from 0.0004 mm (0.000016 in.) (10 microsteps/step) to 0.004 mm (0.00016 in.) (1 microsteps/step) (**DRL42P**)

◇Automatic Current Cutback Release (C.D.INH) Input Signal Pin No. (9). (®)

• Turning the "Automatic Current Cutback Release" input "ON" will disable the automatic current cutback function when the actuator is at standstill. Turning the "Automatic Current Cutback Release" input "OFF" will enable the automatic current cutback function. When the automatic current cutback function is enabled, the output current to the motor will be automatically reduced within approximately 0.1 second after the pulse input is stopped, thus suppressing heat generation from the motor and driver.


♦Output Circuit and Sample Connection


Note:

- $lackbox{lack}$ Keep the output signal voltage V_0 between 5 VDC and 24 VDC, current 10 mA or less. When V_0 is above 10 mA, connect the external resistor R_2 as shown in the figure to keep the current 10 mA or less.
- This signal is used for precise home detection, etc.
 The "Excitation Timing" output comes on every particular amount (see the chart below) of the screw shaft movement.

Model Travel Amount of the Screw Shaft	
DRL20, DRL28P	0.02 mm (0.00079 in.)
DRL42P	0.04 mm (0.0016 in.)
DRL60P	0.08 mm (0.0031 in.)
DRL28M	0.01 mm (0.00039 in.)
DRL42M	0.02 mm (0.00079 in.)
DRL60M	0.04 mm (0.0016 in.)

Timing Chart

The shaded section indicates that the photocoupler is on.

^{*1} The minimum switching time to change rotation direction (1-pulse input mode), and switching time to change CW, CCW pulse (2-pulse input mode) 10 μs is shown as a response time of circuit. The actuator may need more time.

^{*2} Depends on load inertia, load torque and starting frequency.

^{*3} Never input a pulse signal immediately after switching the "All Windings Off" signal to the "photocoupler OFF" state. The actuator may not start.

 $[\]ensuremath{\,\$\,} 5$ Only for electromagnetic brake type

List of Actuator and Driver Combinations

Ground Ball Screw

rame Size mm (in.)	Actuator Type	Additional Function	Model	Actuator Model	Driver Model
	Standard Type	None	DRL20PB1-02G	DRL20PB1-02	
□20	Stanuaru Type	With Adjusting Knob	DRL20PB1-02NG	DRL20PB1-02N	CRD5103P
(□0.79)	Guide Type	None	DRL20PB1G-02G	DRL20PB1G-02	CRDSTOSP
	Guide Type	With Adjusting Knob	DRL20PB1G-02NG	DRL20PB1G-02N	
		None -	DRL28□B1-03G	DRL28□B1-03	
□00	Standard Type	None	DRL28PB1-06G	DRL28PB1-06	
□28 (□1.10)		With Adjusting Knob	DRL28□B1-03NG	DRL28□B1-03N	
(□1.10)	Guide Type	None	DRL28□B1G-03G	DRL28□B1G-03	
	Guide Type	With Adjusting Knob	DRL28□B1G-03NG	DRL28□B1G-03N	
	Standard Type	None -	DRL42□B2-04G	DRL42□B2-04	CRD5107P
		None	DRL42PB2-10G	DRL42PB2-10	CKD3107F
□42		With Electromagnetic Brake	DRL42 B2-04MG	DRL42□B2-04M	
□42 (□1.65)		With Adjusting Knob	DRL42 B2-04NG	DRL42□B2-04N	
(🗆 1.03)	Guide Type	None	DRL42 B2G-04G	DRL42□B2G-04	
		With Electromagnetic Brake	DRL42 B2G-04MG	DRL42□B2G-04M	1
		With Adjusting Knob	DRL42 B2G-04NG	DRL42□B2G-04N	
		None	DRL60□B4-05G	DRL60□B4-05	
	Standard Type	IVOIIC	DRL60PB4-10G	DRL60PB4-10	
□60 (□2.36)	Stanuaru Type	With Electromagnetic Brake	netic Brake DRL60 _ B4-05MG DRL60_B4-05M		
		With Adjusting Knob	DRL60□B4-05NG	DRL60□B4-05N	CRD5114P
(=2.50)		None	DRL60 B4G-05G	DRL60□B4G-05	
	Guide Type	With Electromagnetic Brake	DRL60_B4G-05MG	DRL60□B4G-05M	
		With Adjusting Knob	DRL60□B4G-05NG	DRL60□B4G-05N	

[■] Enter M (high-resolution motor) or P (standard motor) in the box (□) within the model name.

Rolled Ball Screw

Frame Size mm (in.)	Actuator Type	Additional Function	Model	Actuator Model	Driver Model
		None	DRL28PA1-03G	DRL28PA1-03	
□28	Standard Type	NOILE	DRL28PA1-06G	DRL28PA1-06	
□28 (□1.10)		With Adjusting Knob	DRL28PA1-03NG	DRL28PA1-03N	
(🗆 1.10)	Guide Type	None	DRL28PA1G-03G	DRL28PA1G-03	
	duide Type	With Adjusting Knob	DRL28PA1G-03NG	DRL28PA1G-03N	
		None	DRL42PA2-04G	DRL42PA2-04	CRD5107P
	Standard Type	NOTE	DRL42PA2-10G	DRL42PA2-10	CKDSTO/T
□42		With Electromagnetic Brake	DRL42PA2-04MG	DRL42PA2-04M	
□42 (□1.65)		With Adjusting Knob	DRL42PA2-04NG	DRL42PA2-04N	
(□1.03)	Guide Type	None	DRL42PA2G-04G	DRL42PA2G-04	
		With Electromagnetic Brake	DRL42PA2G-04MG	DRL42PA2G-04M	
		With Adjusting Knob	DRL42PA2G-04NG	DRL42PA2G-04N	
		None	DRL60PA4-05G	DRL60PA4-05	
	Standard Type	None	DRL60PA4-10G	DRL60PA4-10	
□60 (□2.36) –	Standard Type	With Electromagnetic Brake	DRL60PA4-05MG	DRL60PA4-05M	
		With Adjusting Knob	DRL60PA4-05NG	DRL60PA4-05N	CRD5114P
		None	DRL60PA4G-05G	DRL60PA4G-05	
	Guide Type	With Electromagnetic Brake	DRL60PA4G-05MG	DRL60PA4G-05M	
		With Adjusting Knob	DRL60PA4G-05NG	DRL60PA4G-05N	

EZlimo

B

Compact Linear Actuators

ccessories (Sold separately)

■ Mounting Plates (RoHS)

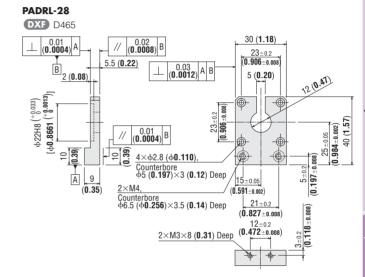
A dedicated mounting bracket used for installation of the **DRL** Series actuator.

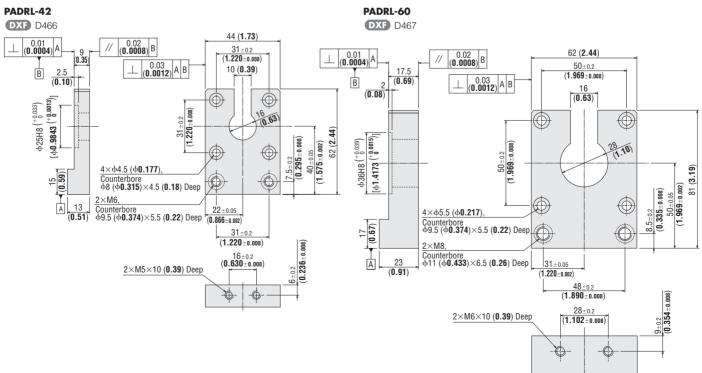
Each mounting plate comes with mounting screws for fastening the actuator to the plate.

• The customer must provide screws for installing the plate to the equipment.

Material: Iron

PADRL-20


Surface treatment: Electroless nickel plating


Product Line

Model	Applicable Product	Mass g (lb.)
PADRL-20	DRL20	25 (0.055)
PADRL-28	DRL28	45 (0.099)
PADRL-42	DRL42	165 (0.36)
PADRL-60	DRL60	570 (1.25)

● Dimensions Unit = mm (in.)

DXF D528 24 (0.94) (0.0008) B ⊥ (0.0004) A // 16±0.2 (0.630±0.008 В 5 (0.20) ϕ 16H8 $\begin{pmatrix} +0.027 \\ 0 \end{pmatrix}$ $[\phi$ 0.6299 $\begin{pmatrix} +0.0011 \\ 0 \end{pmatrix}]_{-}$ (0.08) 0.01 (**0.0004**) B 9 (0.157±0 4×φ2.4 (φ**0.094**) 9 Α (0.35)2×M4, 16+0.2 (0.630±0.008) φ6.5 (φ**0.256**)×3.5 (**0.14**) Deep $\underline{2\times \text{M3}\times}6~\textbf{(0.24)}~\text{Deep}~\textbf{(0.315}^{\underline{8}\pm0.2}_{\pm\textbf{0.008}})$

■ Driver Lead Wire Set (RoHS)

These lead wires are used to connect the driver with the actuator, controller and DC power supply. The driver lead wire set includes three lead wire/connector assemblies (for actuator, power supply, input/output signal). One end of the lead wire is crimped, therefore crimping is not necessary.

Product Line

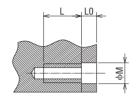
Model	Length m (ft.)
LCS04SD5	0.6 (2)

■ Motor Lead Wire/Connector Assembly (RoHS)

These lead wires with connectors are available for connection with the products below, eliminating the need for assembling a connector. [A motor lead wire/connector assembly of 0.6 m (2 ft.) is included with the **DRL20** and high-resolution motor and driver package.]

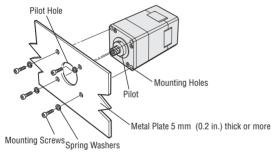
Product Line

Model	Applicable Product	Length m (ft.)				
LC5N06A	DRL20	0.6 (2)				
LC5N10A	DRL28M	1 (3.3)				
LC5N06B	DRL42M	0.6 (2)				
LC5N10B	DRL42M	1 (3.3)				
LC5N06C	DDI 40M	0.6 (2)				
LC5N10C	DRL60M	1 (3.3)				

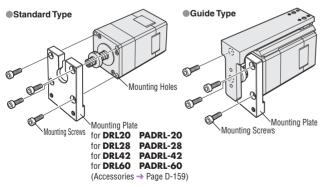

Compact Linear Actuators Installation

Actuator Installation

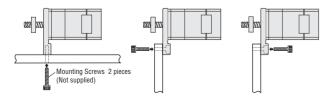
Installation Method


- Insert the pilot located on the actuator mounting surface into the metal plate's counterbore hole or through-hole.
- Install the actuator to a metal plate or a device with mounting screws, using mounting holes of the actuator (1), or using a mounting plate (2) (accessories).

Details of Mounting Hole


Model	Nominal Diameter	Tightening Torque	Dimension of Mounting Hole mm (in.)			
Model	Nominal Diameter	N·m (oz-in)	φМ	L0	L (Effective depth)	
DRL20	M2	0.4 (56)	2.3 (0.09)	2 (0.08)	5 (0.2)	
DRL28	M2.5	0.6 (85)	3 (0.12)	2 (0.08)	6 (0.24)	
DRL42	M4	1.8 (250)	-	_	8 (0.31)	
DRL60	M5	5.0 (710)	5.5 (0.22)	4 (0.16)	10 (0.39)	

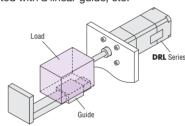
1) Using mounting holes of an actuator



(The figure shows installation for standard type.)

(2) Using a mounting plate (accessories)

There are three ways of mounting an actuator to device.


Installation Conditions

Install the actuator in a location that meets the following conditions, or the product may be damaged.

- Inside an enclosure installed indoors (with ventilation holes provided)
- Ambient temperature: 0~+40°C (+32~+104°F) (non-freezing)
- Ambient humidity: 85% or less (non-condensing)
- Not exposed to an explosive atmosphere, toxic gases (sulfurized gas, etc.) or liquids
- Not exposed to direct sunlight
- Not exposed to significant amounts of dust or iron powder
- Not exposed to water (rain, water droplets), oil (oil droplets) or other liquid
- Not exposed to continuous vibration or excessive impact

Anti-Spin Mechanism

The moving part of the standard type actuator does not have an antispin mechanism. Always provide an external anti-spin mechanism, such as a guide for positioning operation. In addition, make sure the load is supported with a linear-guide, etc.

Installing a Load

Standard Type

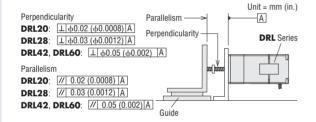
1. Retract the screw shaft until it stops at the set collar.

2. Holding the flat section of the screw shaft with a wrench, affix the load with a bolt (or nut, in the case of the **DRL20** and **DRL28**).

DRL20, DRL28

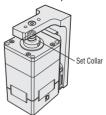
DRL42, DRL60

Washer (Not supplied)

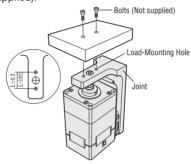

Nut (Not supplied)

Bolt (Not supplied)

Model	Nominal Diameter of Bolt/Nut	Tightening Torque N·m (oz-in)
DRL20	M3 Nut	0.6 (85)
DRL28	M3 Nut	0.6 (85)
DRL42	M4 Bolt	1.8 (250)
DRL60	M8 Bolt	5.0 (710)

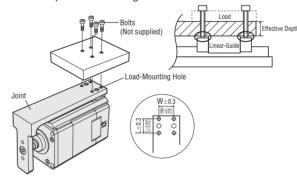

Installation Accuracy

When connecting a load, ensure the installation accuracy specified below. Poor installation accuracy may result in a malfunction or shortened service life.



Guide Type

1. Retract the screw shaft until it stops at the set collar.



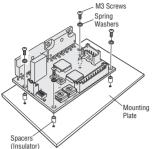
- 2. Affix the load with a bolt.
- When Using Load-Mounting Holes on the Screw-Shaft Side Install the load using load-mounting holes on the joint and the bolts (not supplied).

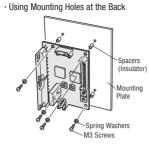
Model	Nominal Diameter of Bolt	Tightening Torque N·m (oz-in)	Effective Depth mm (in.)	L mm (in.)
DRL20	M2	0.4 (56)	4 (0.16)	15 (0.59)
DRL28	M2.5	0.6 (85)	5 (0.2)	16 (0.63)
DRL42	M4	1.0 (142)	7.5 (0.3)	20 (0.79)
DRL60	M5	2.0 (280)	11.5 (0.45)	30 (1.18)

 When Using Load-Mounting Holes on the Linear-Guide Side Install the load using load-mounting holes on the joint and bolts (not supplied). Use bolts whose length does not exceed the effective depth in the linear-guide.

Model	Nominal Diameter of Bolt	Tightening Torque N·m (oz-in)	Effective Depth mm (in.)	L mm (in.)	W mm (in.)
DRL20	M2	0.4 (56)	4 (0.16)	18 (0.71)	12 (0.47)
DRL28	M2.5	0.6 (85)	3.5 (0.14)	14 (0.55)	12 (0.47)
DRL42	M4	1.0 (142)	5.5 (0.22)	24 (0.94)	19 (0.75)
DRL60	M5	2.0 (280)	5.5 (0.22)	22 (0.87)	28 (1.10)

Notes:


- When installing a load to the guide type, do not disconnect the ball screw from the joint. This
 may cause an offset when assembling, resulting in malfunction.
- Do not apply an overhung load to the joint of the guide type. Also, do not apply a load moment to the joint of the DRL20 and DRL28 guide type. Doing so may result in a malfunction or shortened service life.
- When transporting, remove the load installed to the actuator, or damage may be caused to the equipment.


Driver Installation

Considering heat radiation, mount the driver as follows:

Installation in the Horizontal Direction Installation in the Vertical Direction

· Using Mounting Holes on Circuit Board

Installation Clearances

There must be a clearance of at least 25 mm (0.98 in.) and 50 mm (1.97 in.) in the horizontal and vertical directions respectively, between the driver and enclosure or other equipment. When installing two or more drivers in parallel, provide a minimum clearance of 20 mm (0.79 in.) and 50 mm (1.97 in.) in the horizontal and vertical direction respectively, between adjacent drivers.

Installation Conditions

Install the driver in a location that meets the following conditions, or the product may be damaged.

- Indoors (This product is designed and manufactured to be installed within another device.)
- Ambient temperature: 0~+40°C (+32~+104°F) (non-freezing)
- Ambient humidity: 85% or less (non-condensing)
- Not exposed to explosive, flammable or corrosive gases
- Not exposed to direct sunlight
- Not exposed to dust
- Not exposed to water, oil or other liquids
- A place where the driver can easily discharge heat
- Not exposed to continuous vibration or excessive impact
- When installing the driver in an enclosed space such as a control box, or somewhere close to a heat-radiating object, vent holes should be used to prevent the driver from overheating.
- Do not install the driver in a location where a source of vibration will cause the driver to vihrate
- In situations where drivers are located close to a large noise source such as high frequency welding machines or large electromagnetic switches, take steps to prevent noise interference. either by inserting noise filters or connecting the driver to a separate circuit.
- Take care that pieces of conductive material (filings, pins, pieces of wire, etc.) do not enter the drivers