Connection and Operation

- Names and Functions of Driver Parts

4 Input/Output Signals

Indication	Input/ Output	Pin No.	Signal Name	Function
CN2	Input	1	Pulse Signal (CW Pulse Signal)	Operation command pulse signal (The motor will rotate in the CW direction when in 2-pulse input mode.)
		2		
		3	Rotation Direction Signal (CCW Pulse Signal)	Rotation direction signal Photocoupler OFF: CCW, photocoupler ON: CW (The motor will rotate in the CCW direction when in 2-pulse input mode.)
		4		
		5	All Windings Off Signal	Turns off the output current to the motor so that the motor shaft can be rotated by external force
		6		
		7	Resolution Select Signal	Switches to the resolution set in DATA1 and DATA2
		8		
		9	Automatic Current Cutback Release Signal	Disables the automatic current cutback function
		10		
	Output	11	Excitation Timing Signal	This signal is output when the excitation sequence is in step "0."
		12		

5 Resolution Setting Switches

Indication	Switch Name	
DATA1	Resolution Setting Switch	Each switch can be set to the desired resolution from the 16 resolution levels.
DATA2		

Tables of each product settings Page \rightarrow D-154

DRL20, DRL28 With the high-resolution motor, the resolution is one-half the values specified below.

R1			R2		
Resolution Setting Switch	Microsteps/	Resolution 1	Resolution Setting Switch	Microsteps/	Resolution 2
DATA1 DATA2			DATA1 DATA2		mm (in.)
0	1	0.002 (0.000079)	0	$\times 2.5$	0.005 (0.00020)
1	2	0.001 (0.000039)	1	$\times 1.25$	0.0025 (0.000098)
2	2.5	0.0008 (0.000031)	2	1.6	0.00125 (0.000049)
3	4	0.0005 (0.00002)	3	2	0.001 (0.000039)
4	5	0.0004 (0.000016)	4	3.2	0.000625 (0.000025)
5	8	0.00025 (0.0000098)	5	4	0.0005 (0.000020)
6	10	0.0002 (0.0000079)	6	6.4	0.0003125 (0.000012)
7	20	0.0001 (0.0000039)	7	10	0.0002 (0.0000079)
8	25	0.00008 (0.0000031)	8	12.8	0.00015625 (0.0000062)
9	40	0.00005 (0.000002)	9	20	0.0001 (0.0000039)
A	50	0.00004 (0.0000016)	A	25.6	0.000078125 (0.0000031)
B	80	0.000025 (0.00000098)	B	40	0.00005 (0.0000020)
C	100	0.00002 (0.00000079)	C	50	0.00004 (0.0000016)
D	125	0.000016 (0.00000063)	D	51.2	0.0000390625 (0.0000015)
E	200	0.00001 (0.00000039)	E	100	0.00002 (0.00000079)
F	250	0.000008 (0.00000031)	F	102.4	0.00001953125 (0.00000077)

DRL42 With the high-resolution motor, the resolution is one-half the values specified below.

R1			R2		
Resolution Setting Switch	Microsteps/	Resolution 1	Resolution Setting Switch	Microsteps/	Resolution 2
DATA1 DATA2	Step 1	mm (in.)	DATA1 DATA2	Step 2	mm (in.)
0	1	0.004 (0.00016)	0	$\times 2.5$	0.01 (0.00039)
1	2	0.002 (0.000079)	1	$\times 1.25$	0.005 (0.00020)
2	2.5	0.0016 (0.000063)	2	1.6	0.0025 (0.000098)
3	4	0.001 (0.000039)	3	2	0.002 (0.000079)
4	5	0.0008 (0.000031)	4	3.2	0.00125 (0.000049)
5	8	0.0005 (0.00002)	5	4	0.001 (0.000039)
6	10	0.0004 (0.000016)	6	6.4	0.000625 (0.000025)
7	20	0.0002 (0.0000079)	7	10	0.0004 (0.000016)
8	25	0.00016 (0.0000063)	8	12.8	0.0003125 (0.000012)
9	40	0.0001 (0.0000039)	9	20	0.0002 (0.0000079)
A	50	0.00008 (0.0000031)	A	25.6	0.00015625 (0.0000062)
B	80	0.00005 (0.000002)	B	40	0.0001 (0.0000039)
C	100	0.00004 (0.0000016)	C	50	0.00008 (0.0000031)
D	125	0.000032 (0.0000013)	D	51.2	0.000078125 (0.0000031)
E	200	0.00002 (0.00000079)	E	100	0.00004 (0.0000016)
F	250	0.000016 (0.00000063)	F	102.4	0.0000390625 (0.0000015)

DRL60 With the high-resolution motor, the resolution is one-half the values specified below.

R1			R2		
$\begin{gathered} \hline \text { Resolution Setting Switch } \\ \hline \text { DATA1 DATA2 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Microsteps/ } \\ \text { Step } 1 \end{array}$	Resolution 1 mm (in.)	$\begin{array}{\|c\|} \hline \text { Resolution Setting Switch } \\ \hline \text { DATA1 DATA2 } \\ \hline \end{array}$	Microsteps/ Step 2	Resolution 2 mm (in.)
0	1	0.008 (0.00031)	0	$\times 2.5$	0.02 (0.00079)
1	2	0.004 (0.00016)	1	$\times 1.25$	0.01(0.00039)
2	2.5	0.0032 (0.00013)	2	1.6	0.005 (0.00020)
3	4	0.002 (0.000079)	3	2	0.004 (0.00016)
4	5	0.0016 (0.000063)	4	3.2	0.0025 (0.000098)
5	8	0.001 (0.000039)	5	4	0.002 (0.000079)
6	10	0.0008 (0.000031)	6	6.4	0.00125 (0.000049)
7	20	0.0004 (0.000016)	7	10	0.0008 (0.000031)
8	25	0.00032 (0.000013)	8	12.8	0.000625 (0.000025)
9	40	0.0002 (0.0000079)	9	20	0.0004 (0.000016)
A	50	0.00016 (0.0000063)	A	25.6	0.0003125 (0.000012)
B	80	0.0001 (0.0000039)	B	40	0.0002 (0.0000079)
C	100	0.00008 (0.0000031)	C	50	0.00016 (0.0000063)
D	125	0.000064 (0.0000025)	D	51.2	0.00015625 (0.0000062)
E	200	0.00004 (0.0000016)	E	100	0.00008 (0.0000031)
F	250	0.000032 (0.0000013)	F	102.4	0.000078125 (0.0000031)

Notes:

- The resolutions are theoretical values.
- The resolution is calculated by dividing the base resolution by the number of microstep.
- The numbers of microsteps that can be specified by the "Resolution Select" signal are limited to those selected in resolution 1 or resolution 2.
- Do not change the "Resolution Select" signal input or resolution select switch while the actuator is operating. It may cause malfunction.

- Connection Diagram

\diamond Input/Output Signal Connection

- Keep the input signal V_{0} between 5 VDC and 24 VDC.

When V_{0} is equal to 5 VDC , the external resistor R_{1} is not necessary. When V_{0} is above 5 VDC , connect R_{1} to keep the current between 10 mA and 20 mA .
Example: When V_{0} is $24 \mathrm{VDC} \quad \mathrm{R}_{1}: 1.5$ to $2.2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ or more

- Keep the output signal voltage V_{0} between 5 VDC and 24 VDC , current 10 mA or less. When V_{0} is above 10 mA , connect R_{2} to keep the current 10 mA or less.

\diamond Power Supply

Use a power supply that can supply sufficient input current.
When power supply capacity is insufficient, a decrease in actuator output can cause the following malfunctions:

- Actuator does not move properly at high-speed (insufficient thrust).
- Slow actuator startup and stopping
\diamond Connecting the Electromagnetic Brake to Power Supply
- Connect the red/white lead from the actuator to the +24 VDC terminal on the DC power supply and the black/white lead to the GND terminal. (The electromagnetic brake leads have polarity. The electromagnetic brake will not operate if the leads are connected in reverse polarity.)
- For the electromagnetic brake, use a power supply of $24 \mathrm{VDC} \pm 5 \%, 0.1 \mathrm{~A}$ or more for DRL42, or 24 VDC $\pm 5 \%, 0.3$ A or more for DRL60.
- To connect the electromagnetic brake to the DC power supply, use a shielded cable of AWG24 or thicker and keep the wiring distance to a minimum. Be sure to use the supplied surge suppressor to protect switch contact and suppress noise.

\diamond Notes on Wiring

- Use twisted-pair wires of AWG24 to 22 and 2 m (6.6 ft .) or less in length for the signal lines.
- Note that as the length of the pulse signal line increases, the maximum transmission frequency decreases. Technical reference $\rightarrow \mathrm{F}-67$
- Use wires of AWG22 for the power supply lines. When assembling the connector, use the hand-operated crimp tool or the crimped driver lead wire set (sold separately). The crimp tool is not provided with the package. It must be purchased separately.
- Signal lines should be kept at least 2 cm (0.79 in .) away from power lines (power supply lines and motor lines). Do not wire the signal lines with the power lines in the same duct or bundle them together.
- Extension of the motor leads should be within 10 m (32.8 ft.)
- If noise generated by the wiring and layout of motor cables and/or power cables causes a problem, try shielding the cables or insert ferrite cores.
- Incorrect connection of DC power input will lead to driver damage. Make sure that the polarity is correct before turning the power on.

- Description of Input/Output Signals

Indication of Input/Output Signal "ON"'OFF"
Input (output) "ON" indicates that the current is sent into the photocoupler (transistor) inside the driver. Input (output)

Photocoupler OFF $\longdiv { O N }$
"OFF" indicates that the current is not sent into the
photocoupler (transistor) inside the driver.
Pulse (CW) and Rotation Direction (CCW) Input Signal \diamond Input Circuit and Sample Connection

Notes:

- Keep the input signal voltage V_{0} between 5 VDC and 24 VDC.
- When V_{0} is equal to 5 VDC , the external resistor R_{1} is not necessary. When V_{0} is above 5 VDC , connect R_{1} to keep the current between 10 mA and 20 mA .
\diamond Pulse Waveform Characteristics

* The shaded area indicates when the photocoupler diode is ON. The actuator moves when the photocoupler state changes from ON to OFF.
The minimum interval time when changing rotation direction $10 \mu \mathrm{~s}$ is shown as a response time of circuit. This value varies greatly depending on the actuator type and load inertia.

\diamond Pulse Input Mode

-1-Pulse Input Mode
The 1-pulse input mode uses "Pulse" and "Rotation Direction" signals. When the "Pulse" input is switched from ON to OFF while the "Rotation Direction" input is ON, the screw shaft moves one step forward. When the "Pulse" input is switched from ON to OFF while the "Rotation Direction" input is OFF, the screw shaft moves one step backward.

- 2-Pulse Input Mode

The 2-pulse input mode uses "CW" and "CCW" pulse signals. When the "CW" input is switched from ON to OFF, the screw shaft moves one step forward. When the "CCW" input is switched from ON to OFF, the screw shaft moves one step backward.

All Windings Off (A.W.OFF)/Resolution Select (C/S)/ Automatic Current Cutback Release (C.D.INH) Input Signal
\diamond Input Circuit and Sample Connection

Note:

- Keep the input signal voltage V_{0} between 5 VDC and 24 VDC . When V_{0} is equal to 5 VDC , the external resistor R_{1} is not necessary. When V_{0} is above 5 VDC , connect R_{1} to keep the current between 10 mA and 20 mA .
\diamond All Windings Off (A.W.OFF) Input Signal Pin No.(5), (6)
- This signal is used when moving the screw shaft for manual positioning.
- When the "All Windings Off" input is turned "ON," the motor current turns off and the actuator loses its holding torque.
- When the "All Windings Off" input is turned "OFF," the motor current turns on and the actuator regains its holding torque.

Note:

- When operating the actuator, this switch must be "OFF."
\diamond Resolution Select (C/S) Input Signal Pin No. (7, (8)
- This signal is used to switch between two resolutions set by resolution setting switch (DATA1, DATA2). When the "Resolution Select" input is in the "photocoupler OFF" state, the resolution set by resolution setting switch DATA1 is selected. When the "Resolution Select" input is in the "photocoupler ON" state, the resolution set by resolution setting switch DATA2 is selected.
Example: Changing the resolution from $0.0004 \mathrm{~mm}(0.000016 \mathrm{in}$.)
(10 mic rosteps $/ \mathrm{step}$) to 0.004 mm (0.00016 in .)
(1 microsteps/step) (DRL42P)

\diamond Automatic Current Cutback Release (C.D.INH) Input Signal Pin No.(9), (10)
- Turning the "Automatic Current Cutback Release" input "ON" will disable the automatic current cutback function when the actuator is at standstill. Turning the "Automatic Current Cutback Release" input "OFF" will enable the automatic current cutback function. When the automatic current cutback function is enabled, the output current to the motor will be automatically reduced within approximately 0.1 second after the pulse input is stopped, thus suppressing heat generation from the motor and driver.

Excitation Timing (TIM.) Output Signal
\diamond Output Circuit and Sample Connection

Note:

- Keep the output signal voltage V_{0} between 5 VDC and 24 VDC , current 10 mA or less. When V_{0} is above 10 mA , connect the external resistor R_{2} as shown in the figure to keep the current 10 mA or less.

This signal is used for precise home detection, etc.
The "Excitation Timing" output comes on every particular amount (see the chart below) of the screw shaft movement.

Model	Travel Amount of the Screw Shaft
DRL20, DRL28P	0.02 mm (0.00079 in.)
DRL42P	0.04 mm (0.0016 in.)
DRL60P	0.08 mm (0.0031 in.)
DRL28M	0.01 mm (0.00039 in.)
DRL42M	0.02 mm (0.00079 in.)
DRL60M	0.04 mm (0.0016 in.)
Movement of the Screw	Forward Stop Backward Stop

- Timing Chart

[^0]
[^0]: * 1 The minimum switching time to change rotation direction (1-pulse input mode), and switching time to change CW, CCW pulse (2-pulse input mode) $10 \mu \mathrm{~s}$ is shown as a response time of circuit. The actuator may need more time.
 *2 Depends on load inertia, load torque and starting frequency.
 *3 Never input a pulse signal immediately after switching the "All Windings Off" signal to the "photocoupler OFF" state. The actuator may not start.
 * 4 Wait at least five seconds before turning on the power again.
 *5 Only for electromagnetic brake type

