Linear and Rotary Actuators

Linear and Rotary Actuators

Hollow Rotary Actuators

The DG Series is a hollow rotary actuator featuring a hollow table that allows large-inertia discs or arms to be installed directly. The actuator uses an $\boldsymbol{\alpha}_{\text {STEP }}$ motor adopting closed loop control. High accuracy positioning can be performed while keeping the userfriendly features of a stepping motor intact.

- For detailed product safety standard information including standards, file number and certification body, please visit www.orientalmotor.com.

Features

- Accurate Positioning

The gear-reduction mechanism employs precision gears along with a proprietary adjustment mechanism that eliminates backlash. The repetitive positioning accuracy from a single direction is ± 15 sec., while lost motion in a positioning operation from two directions is 2 arc minutes. These characteristics make the DG Series an ideal choice for applications in which accurate positioning is a must.

Output Table
(With integrated cross-roller bearings)

- Except for DG60

Product Lineup

DG60
\square Permissible Torque: $0.9 \mathrm{~N} \cdot \mathrm{~m}$ (7.9 lb-in)

DG85
\square Permissible Torque: $2.8 \mathrm{~N} \cdot \mathrm{~m}$
($24 \mathrm{lb}-\mathrm{in}$)
\square Frame Size: 85 mm
(3.35 in.)

DG130
\square Permissible Torque: $12 \mathrm{~N} \cdot \mathrm{~m}$ (106 lb-in)
\square Frame Size: 130 mm
(5.12 in .)

DG200
\square Permissible Torque: $50 \mathrm{~N} \cdot \mathrm{~m}$
(440 lb-in)
\square Frame Size: 200 mm (7.87 in.)

Linear and Rotary Actuators

- Less Hassle with Direct Coupling

Equipment tables and arms can be installed directly on the output table. This saves you the hassle and cost of designing an installation mechanism, arranging necessary parts and adjusting the belt tension, etc., when mechanical parts such as belt and pulley are used for installation.

	Frame Size [mm (in.)]	Permissible Thrust Load [N (lb.)]
DG60	$60(2.36)$	$100(22)$
DG85	$85(3.35)$	$500(112)$
DG130	$130(5.12)$	$2000(450)$
DG200	$200(7.87)$	$4000(900)$

- Supporting Sudden Load Fluctuation and Rapid Acceleration

Adopting a closed loop $\boldsymbol{Q}_{\text {STEP }}$ stepping motor designed to maintain synchronism, the DG Series actuator eliminates the need for tuning to prevent hunting upon sudden load fluctuation or rapid acceleration.
A built-in rotor position detection sensor constantly monitors the motor speed and position. If synchronism is about to be lost, closed loop control is implemented immediately. With the DG Series, you can also enjoy greater reliability because the positioning completion signal and position detection function can be used to check the actuator condition.

Stable operation can be achieved without adjustment, even when your equipment is subject to load fluctuation.

- Large-Diameter, Hollow Output Table Makes Simple Wiring and Piping Possible

The diameter of the driven gear has been increased with the use of a single-stage reduction gear mechanism, resulting in a hollow hole (through-hole) of sufficiently large diameter with respect to frame size. This helps reduce the complexity of wiring and piping, thus simplifying your equipment design.

	Frame Size [mm (in.)]	Diameter of Hollow Section [mm (in.)]
DG60	$60(2.36)$	$28(1.1)$
DG85	$85(3.35)$	$33(1.3)$
DG130	$130(5.12)$	$62(2.44)$
DG200	$200(7.87)$	$100(3.94)$

- Home-Sensor Set is Available as an Accessory

The sensor set comes with all the parts required for the return to home operation, meaning you will spend less time designing, fabricating and procuring parts relating to sensor installation.

Type and Structure

- Permissible Torque: $0.9 \mathrm{~N} \cdot \mathrm{~m}$ (7.9 lb-in)
- Permissible Thrust Load: $100 \mathrm{~N}(22 \mathrm{lb}$. - Permissible Moment Load: $2 \mathrm{~N} \cdot \mathrm{~m}$ (17.7 Ib-in)

Rigidity

The output table uses deep-groove ball bearings (two pieces) for the 60 mm (2.36 in .) frame size type, and a cross-roller bearing for the 85 mm (3.35 in.$), 130 \mathrm{~mm}(5.12 \mathrm{in}$.$) and$ 200 mm (7.87 in.) frame size types. As the frame size increases, the permissible moment load also increases but the displacement caused by the moment load decreases.

- Applications where a moment load is applied

- High accuracy positioning applications using the hollow hole

Optical applications using the hollow hole

- Air absorption applications using the hollow hole

How to Read Specifications

Actuator			
Model	Frame Size $\quad \mathrm{mm}$ (in.)	85 (3.35)	130 (5.12)
	Single-Phase Single Shaft	DG85R-ASAA	DG130R-ASAA
	100-115 VAC Double Shaft	DG85R-ASBA	DG130R-ASBA
	Single-Phase Single Shaft	-	DG130R-ASAC
	200-230 VAC Double Shaft	-	DG130R-ASBC
	Three-Phase Single Shaft	-	DG130R-ASAS
	200-230 VAC Double Shaft	-	DG130R-ASBS
Motor Type		$\chi_{\text {STEP }}$	
(1) Type of Output Table Supporting Bearing		Cross-Roller Bearing	
(2) Permissible Torque	$\mathrm{N} \cdot \mathrm{m}(\mathrm{lb-in})$	2.8 (24)	12 (106)
(3) Inertial Moment	$\mathrm{J}: \mathrm{kg} \cdot \mathrm{m}^{2}\left(0 \mathrm{z}-\mathrm{in}^{2}\right)$	$2534 \times 10^{-6}(139)$	$15874 \times 10^{-6}(870)$
(4) Permissible Speed r/min		200	
Gear Ratio		18	
(5) Maximum Holding Torque	$\mathrm{N} \cdot \mathrm{m}(\mathrm{lb-in}) \frac{\text { Power ON }}{\text { Power OFF }}$	1.8 (15.9)	12 (106)
		0	0
(6) Resolution		$9000 \mathrm{P} / \mathrm{R}\left(0.04^{\circ} /\right.$ step $[500][\times 1]$ setting $18000 \mathrm{P} / \mathrm{R}\left(0.02^{\circ} /\right.$ step [1000] [$\left.\times 1\right]$ setting $)$ $90000 \mathrm{P} / \mathrm{R}\left(0.004^{\circ} /\right.$ step [500] [$\times 10$ setting $)$ $180000 \mathrm{P} / \mathrm{R}\left(0.002^{\circ} /\right.$ step [1000] [$\left.\times 10\right]$ setting $)$	
(7) Repetitive Positioning Accuracy sec		$\pm 15\left(\pm 0.004^{\circ}\right)$	
(8) Lost Motion arc minute (degrees)		2 (0.033 ${ }^{\circ}$)	
(9) Angular Transmission Error arc minute (degrees)		4 (0.067 ${ }^{\circ}$	3 (0.05 ${ }^{\circ}$
(10) Permissible Thrust Load N (b)		500 (112)	2000 (450)
(11) Permissible Moment Load $\mathrm{N} \cdot \mathrm{m}(\mathrm{lb-in})$		10 (88)	50 (440)
(12) Runout of Output Table Surface mm (in.)		0.015 (0.0006)	
(13) ${ }^{\text {(Runout of Output Table Inner (Outer) Diameter }} \mathrm{mm}$ (in.)		0.015 (0.0006)	
		0.030 (0.0012)	
(15) Degree of Protection		IP40 (IP20 for motor connector)	
Mass of Actuator Unit	kg (lb.)	1.2 (2.6)	2.6 (5.7)

(1) Type of Output Table Supporting Bearing

The type of bearing used for the output table.

(2) Permissible Torque

The limit of mechanical strength of the reduction mechanism. Make sure the applied torque, including the acceleration torque and load fluctuation, does not exceed the permissible torque.
(3) Inertial Moment

The total sum of the rotor inertial moment of the motor and the inertial moment of the reduction mechanism, converted to a moment on the output table.

(4) Permissible Speed

The output table speed that can be tolerated by the mechanical strength of the reduction mechanism.

(5) Maximum Holding Torque

The maximum holding torque that can be exerted by the hollow rotary actuator when the actuator is at standstill with power supplied (the driver's output current is set to maximum: F) and by actuating the current cutback function.

(6) Resolution

The number of pulses needed to rotate the output table by one rotation.

(7) Repetitive Positioning Accuracy

A value indicating the degree of error that generates when positioning is performed repeatedly to the same position in the same direction.

(8) Lost Motion

The difference in stopped angles achieved when the output table is positioned to the same position in the forward and reverse directions.

(9) Angular Transmission Error

The difference between the theoretical rotation angle of the output table as calculated from the input pulse number and the actual rotation angle.

(10) Permissible Thrust Load

The permissible value of thrust load applied to the output table in the axial direction.

(11) Permissible Moment Load

When a load is applied to a position away from the center of the output table, the output table receives a tilting force. The permissible moment load refers to the permissible value of moment load calculated by multiplying the offset distance from the center by the applied load.

(12) Runout of Output Table Surface

The maximum value of runout of the mounting surface of the output table when the output table is rotated under no load.

(13) Runout of Output Table Inner (Outer) Diameter

The maximum value of runout of the inner diameter or outer diameter of the table when the output table is rotated under no load.

(14) Parallelism of Output Table

An inclination of the mounting surface of the output table compared with the actuator mounting surface on the equipment side.

(15) Degree of Protection

IEC 60529 and EN 60034-5 (IEC 60034-5) classify the dustresistance and waterproofing into grades.

System Configuration

An example of a single-axis system configuration with the EMP400 Series controller.

-Example of System Configuration

The system configuration shown above is an example. Other combinations are available.
*Not supplied

Linear and Rotary Actuators

Product Number Code
DG
130
(1)
(2) (3)
(4) (5) (6)

(1)	Series	DG: DG Series
(2)	Frame Size	60: 60 mm (2.36 in.$) \quad \mathbf{8 5}: 85 \mathrm{~mm}(3.35 \mathrm{in}$. 130: 130 mm (5.12 in.) 200: 200 mm (7.87 in.)
(3)	Type of Output Table Supporting Bearing	Blank: Deep-Groove Ball Bearing R: Cross-Roller Bearing
(4)	Motor Type	AS: $\alpha_{\text {STEP }}$
(5)	Motor Shaft	A: Single Shaft B: Double Shaft
(6)	Power Supply Voltage	A: Single-Phase 100-115 VAC C: Single-Phase 200-230 VAC S: Three-Phase 200-230 VAC K: 24 VDC

Product Line

-DC Input
24 VDC
Model
DG60-ASAK
DG60-ASBK

-AC Input

Single-Phase 100-115 VAC	Single-Phase 200-230 VAC	Three-Phase 200-230 VAC
Model	Model	Model
DG85R-ASAA	-	-
DG85R-ASBA	-	-
DG130R-ASAA	DG130R-ASAC	DG130R-ASAS
DG130R-ASBA	DG130R-ASB	DG130R-ASBS
DG200R-ASAA	DG200R-ASAC	DG200R-ASAS
DG200R-ASBA	DG200R-ASBC	DG200R-ASBS

Actuator, Driver, Connector for Input/Output Signal, Power Connector*1, Mounting Bracket for Driver (with screws)*2, Operating Manual *1 Only for DG60 *2 Only for DG85, DG 130 and DG200

Specifications

- Actuator RoHS	cTios $C E$			the DG85 type,	he driver confor	the CSA Standards.
Model	Frame Size	mm (in.)	60 (2.36)	85 (3.35)	130 (5.12)	200 (7.87)
	24 VDC	Single Shaft	DG60-ASAK	-	-	-
		Double Shaft*1	DG60-ASBK	-	-	-
	Single-Phase 100-115 VAC	Single Shaft	-	DG85R-ASAA	DG130R-ASAA	DG200R-ASAA
		Double Shaft*1	-	DG85R-ASBA	DG130R-ASBA	DG200R-ASBA
	Single-Phase 200-230 VAC	Single Shaft	-	-	DG130R-ASAC	DG200R-ASAC
		Double Shaft**	-	-	DG130R-ASBC	DG200R-ASBC
	Three-Phase 200-230 VAC	Single Shaft	-	-	DG130R-ASAS	DG200R-ASAS
		Double Shaft*1	-	-	DG130R-ASBS	DG200R-ASBS
Motor Type			$\alpha_{\text {STEP }}$			
Type of Output Table Supporting Bearing			Deep-Groove Ball Bearing	Cross-Roller Bearing		
Permissible Torque		$N \cdot m(\mathrm{lb}-\mathrm{in})$	0.9 (7.9)	2.8 (24)	12 (106)	50 (440)
Inertial Moment		$\mathrm{J}: \mathrm{kg} \cdot \mathrm{m}^{2}\left(0 z-\mathrm{in}^{2}\right)$	$4324 \times 10^{-7}(24)$	$2534 \times 10^{-6}(139)$	$15874 \times 10^{-6}(870)$	108160×10^{-6} (5900)
Permissible Speed		$\mathrm{r} / \mathrm{min}$		200		110
Gear Ratio			18			
Maximum Holding Torque	$N \cdot m(l b-i n)$	Power ON	0.45 (3.9)	1.8 (15.9)	12 (106)	36 (310)
		Power 0FF	0	0	0	0
Resolution*2			9000 P/R ($0.04^{\circ} /$ step [500] [$\times 1$] setting $)$ 18000 P/R ($0.02^{\circ} /$ step [1000] [$\left.\times 1\right]$ setting $)$ $90000 \mathrm{P} / \mathrm{R}\left(0.004^{\circ} /\right.$ step $[500][\times 10]$ setting $)$ $180000 \mathrm{P} / \mathrm{R}\left(0.002^{\circ} /\right.$ step [1000] [$\times 10$ setting $)$			
Repetitive Positioning Accuracy		sec	$\pm 15\left(\pm 0.004^{\circ}\right)$			
Lost Motion		arc minute (degrees)	2 (0.033 ${ }^{\circ}$			
Angular Transmission Error		arc minute (degrees)	$4\left(0.067^{\circ}\right)$		3 (0.05 ${ }^{\circ}$	$2\left(0.033^{\circ}\right)$
Permissible Thrust Load		N (lb)	100 (22)	500 (112)	2000 (450)	4000 (900)
Permissible Moment Load		$N \cdot m(l b-i n)$	2 (17.7)	10 (88)	50 (440)	100 (880)
Runout of Output Table Surface		mm (in.)	0.030 (0.0012)	0.015 (0.0006)		
Runout of Output Table Inner (0uter) Diameter		mm (in.)	0.030 (0.0012)	0.015 (0.0006)		0.030 (0.0012)
Parallelism of Output Table		mm (in.)	0.050 (0.002)	0.030 (0.0012)		0.050 (0.002)
Degree of Protection			IP40 (IP20 for motor connector)			
Mass of Actuator Unit		kg (lb.)	0.5 (1.1)	1.2 (2.6)	2.6 (5.7)	9.5 (20.9)

[^0]-Speed - Torque Characteristics
DG60-ASAK/DG60-ASBK

DG 130R-ASA $\square / D G 130 R-A S B \square$

- Enter the power supply voltage (\mathbf{A}, \mathbf{C} or \mathbf{S}) in the box (\square) within the model name.
- Load Inertia - Positioning Time (Reference value)

DG60-ASAK/DG60-ASBK

DG130R-ASA $\square / D G 130 R-A S B \square$

*The load inertia refers to the inertia of the customer's load.

- Enter the power supply voltage (\mathbf{A}, \mathbf{C} or \mathbf{S}) in the box (\square) within the model name.

DG85R-ASAA/DG85R-ASBA

DG200R-ASA $\square / D G 200 R-A S B \square$

DG85R-ASAA/DG85R-ASBA

DG200R-ASA $\square / D G 200 R-A S B \square$

Linear and Rotary Actuators

- Table Precision (at no load) Unit =mm (in.)

DG60

*1 Runout of output table surface
*2 Runout of output table inner diameter (hollow diameter) *3 Parallelism of output table (against the mounting surface)

- Displacement by Moment Load (Reference value)

The output table will be displaced when it receives the moment load. The graph plots the table displacement that occurs at distance L from the rotation center of the output table when a given load is applied in the negative direction.
The displacement becomes approximately double when the moment load is applied in both the positive and negative directions.

DG60-ASAK/DG60-ASBK

DG 130R-ASA $\square / D G 130 R-A S B \square$

[^1]DG85, DG 130, DG200

*1 Runout of output table surface
*2 Runout of output table inner and outer diameter *3 Parallelism of output table (against the mounting surface)

DG85R-ASAA/DG85R-ASBA

DG200R-ASA $\square / D G 200 R-A S B \square$

- Driver

Driver Model		ASD10A-K	ASD13B-A	ASD24A-A	ASD30E-A	ASD12A-C	ASD20A-C	ASD12A-S	ASD20A-S
Power Source	Voltage	24 VDC $\pm 10 \%$	Single-Phase 100-115 VAC ${ }_{-15 \%}^{+10 \%}$			Single-Phase 200-230 VAC ${ }_{-15 \%}^{+10 \%}$		Three-Phase 200-230 VAC ${ }_{-15 \%}^{+10 \%}$	
	Frequency	-	$50 / 60 \mathrm{~Hz}$			$50 / 60 \mathrm{~Hz}$		$50 / 60 \mathrm{~Hz}$	
	Current	1.0 A	3.3 A	5 A	6.5 A	3 A	4.5 A	1.5 A	2.4 A
Maximum Input Pulse Frequency		250 kHz (when the pulse duty is 50%)							
Input Signals	Input Mode	Photocoupler input, Input resistance: 220Ω, Input current: 7~20 mA							
	Pulse Signal (CW Pulse Signal)	Operation command pulse signal (CW direction operation command pulse signal when in 2-pulse input mode) Pulse width: $1 \mu \mathrm{~s}$ minimum, Pulse rise/fall: $2 \mu \mathrm{~s}$ maximum (negative logic pulse input)							
	Rotation Direction Signal (CCW Pulse Signal)	Rotation direction signal Photocoupler ON: CCW, Photocoupler OFF: CW (CCW direction operation command pulse signal when in 2-pulse input mode) Pulse width: $1 \mu \mathrm{~s}$ minimum, Pulse rise/fall: $2 \mu \mathrm{~s}$ maximum (negative logic pulse input)							
	Alarm Clear Signal	This signal is used when a protective function has been activated for canceling the alarm without turning off the power to the driver.							
	All Windings Off Signal	When in the "photocoupler ON" state, the current to the motor is cut off and the output table can be rotated manually. When in the "photocoupler OFF" state, the current is supplied to the motor.							
	Resolution Select Signal	When in the "photocoupler ON" state, the resolution is 10 times the initial resolution setting. When in the "photocoupler OFF" state, the initial resolution setting is selected. This function is effective when the resolution select switch is set to 9000 P/R or 18000 P/R.							
Output Signals	Output Mode	Photocoupler, Open-collector output External use condition: 30 VDC maximum, 15 mA maximum [Positioning completion, Alarm, Timing (only for ASD1OA-K)] Transistor, Open-collector output External use condition: 30 VDC maximum, 15 mA maximum [Quadrature A/B phase, Timing (except ASD1OA-K)] Line driver output, equivalent to 26 C31 [Timing, Quadrature A/B phase] (except ASD10A-K)							
	Timing Signal	The signal is output every time the output table rotates 0.4°. (Photocoupler: ON) A precise "Timing" signal cannot be obtained when the speed of the pulse input frequency is over 500 Hz .							
	Alarm Signal	The signal is output when one of the driver's protective functions has been activated. (Photocoupler: OFF) When the "Alarm" signal is output, the alarm indicator (red LED) blinks and the actuator stops (non-excitation state).							
	Positioning Completion Signal	The signal is output when positioning is completed. (Photocoupler: ON) This signal is output when the table position is less than $\pm 0.1^{\circ}$ from the commanded position during operation with a pulse input frequency of 500 Hz or less.							
	Quadrature (ASG/BSG) Signal	This signal is output at the resolution set when the driver's power was turned on. The phase difference between A and B is 90° electrical. There is a 1 msec (max.) time lag between real actuator motion and the output signals. This signal is only for position verification when the actuator stopped.							
Protective Functions		Overheat, Overload, Overvoltage, Speed error, Overcurrent, Overspeed, EEPROM data error, Sensor error, System error (ASD10A-K does not have overheat and overcurrent protections.)							
Degree of Protection		IP00	IP10						
Indicator (LED)		Operation indicator: Green LED, Alarm indicator: Red LED							
Cooling Method		Natural Ventilation							
Mass	kg (lb.)	0.25 (0.55)	0.8 (1.76)						

Note

- The rotation directions of the driver input signals (CW and CCW) are opposite the actual rotation directions of the output table.

When the CW signal is input, the output table will rotate in the counterclockwise direction. When the CCW signal is input, the output table will rotate in the clockwise direction.

Linear and Rotary Actuators

General Specifications

This is the value after rated operation under normal ambient temperature and humidity.

Item	Motor	Driver
Thermal Class	130 (B) [Recognized as 105 (A) by UL/CSA Standards]	-
Insulation Resistance	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: - Motor Case - Motor and sensor windings	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: [ASD10A-K] - Heat sink - Power input terminal [ASD13B-A, ASD24A-A, ASD30E-A, ASD12A-C, ASD20A-C, ASD12A-S, ASD20A-S] - Case - Power input terminal - Signal I/O terminal - Power input terminal
Dielectric Strength	Sufficient to withstand the following for 1 minute: [DGM60-ASAK, DGM60-ASBK] - Case - Motor and sensor windings 0.5 kVAC 50 Hz or 60 Hz [DGM85R-ASAA, DGM85R-ASBA] - Case - Motor and sensor windings 1 kVAC 50 Hz or 60 Hz [DGM130R-ASAA, DGM130R-ASBA, DGM130R-ASAC, DGM130R-ASBC, DGM200R-ASAA, DGM200R-ASBA, DGM200R-ASAC, DGM200R-ASBC] - Case - Motor and sensor windings 1.5 kVAC 50 Hz or 60 Hz	Sufficient to withstand the following for 1 minute: [ASD10A-K] - Heat sink - Power input terminal 0.5 kVAC 50 Hz or 60 Hz [ASD13B-A, ASD24A-A, ASD30E-A, ASD12A-C, ASD20A-C, ASD12A-S, ASD2OA-S] - Case - Power input terminal $\quad 1.5 \mathrm{kVAC} 50 \mathrm{~Hz}$ or 60 Hz - Signal I/O terminal - Power input terminal 2.3 kVAC (3.0 kVAC for 200-230 VAC input) 50 Hz or 60 Hz
Ambient Temperature	$0 \sim+50^{\circ} \mathrm{C}\left(+32 \sim+122^{\circ} \mathrm{F}\right)$ (non-freezing) $0 \sim+40^{\circ} \mathrm{C}\left(+32 \sim+104^{\circ} \mathrm{F}\right)$ (non-freezing) when accessory home-sensor set is attached	$\begin{aligned} & \text { [ASD13B-A, ASD24A-A, ASD30E-A, ASD12A-C, ASD20A-C, } \\ & \text { ASD12A-S, ASD20A-S] } \\ & 0 \sim+50^{\circ} \mathrm{C}\left(+32 \sim+122^{\circ} \mathrm{F}\right) \text { (non-freezing) } \\ & \text { [ASD10A-K] } \\ & 0 \sim+40^{\circ} \mathrm{C}\left(+32 \sim+104^{\circ} \mathrm{F}\right) \text { (non-freezing) } \end{aligned}$
Ambient Humidity	85\% or les	condensing)

Note

- Do not measure insulation resistance or perform the dielectric strength test while the actuator and driver are connected

Dimensions Unit = mm (in.)

- Actuator

Model	Actuator Model	Mass kg (lb.)	DXF
DG60-ASAK	DGM60-ASAK	0.5	D469
DG60-ASBK	DGM60-ASBK	(1.1)	

*Use M2.5 screw holes when installing the home-sensor set (sold separately). Do not use these holes for any purpose other than to install the home-sensor.

Model	Actuator Model	Mass kg (lb.)	DXF
DG85R-ASAA	DGM85R-ASAA	1.2	D518
DG85R-ASBA	DGM85R-ASBA	(2.6)	

* Use M2.5 screw holes when installing the home-sensor set (sold separately). Do not use these holes for any purpose other than to install the home-sensor.

Linear and Rotary Actuators

Model	Actuator Model	Mass kg (lb.)	DXF
DG130R-ASA \square	DGM130R-ASA \square	2.6	D519
DG130R-ASB \square	DGM130R-ASB \square	(5.7)	

*Use M2.5 screw holes when installing the home-sensor set (sold separately).
Do not use these holes for any purpose other than to install the home sensor.

Model	Actuator Model	Mass kg (lb.)	DXF
DG200R-ASA \square	DGM200R-ASA \square	9.5	D1057
DG200R-ASB \square	DGM200R-ASB \square	(20.9)	

* Use M2.5 screw holes when installing the home-sensor set (sold separately).

Do not use these holes for any purpose other than to install the home sensor.

- Driver

ASDIOA-K
Mass: $0.25 \mathrm{~kg}(0.55 \mathrm{lb}$.)
DXF B198

- Control I/O Connector (Included)

Cover assembly: 54331-1361 (MOLEX)
Connector: 54306-3619 (MOLEX)

- Power Supply Connector (Included)

Connector: 5557-02R (MOLEX)
Connector crimp terminal: 5556TL (MOLEX)

ASD13B-A, ASD24A-A, ASD30E-A, ASD12A-C, ASD20A-C, ASD12A-S, ASD20A-S
Mass: 0.8 kg (1.76 lb.$)$
DXF B197

- Control I/O Connector (Included)

Cover assembly: 54331-1361 (MOLEX)
Connector: 54306-3619 (MOLEX)

- Mounting Bracket
(2 pieces, included)

Linear and Rotary Actuators

Connection and Operation

- Names and Functions of Driver Parts

1 Signal Monitor Display

\diamond LED Indicators

Indication	Color	Function	When Activated
OPERATION	Green	Power Supply Indication	Lights when power is on.
ALARM	Red	Alarm Indication	Blinks when protective functions are activated.

\diamond Alarm

Blink Count	Function	When Activated
1	Overheat*	The temperature of the heat sink inside the driver has reached approximately $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$.
2	Overload	The motor has been operated continuously over 5 seconds under a load exceeding the maximum torque.
3	Overvoltage	The primary inverter voltage of the driver has exceeded the allowable level.
4	Speed Error	The actuator cannot accurately follow at the indicated pulse speed.
5	Overcurrent*	An excessive current has flowed through the inverter power element inside the driver.
6	Overspeed	The output table speed has exceeded 270 r/min.
7	EEPROM Data Error	A motor control parameter has been damaged.
8	Sensor Error	The power has been turned on without the motor cable connected to the driver.
Lights (No blinking)	System Error	The driver has fatal error.

* DG60 does not have "Overheat protection" and "Overcurrent protection" functions.

2) Function Switches

Indication	Switch Name	Function
$\begin{gathered} 1000 / 500 \\ \times 1 / \times 10 \end{gathered}$	Resolution Select Switch	This function is for selecting the actuator resolution. The resolution of output table is 18 times of indications. [500] [$\times 1] \rightarrow 9000$ P/R ($0.04 /$ step) [1000] [$\times 1$] $\rightarrow 18000$ P/R (0.02 $/$ step) [500] [$\times 10$] $\rightarrow 90000 \mathrm{P} / \mathrm{R}\left(0.004^{\circ} /\right.$ step $)$ [1000] [$\times 10$] $\rightarrow 180000$ P/R ($0.002^{\circ} /$ step $)$
1P/2P	Pulse Input Mode Switch	The settings of this switch are compatible with the following two pulse input modes: " 1 P " for the 1-pulse input mode, "2P" for the 2-pulse input mode.

Notes

Always turn the power OFF before switching resolution or pulse input and turn it ON again after you have made the change.

- If the resolution select switch is set to [$\times 10$], it cannot control the resolution selected by input terminal. It is always [$\times 10$]

DG85, DG 130, DG200

(3) Current Adjustment Switch

Indication	Switch Name	Function
CURRENT	Current Adjustment Switch	The motor running current can be lowered to suppress temperature rise in the motor and driver or lower operating current in order to allow a margin for motor torque (a maximum of 16 settings).

4 Velocity Filter Adjustment Switch

Indication	Switch Name	Function		
V.FIL	Velocity Filter Adjustment Switch	This switch is used to make adjustments when a smooth start-stop or smooth motion at low speed is required (a maximum of 16 settings).		The difference in characteristics mode by the velocity filter.

5 Input/	utput Sig	Is (36		
\checkmark DG60				
Indication	Input/Output	Pin No.	Signal	Signal Name
CN3	External power input	2	GND	Power supply for signal control
		3	Vcc+24V	
		9	DIR. (CCW)	
		10	$\overline{\text { DIR. (CCW) }}$	Rotation direction (CCW pulse)
	Input	11	PLS (CW)	Pulse (CW pul
		12	PLS (CW)	Pulse (CW puls
		13	BSG1	Quadrature BSG output
	Output	14	GND	(Open-collector)
	Output	15	ASG1	Quadrature ASG output
		16	GND	(Open-collector)
	Input	21	ACL	Alarm clear
	Input	22	$\overline{\text { ACL }}$	Alarm Clear
		23	TIM. 1	Timing
		24	TIM. 1	(Open-collector)
	Output	25	ALARM	Alarm
	Output	26	$\overline{\text { ALARM }}$	Alarm
		29	END	Positioning completion
		30	END	Positioning completion
		31	$\times 10$	Resolution select
	Input	32	$\times \overline{10}$	Resolution select
	Input	33	C.0FF	All windings off
		34	C.OFF	All windings off

- For more details, refer to the description of input/output signals.

Indication	Input/Output	Pin No.	Signal	Signal Name
CN4	External power input	1	$\mathrm{Vcc}+5 \mathrm{~V}$	Power supply for signal control
		2	GND	
		3	$\mathrm{Vcc}+24 \mathrm{~V}$	
	Input	9	DIR. (CCW)	Rotation direction (CCW pulse)
		10	$\overline{\text { DIR. (CCW) }}$	
		11	PLS (CW)	Pulse (CW pulse)
		12	PLS (CW)	
	Output	13	BSG1	Quadrature BSG output (Open-collector)
		14	GND	
		15	ASG1	Quadrature ASG output (Open-collector)
		16	GND	
		17	BSG2	Quadrature BSG output (Line driver)
		18	BSG2	
		19	ASG2	Quadrature ASG output (Line driver)
		20	$\overline{\text { ASG2 }}$	
	Input	21	ACL	Alarm clear
		22	$\overline{\text { ACL }}$	
	Output	23	TIM. 1	Timing (Open-collector)
		24	GND	
		25	ALARM	Alarm
		26	ALARM	
		27	TIM. 2	Timing (Line driver)
		28	TIM. 2	
		29	END	Positioning completion
		30	END	
	Input	31	$\times 10$	Resolution select
		32	$\times \overline{10}$	
		33	C.OFF	All windings off
		34	$\overline{\text { C.OFF }}$	

- For more details, refer to the description of input/output signals.

\diamond Input Signal Connection

Signals can be connected directly when 5 VDC is supplied. If the signals are used at a voltage exceeding 5 VDC, be sure to provide an external resistor to prevent the current exceeding 20 mA from flowing. Internal components will be damaged if a voltage exceeding 5 VDC is supplied directly without using an external resistor.
Example: If the voltage is 24 VDC , connect a resistor (R_{1}) of 1.5 to $2.2 \mathrm{k} \Omega$ and 0.5 W or more.

\diamond Output Signal Connection

Use output signals at 30 VDC or less and 15 mA or less. If these specifications are exceeded, the internal components may be damaged. Check the specification of the connected equipment. If the current exceeds 15 mA , connect an external resistor R_{2}.

\diamond Power Supply

Use an input power voltage of 24 VDC. Use a power supply that can supply sufficient input current. When power supply capacity is insufficient, a decrease in motor output can cause the following malfunction:

- Actuator does not operate properly (insufficient torque)

\diamond Notes on Wiring

- Use multi-core, twisted-pair shielded wires of AWG28 or thicker for the control I/O signal lines (CN3), and keep wiring as short as possible [within $2 \mathrm{~m}(6.6 \mathrm{ft}$.)].
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases. Technical reference \rightarrow Page G-44
- When it is necessary to extend the wiring distance between the actuator and driver, the accessory connection cable or flexible connection cable must be used. Accessories \rightarrow Page E-149
- The range of wire for the power connector (CN1) is AWG24 to 18. Use wires of AWG20 or thicker for the power supply lines.
- Provide a minimum distance of $300 \mathrm{~mm}(1 \mathrm{ft}$.) between the control I/O signal lines and power lines (AC lines, motor lines and other large-current circuits).
Do not run the control I/O signal lines in the same ducts as power lines or bundle them with power lines.
- The customer must furnish the cables for power supply lines and control I/O signal lines.
- Use included connector for connection of power supply connector.
- To install the pins, be sure to use the specified crimping tool made by MOLEX 57026-5000 (for UL 1007) or 57027-5000 (for UL 1015).

Linear and Rotary Actuators

\diamond DG85, DG 130, DG200

List of Actuator and Driver Combinations
Model names for actuator and driver combinations are shown below.

Model	Actuator Model	Driver Model
DG60-ASAK	DGM60-ASAK	ASD10A-K
DG60-ASBK	DGM60-ASBK	ASD10A-K
DG85R-ASAA	DGM85R-ASAA	ASD13B-A
DG85R-ASBA	DGM85R-ASBA	ASD13B-A
DG130R-ASAA	DGM130R-ASAA	ASD24A-A
DG130R-ASBA	DGM130R-ASBA	ASD24A-A
DG130R-ASAC	DGM130R-ASAC	ASD12A-C
DG130R-ASBC	DGM130R-ASBC	ASD12A-C
DG130R-ASAS	DGM130R-ASAC	ASD12A-S
DG130R-ASBS	DGM130R-ASBC	ASD12A-S
DG200R-ASAA	DGM200R-ASAA	ASD30E-A
DG200R-ASBA	DGM200R-ASBA	ASD30E-A
DG200R-ASAC	DGM200R-ASAC	ASD20A-C
DG200R-ASBC	DGM200R-ASBC	ASD20A-C
DG200R-ASAS	DGM200R-ASAC	ASD20A-S
DG200R-ASBS	DGM200R-ASBC	ASD20A-S

\diamond Input Signal Connection

Signals can be connected directly when 5 VDC is supplied. If the signals are used at a voltage exceeding 5 VDC , be sure to provide an external resistor to prevent the current exceeding 20 mA from flowing. Internal components will be damaged if a voltage exceeding 5 VDC is supplied directly without using an external resistor. Example: If the voltage is 24 VDC , connect a resistor $\left(\mathrm{R}_{1}\right)$ of 1.5 to $2.2 \mathrm{k} \Omega$ and 0.5 W or more.
\diamond Output Signal Connection
Use output signals at 30 VDC or less and 15 mA or less. If these specifications are exceeded, the internal components may be damaged. Check the specification of the connected equipment. If the current exceeds 15 mA , connect an external resistor R2.

\diamond Notes on Wiring

- Use multi-core, twisted-pair shielded wires of AWG28 or thicker for the control I/O signal lines (CN3), and keep wiring as short as possible [within $2 \mathrm{~m}(6.6 \mathrm{ft}$.)].
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases. Technical reference \rightarrow Page G-44
- When it is necessary to extend the wiring distance between the actuator and driver, the accessory connection cable or flexible connection cable must be used.
Accessories \rightarrow Page E-149
Use the following cable for the power line
Single-phase 100-115 VAC, Single-phase 200-230 VAC: 3-core cable of AWG18 or thicker
Three-phase 200-230 VAC: 4-core cable of AWG18 or thicker
- Provide a minimum distance of $300 \mathrm{~mm}(1 \mathrm{ft}$.) between the control I/O signal lines and power lines (AC lines, motor lines and other large-current circuits.) Do not run the control I/O signal lines in the same ducts as power lines or bundle them with power lines.
To ground the driver, lead the ground conductor from the protective earth terminal (M4) and connect the ground conductor to provide a common ground point

1. Caution

If the "Timing" signal output or "Quadrature" signal output is used, a 5VDC or 24 VDC power supply is required. Connect the power supply for "Timing" signal output or "Quadrature" signal output either 5 VDC or 24 VDC. Do not input 5 VDC and 24 VDC at the same time.

\diamond Recommended Crimp Terminals

Crimp terminals are not provided with the products. They must be purchased separately.

Hollow Rotary Actuators

Accessories (Sold separately)

Home-Sensor Set ROHS

A home-sensor set, which consists of a photomicro sensor, connector with cable, sensor mounting bracket, shielding plate and mounting screws, is provided to facilitate easy return to home operation.
All parts needed for return to home operation are included in the set, so you will spend less time designing, fabricating or procuring parts in connection with sensor installation. Installation is very easy, so you can start using the sensor right away.

- Product Line

Model	Sensor 0utput	Applicable Product
PADG-SA	NPN	DG60-ASAK/DG60-ASBK
PADG-SAY	PNP	
PADG-SB	NPN	DG85R-ASAA/DG85R-ASBA
PG130R-ASA $\square / D G 130 R-A S B ~$		
PADG-SBY	PNP	DG200R-ASA $\square / D G 200 R-A S B ~$

- Enter the power supply voltage (\mathbf{A}, \mathbf{C} or \mathbf{S}) in the box (\square) within the model name.

-Sensor Specifications

\diamond NPN Type

Model	$\begin{array}{c}\text { PADG-SA } \\ \text { PADG-SB }\end{array}$
(OMRON Model: EE-SX672A)	
(OMRON Model: EE-SX673A)	

- Installing the Home-Sensor Set

Be aware of the following points when installing the accessory home-sensor set:

- Set the operating conditions so that the operating temperature stays at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or less and the surface temperature of the actuator motor stays at $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ or less.
-When performing return to home operation using the back shaft of the motor, the user must provide a separate sensor, mounting bracket and other necessary parts.

-When Extending the Sensor Cable

Use shielded cable when extending the sensor line more than 2 m (6.6 ft .). The shielded cable must be grounded.

- Dimensions of Sensor Installation Unit $=\mathrm{mm}$ (in.)

When mounting holes are provided at the table center

-When mounting holes are provided a distance from the table center

Machining Dimension Drawing for Installation of Shielding Plate

Linear and Rotary Actuators

\diamond DG85R-ASAA/DG85R-ASBA

\diamond DG130R-ASA $\square / D G 130 R-A S B \square$

- Enter the power supply voltage (\mathbf{A}, \mathbf{C} or \mathbf{S}) in the box (\square) within the model name.

\diamond DG200R-ASA $\square / D G 200$ R-ASB \square

- Enter the power supply voltage (\mathbf{A}, \mathbf{C} or \mathbf{S}) in the box (\square) within the model name.

Wiring the Sensor

\diamond NPN Type

Power supply voltage and current must be 5 to 24 VDC, 100 mA or below.
If the current exceeds 100 mA , connect an external resistor R . GND for sensor power supply and customer's controller power supply should be common.

-- - Connect the pink lead to the brown lead when the sensor logic is N.C. (normally closed). The pink lead is not connected when the sensor logic is N.O. (normally open).

\diamond PNP Type

Power supply voltage and current must be 5 to 24 VDC, 50 mA or below.
If the current exceeds 50 mA , connect an external resistor R .

--- Connect the pink lead to the brown lead when the sensor logic is N.C. (normally closed) The pink lead is not connected when the sensor logic is N.O. (normally open).

Linear and Rotary Actuators

Connection Cables RoHS

-Connection Cables

These connection cables are used to extend the wiring distance between the actuator and driver.
\diamond Product Line

Model	Length: L m (ft.)
CC01 AIP	$1(3.3)$
CCO2AIP	$2(6.6)$
CC03AIP	$3(9.8)$
CC05AIP	$5(16.4)$
CC07AIP	$7(23)$
CC10AIP	$10(32.8)$
CC15AIP*	$15(49.2)$
CC20AIP*	$20(65.6)$

* Only for DG85, DG 130 and DG200
\rangle Dimensions Unit $=\mathrm{mm}$ (in.)

- Flexible Connection Cables

We recommend these flexible connection cables when the actuator is installed on a moving section and the cable is bent and flexed.
\diamond Product Line

Model	Length: L m (ft.)
CCO1SAR	$1(3.3)$
CCO2SAR	$2(6.6)$
CCO3SAR	$3(9.8)$
CCO5SAR	$5(16.4)$
CCO7SAR	$7(23)$
CC10SAR	$10(32.8)$

\diamond Dimensions Unit $=\mathrm{mm}$ (in.)

\diamond Notes on Use of a Flexible Connection Cable
(1) Do not allow the cable to bend at the cable connector.

(2) For the bending radius, use at six times or more of the cable diameter.

(3) The connection cable is not a flexible cable. If the connection cable is to be bent, bend it at the flexible connection cable.

Connection Cables ROHS

- EMP Series Dedicated Type

One end of the cable is a halfpitch connector that snaps into the driver for the DG Series. The other end of the cable is equipped with the connector for the EMP Series controller.

\diamond Product Line

Model	Length: L m (ft.)
CCO1EMP4	$1(3.3)$
CC02EMP4	$2(6.6)$

Note

- The alarm clear function is not available on the EMP400 Series.
\diamond Dimensions Unit $=\mathrm{mm}$ (in.)

- General-Purpose Type

This is a shielded cable equipped with, at one end of the cable, the halfpitch connector that snaps into the driver for the DG Series

\checkmark Product Line

Model	Length: L m (ft.)	Connector
CC36D 1-1	$1(3.3)$	Control input pin: 36 pins
CC36D2-1	$2(6.6)$	

\diamond Dimensions Unit $=\mathrm{mm}$ (in.)
Conductor: AWG28

Connector - Terminal Block Conversion Unit ROHS
A conversion unit that connects a driver to a host controller by using a terminal block.

- With a signal name plate for easy, one-glance identification of driver signal names.
- DIN-rail mountable
- Cable length: 1 m (3.3 ft.)
- Product Line

Model	Length m (ft.)	Connector/Applicable Product
CC36T 1	$1(3.3)$	Control input pin: 36 pins

- Dimensions Unit $=\mathrm{mm}$ (in.)

CC36T1
DXF B438

DIN Rail Mounting Plate ROHS

This mounting plate is convenient for installing the drivers of DG85, DG 130 and DG200 on DIN rails with ease. The plate enables a simple, one-touch attachment/detachment to/from the DIN rail.

- Product Line

Model	Applicable Product
PADP01	DG85
	DG130
	DG200

- Dimensions Unit $=\mathrm{mm}$ (in.)

Mass: 20 g (0.71 oz .)

- Screws (3 pieces, included)

M3P0.5 Length 8 mm (0.31 in .)

[^0]: How to read specifications \rightarrow Page E-133
 1 The back shaft of the motor in the double shaft type is intended for installing a slit disc. Do not apply load torque, overhung load or thrust load to the back shaft of the motor. $ 2$ You can set one of four resolutions using the resolution select switch or resolution select signal. The factory driver settings are [1000] [$\times 1$] and $18000 \mathrm{P} / \mathrm{R}\left(0.02^{\circ} /\right.$ step $)$

[^1]: - Enter the power supply voltage (\mathbf{A}, \mathbf{C} or \mathbf{S}) in the box (\square) within the model name.

