Oriental motor

5-phase stepping motor and driver package

CRK Series (FLEX)

Built-in Controller type

USER MANUAL

Thank you for purchasing an Oriental Motor product.

This Operating Manual describes product handling procedures and safety precautions.

- Please read it thoroughly to ensure safe operation.
- Always keep the manual where it is readily available.

1 Introduction

1	Introduction6	
2	Ope	rating Manuals for the CRK Series7
3	Over	view of the product8
4	Syst	em configuration10
5	Safe	ty precautions 11
6	Prec	autions for use13
7	General specifications15	
8	CE Marking16	
9	Preparation17	
	9.1	Checking the product17
	9.2	Combinations of motors and drivers
	9.3	Names and functions of parts19

2 Installation and connection

1	Insta	stallation22		
	1.1	Location for installation22		
	1.2	Installing the motor 22		
	1.3	Installing a load24		
	1.4	Permissible overhung load and permissible thrust load25		
	1.5	Installing the driver27		
	1.6	Installing and wiring in compliance with EMC Directive28		
2	Coni	nection		
	2.1	Connecting the motor		
	2.2	Connecting the connector-type motor		
	2.3	Connecting the electromagnetic brake 32		
	2.4	Connecting the power supply and grounding the driver		
	2.5	Connecting the I/O signals		
	2.6	Connecting the data setter 37		
	2.7	Connecting the encoder		
	2.8	Connecting the connector type encoder 38		
	2.9	Connecting the RS-485 communication cable		
3	Expl	anation of I/O signals40		
	3.1	Input signals		
	3.2	Output signals46		

3 Operation type and setting

1	Adju	stment and setting52
	1.1	Step angle
	1.2	Operating current52
	1.3	Standstill current53
	1.4	Acceleration/deceleration rate
2	Oper	ation54
	2.1	Positioning operation55
		Operation data
		Starting method of positioning operation
		Operation function60
	2.2	Return-to-home operation 64
		Additional function64
		Parameters related to return-to-home operation
		■ Operation sequence of the 3-sensor mode67
		■ Operation sequence of the 2-sensor mode68
		Position preset
	2.3	Continuous operation 69
		Operation data69
		Starting method of continuous operation69
		■ Variable speed operation70
	2.4	Other operation71
		Test operation71
		Stop operation72
3	Oper	ration data73
4	Para	meter74
	4.1	Parameter list74
		Application parameter74
		System parameter75
	4.2	I/O parameter75
	4.3	Motor parameter 76
	4.4	Speed parameter76
	4.5	Return-to-home parameter
	4.6	Alarm/warning parameter77
	4.7	Common parameter78
	4.8	Operation setting parameter78
	4.9	Communication parameter
5	Rela	ted functions
	5.1	Position control
	5.2	Encoder input
	5.3	Misstep detection function
	0.0	How to recover from deviation error81
		 Frow to recover non deviation endition
		 Resolution

4 Method of control via I/O

1	Guio	dance	
2	Оре	ration data	
3	Para	ameter	
	3.1	Parameter list	
		Application parameter	89
		System parameter	89
	3.2	I/O parameter	
	3.3	Motor parameter	
	3.4	Speed parameter	
	3.5	Return-to-home parameter	
	3.6	Alarm/warning parameter	
	3.7	Common parameter	
	3.8	Operation setting parameter	
	3.9	Communication parameter	
4	Timi	ng charts	94

5 Method of control via Modbus RTU (RS-485 communication)

1	Gui	Guidance98			
2	Con	Communication specifications 100			
3	Sett	ing the switches	101		
4	Sett	ing the RS-485 communication	103		
5	Con	Communication mode and			
	com	nmunication timing	104		
	5.1	Communication mode	104		
	5.2	Communication timing	104		
6	Mes	sage	105		
	6.1	Query	105		
	6.2	Response	107		
7	Fun	ction code	109		
	7.1	Reading from a holding register(s)	109		
	7.2	Writing to a holding register	110		
	7.3	Diagnosis	110		
	7.4	Writing to multiple holding registers	111		
	7.5	Control method selection	112		
8	Reg	ister address list	113		
	8.1	Register address types	113		
	8.2	Operation area	114		
	8.3	Maintenance area	117		
	8.4	Monitor area	118		
	8.5	Parameter area	120		
	8.6	Operation data area	123		

9	Grou	Group send 124	
10	Dete	ection of communication errors	126
	10.1	Communication errors	126
	10.2	Alarms and warnings	126
11	Timi	ng charts	127
12	Exar	mple of communication setting	129
	12.1	Positioning operation	129
	12.2	Continuous operation	131
	12.3	Return-to-home operation	132

6 Method of control via industrial network

1	Method of control via CC-Link communication134			
	1.1	Guidance	134	
	1.2	Setting the switches	137	
	1.3	Remote register list	138	
	1.4	Assignment for remote I/O of 6 axes		
		connection mode		
		Assignment list of remote I/O		
		Input/output of remote I/O		
		Details of remote I/O assignment	140	
	1.5	Assignment for remote I/O of 12 axes connection mode	1/1	
		 Assignment list of remote I/O 		
		 Input/output of remote I/O 		
		 Details of remote I/O assignment 		
2	Mot	hod of control via MECHATROLIN		
2		munication		
	2.1	Guidance		
	2.2	Setting the switches	-	
	2.3	I/O field map for the NETC01-M2		
	2.4	I/O field map for the NETC01-M3		
	2.5	Communication format		
	2.0	 Remote I/O input 		
		 Remote I/O output 		
		Remote register input		
		Remote register output		
3	Deta	ails of remote I/O	153	
	3.1	Input signals to the driver	153	
	3.2	Output signals from the driver	153	
4	Con	nmand code list	155	
	4.1	Group function	155	
	4.2	Maintenance command	156	
	4.3	Monitor command	157	
	4.4	Operation data	159	
	4.5	Application parameter	159	
	4.6	System parameter	161	
	4.7	Operation commands	162	

7 Inspection, troubleshooting and remedial actions

1	Inspection16		164
2	Alar	rms and warnings	165
	2.1	Alarms	165
		Alarm reset	165
		Alarm list	166
	2.2	Warnings	
		Warning list	168
3	Troι	ubleshooting and remedial actio	ons 169

8 Appendix

1	Acce	essories (sold separately)	172
		Data setter	172
		Data setting software	172
		Extension cable	172
		Connector lead wire	172
		RS-485 communication cable	172
2	Meth	nod of control via GW protocol	
	Vers	ion 1	173
	2.1	Guidance	173
	2.2	Communication specifications	176
	2.3	Setting the switches	177
	2.4	Communication mode	178
	2.5	Communication timing	179
	2.6	Frame structures	179
	2.7	Control method selection	182
		Setting the communication protocol	
		Selection from I/O control and RS-485	
		communication control	
	2.8	Example of communication setting	
		Positioning operation	
		Return-to-home operation	
		Continuous operation	
	2.9	Command list	
	2.10	Command types	
	2.11	Command details	190
	2.12	Simultaneous send	206
	2.13	Group send	
	2.14	Detection of communication errors	208
		Communication errors	
		Alarms and warnings	
	2.15	Timing charts	209

1 Introduction

This part explains the composition of the operating manuals, the product overview, specifications and safety standards as well as the name and function of each part and others.

Table of contents

1	Intr	Introduction6	
2		erating Manuals for the CSeries7	
3	Ove	erview of the product8	
4	Sys	tem configuration10	
5	Saf	ety precautions 11	
6	Precautions for use13		
7	General specifications 15		
8	CE Marking16		
9	Preparation17		
	9.1	Checking the product 17	
	9.2	Combinations of motors and drivers 17	
	9.3	Names and functions of parts 19	

1 Introduction

Before use

Only qualified personnel should work with the product.

Use the product correctly after thoroughly reading the section "5 Safety precautions" on p.11.

The product described in this manual has been designed and manufactured for use in general industrial machinery, and must not be used for any other purpose. For the driver's power supply, use a DC power supply with reinforced insulation on its primary and secondary sides.

Oriental Motor Co., Ltd. is not responsible for any damage caused through failure to observe this warning.

Hazardous substances

The products do not contain the substances exceeding the restriction values of RoHS Directive (2011/65/EU).

Notation rules

The following term is used in explanation of this manual.

Term	Description
Master controller	This is a generic name for a programmable controller, master module, pulse generator and so on.

2 Operating Manuals for the CRK Series

Operating manuals for the **CRK** Series FLEX built-in controller type are listed below. After reading the following manuals, keep them in a convenient place so that you can reference them at any time.

Applicable product	Type of operating manual	Description of operating manual
CRK Series FL FX	OPERATING MANUAL (supplied with a motor and driver package)	This manual explains the functions as well as the installation method and others for the motor and driver.
Built-in controller type	USER MANUAL (this document)	This manual explains the functions, installation/ connection method and data setting method as well as the operating method and others for the motor and driver. It also explains how to use the MEXE02 .
Data setting software MEXE02	OPERATING MANUAL	This manual explains how to set data using the accessory data setting software MEXE02 (sold separately).
Data setter OPX-2A	OPERATING MANUAL	This manual explains the functions and installation/ connection method as well as data setting method and others for the accessory OPX-2A (sold separately).
	CC-Link compatible NETC01-CC USER MANUAL	
Network converter	MECHATROLINK- II compatible NETC01-M2 USER MANUAL	This manual explains the functions and installation/
Network converter	MECHATROLINK-III compatible NETC01-M3 USER MANUAL	connection method as well as the operating method for the network converter.
	EtherCAT compatible NETC01-ECT OPERATING MANUAL	

3 Overview of the product

This product is a motor and driver package product consisting of a 5-phase stepping motor designed for high torque and low vibration, and a driver with built-in controller function. The driver is compatible with I/O control, Modbus RTU control (RS-485 communication), and FA network control via the network converter. The operation data and parameters can be set using an accessory data setter **OPX-2A** or data setting software

MEXEO2 (both are sold separately), or via RS-485 communication.

Main features

• Three operating patterns

You can perform positioning operation, return-to-home operation and continuous operation. Up to 63 operation data points can be set, and multi-point positioning is also possible.

· Low vibration, low noise

The micro-step driver with smooth drive function achieves low vibration and low noise.

• Supporting Modbus RTU (RS-485 communication)

You can set operation data and parameters or issue operation start/stop commands from the master station. Up to 31 drivers can be connected to one master controller.

• Detection of misstep

If the deviation between the encoder counter value and driver command position reaches or exceeds the set value, a STEPOUT output signal will be output.

• Alarm and warning functions

The driver provides alarms that are designed to protect the driver from overheating, poor connection, misoperation, etc. (protective functions), as well as warnings that are output before the corresponding alarms generate (warning functions).

Accessories

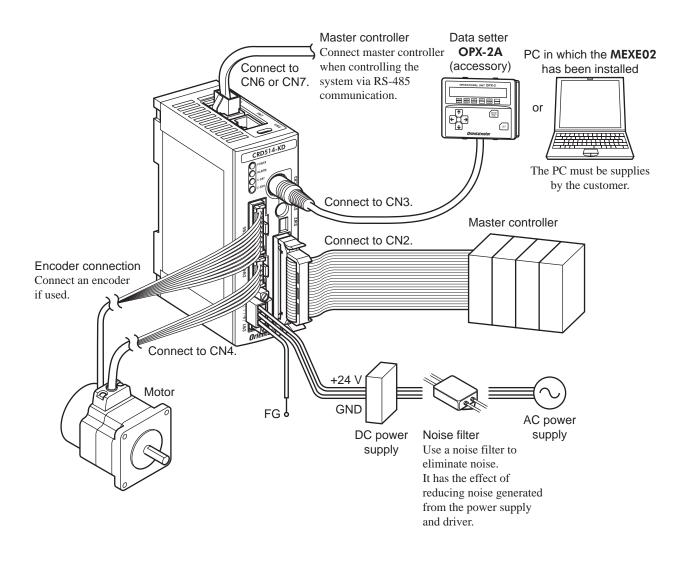
The operation data and parameters can be set using an accessory data setter **OPX-2A** or data setting software **MEXEO2** (both sold separately), or via RS-485 communication. Provide the **OPX-2A** or **MEXEO2** as necessary.

Related products

You can connect the CRK Series FLEX built-in controller via the network converter so as to use in various network.

Network converter	Supported network	
NETC01-CC	CC-Link communication	
NETC01-M2	MECHATROLINK- I communication	
NETC01-M3	MECHATROLINK-III communication	
NETC01-ECT	EtherCAT communication	

Function list


Main functions	
Return-to-home operation [Setting by parameters]	 2-sensor mode Data setting mode (Position preset) 3-sensor mode
Motor operation [Setting by operation data and parameters]	 Positioning operation Operation function Single-motion operation Linked-motion operation Linked-motion operation 2 Continuous operation
Other operations [Setting by parameters]	JOG operation
Support functions	

	Protective function Alarm detection Warning detection	• Return-to-home function Home position offset External sensor signal detection
[Setting by parameters]	I/O function Output function selection Input logic level setting	• Stop operation STOP input action Hardware overtravel Software overtravel
	• Coordination setting Motor resolution Motor rotation direction Encoder setting (Electronic gear)	Motor function setting Operating current Standstill current

External interface

Data setter	 Monitor function Operation data setting Parameter setting 	 Data storing Download/Upload Data initialization 	• Test function Test operation Teaching I/O test
RS-485 communication	 Operation start Operation data setting Parameter setting 	 Monitor function Maintenance function 	on

4 System configuration

5 Safety precautions

The precautions described below are intended to prevent danger or injury to the user and other personnel through safe, correct use of the product. Use the product only after carefully reading and fully understanding these instructions.

Warning	Handling the product without observing the instructions that accompany a "Warning" symbol may result in serious injury or death.
▲ Caution	Handling the product without observing the instructions that accompany a "Caution" symbol may result in injury or property damage.
Note	The items under this heading contain important handling instructions that the user should observe to ensure safe use of the product.

/ Warning

General

- Do not use the product in explosive or corrosive environments, in the presence of flammable gases, locations subjected to splashing water, or near combustibles. Doing so may result in fire, electric shock or injury.
- Assign qualified personnel the task of installing, wiring, operating/controlling, inspecting and troubleshooting the product. Failure to do so may result in fire, electric shock or injury.
- The motor will lose its holding torque when the power supply or motor excitation is turned off. If this product is used in an vertical application, be sure to provide a measure for the position retention of moving parts. Failure to provide such a measure may cause the moving parts to fall, resulting in injury or damage to the equipment.
- Do not use the motor's built-in electromagnetic brake mechanism for stopping or for safety purposes. Using it for purposes other than holding the moving parts and motor in position may cause injury or damage to equipment.
- With certain types of alarms (protective functions), the motor may stop when the alarm generates and the holding torque will be lost as a result. This will result in injury or damage to equipment.
- When an alarm is generated, first remove the cause and then clear the alarm. Continuing the operation without removing the cause of the problem may cause malfunction of the motor and driver, leading to injury or damage to equipment.

Connection

- Keep the driver's input-power voltage within the specified range to avoid fire.
- For the driver's power supply, use a DC power supply with reinforced insulation on its primary and secondary sides. Failure to do so may result in electric shock.
- Connect the cables securely according to the wiring diagram in order to prevent fire.
- Do not forcibly bend, pull or pinch the cable and leads. Doing so may cause fire and electric shock. This will also cause stress to the connecting section and may result in damage to equipment.
- Turn off the power to both the PC and driver before connecting your PC to the driver. Failure to do so may cause electric shock.

Operation

- Turn off the driver power in the event of a power failure, or the motor may suddenly start when the power is restored and may cause injury or damage to equipment.
- Do not turn the excitation to off while the motor is operating. The motor will stop and lose its holding ability, which may result in injury or damage to equipment.
- Configure an interlock circuit using a sequence program so that when a RS-485 communication error occurs, the entire system, including the driver, will operate safety.

Repair, disassembly and modification

• Do not disassemble or modify the motor and driver. This may cause injury. Refer all such internal inspections and repairs to the branch or sales office from which you purchased the product.

/⚠ Caution

General

- Do not use the motor and driver beyond its specifications. Doing so may result in injury or damage to equipment.
- Keep your fingers and objects out of the openings in the motor and driver. Failure to do so may result in fire or injury.
- Do not touch the motor and driver during operation or immediately after stopping. The surface is hot and may cause a skin burn(s).

Transportation

• Do not hold the motor output shaft, motor cable or leads. This may cause damage or injury.

Installation

- Install the motor and driver in an enclosure in order to prevent injury.
- Keep the area around the motor and driver free of combustible materials in order to prevent fire or a skin burn(s).
- Provide a cover over the rotating parts (output shaft) of the motor to prevent injury.

Connection

- The driver's power supply connector (CN1), I/O connector (CN2), data edit connector (CN3) and RS-485 communication connector (CN6/CN7) are not electrically insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the driver and PC to short, damaging both.
- When connecting, check the silk screen of the driver and pay attention to the polarity of the power supply. Reversepolarity connection may cause damage to the driver. The power-supply circuit and the RS-485 communication circuit are not insulated. Therefore, when controlling multiple drivers via RS-485 communication, the reverse polarity of the power supply will cause a short circuit and may result in damage to the drivers.

Operation

- Use a motor and driver only in the specified combination. An incorrect combination may cause a fire.
- Provide an emergency stop device or emergency stop circuit external to the equipment so that the entire equipment will operate safely in the event of a system failure or malfunction. Failure to do so may result in injury.
- Before supplying power to the driver, turn all control inputs to the driver to OFF. Otherwise, the motor may start suddenly at power ON and cause injury or damage to equipment.
- Set the speed and acceleration/deceleration rate at reasonable levels. Otherwise, the motor will misstep and the moving part may move in an unexpected direction, resulting in injury or damage to equipment.
- Do not touch the rotating part (output shaft) during operation. This may cause injury.
- Before moving the motor directly with the hands, confirm that the power supply or motor excitation is turned off and that motor current is cut off. Failure not to do so may result in injury.
- The motor surface temperature may exceed 70 °C (158 °F) even under normal operating conditions. If the operator is allowed to approach the running motor, attach a warning label as shown below in a conspicuous position. Failure to do so may result in skin burn(s).

Warning label

- Immediately when trouble has occurred, stop running and turn off the driver power. Failure to do so may result in fire or injury.
- Static electricity may cause the driver to malfunction or suffer damage. While the driver is receiving power, do not touch the driver. Use only an insulated screwdriver to adjust the driver's switches.

Disposal

• To dispose of the motor and driver, disassemble it into parts and components as much as possible and dispose of individual parts/components as industrial waste. If you have any question, contact your nearest Oriental Motor branch or sales office.

6 Precautions for use

This section covers limitations and requirements the user should consider when using the product.

 Conduct the insulation resistance measurement or withstand voltage test separately on the motor and the driver.

Conducting the insulation resistance measurement or withstand voltage test with the motor and driver connected may result in injury or damage to equipment.

• Do not apply strong impact on the motor output shaft.

If you are using a motor with encoder, an optical encoder is housed in the motor. To prevent damage to the encoder, handle the motor with care and avoid strong impact to the motor output shaft when transporting the motor or installing the load.

Do not apply an overhung load and thrust load in excess of the specified permissible limit

Operating it under an excessive overhung load and thrust load may damage the motor bearings (ball bearings). Be sure to operate the motor within the specified permissible limit of overhung load and thrust load. See p.25 for details.

• Motor case temperature

- The motor case surface temperature may exceed 100 °C (212 °F) under certain conditions (ambient temperature, operating speed, duty cycle, etc.). Keeping the surface temperature of the motor case below 100 °C (212 °F) will also maximize the life of the motor bearings (ball bearings).
- Use the geared type motor in a condition where the gear case temperature does not exceed 70 °C (158 °F), in order to prevent deterioration of grease and parts in the gear case.
- When the motor with encoder is used, make sure the temperature of the encoder case does not exceed 80 $^{\circ}$ C (176 $^{\circ}$ F).

Holding torque at standstill

The motor holding torque is reduced by the current cutback function of the driver at motor standstill. When operating the motor, take account of the motor torque drop at the time of stopping.

Do not use the electromagnetic brake to reduce speed or as a safety brake.

Do not use the electromagnetic brake as a means to decelerate and stop the motor. The brake hub of the electromagnetic brake will wear significantly and the braking force will drop if used to stop the motor. The electromagnetic brake is a power-off activated type. This means that although it helps maintain the position of the load in the event of power outage, etc., this brake cannot securely hold the load in place. Accordingly, do not use the electromagnetic brake as a safety brake. To use the electromagnetic brake to hold the load in place, do so after the motor has stopped.

Note on connecting a power supply whose positive terminal is grounded

The driver's power supply connector (CN1), I/O connector (CN2), data edit connector (CN3) and RS-485 communication connector (CN6/CN7) are not electrically insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the driver and PC to short, damaging both.

• Preventing electrical noise

See "1.6 Installing and wiring in compliance with EMC Directive" on p.28 for measures with regard to noise.

Regeneration

The overvoltage alarm will generate depending on the operating condition. When an alarm is generated, review the operating conditions.

Saving data to the NV memory

Do not turn off the main power supply while data is being written to the NV memory and 5 seconds after the completion of a data write. Doing so may abort the data write and cause a EEPROM error alarm to generate. The NV memory can be rewritten approx. 100,000 times.

• Geared type

Rotating direction of the gear output shaft

The relationship between the rotating direction of the motor shaft and that of the gear output shaft changes as follows, depending on the gear type and gear ratio.

Type of gear		Rotating direction (relative to the motor rotating direction)				
	Gear ratio	Frame size [mm (in.)]				
	Gear Tallo	□20 (0.79) Ø22 (0.87)	□28 (1.10) □30 (1.18)	□42 (1.65)	□60 (2.36)	
TH geared	3.6, 7.2, 10	-	Opposite direction	Same direction		
	20, 30	-	Same direction	Opposite direction		
PS geared PN geared	All gear ratio	Same direction				
Harmonic geared	All gear ratio	Opposite direction				

Grease of geared motor

On rare occasions, a small amount of grease may ooze out from the geared motor. If there is concern over possible environmental damage resulting from the leakage of grease, check for grease stains during regular inspections. Alternatively, install an oil pan or other device to prevent leakage from causing further damage. Oil leakage may lead to problems in the customer's equipment or products.

7 General specifications

Motor

• Degree of protection

High-resolution type, High-torque type, High-torque type with encoder, Geared type (CRK513P , CRK523P)	
Standard type, Standard type with electromagnetic brake, Standard type with encoder, Geared type (CRK543, CRK544, CRK564, CRK566)	

• Operation environment

Ambient temperature	-10 to +50 °C (+14 to +122 °F) PS geared type of Ø22 mm (Ø0.87 in.): 0 to +50 °C (+32 to +122 °F) Harmonic geared type: 0 to +40 °C (+32 to +104 °F)	
	Non-freezing	
Humidity	85% or less (non-condensing)	
Altitude	Up to 1000 m (3300 ft.) above sea level	
Surrounding atmosphere	No corrosive gas, dust, water or oil	

• Storage environment, Shipping environment

Ambient temperature	-20 to +60 °C (-4 to +140 °F) (non-freezing)
Humidity	85% or less (non-condensing)
Altitude	Up to 3000 m (10000 ft.) above sea level
Surrounding atmosphere	No corrosive gas, dust, water or oil

Insulation resistance

 $100\ \text{M}\Omega$ or more when 500 VDC megger is applied between the windings and case.

• Dielectric strength

Sufficient to withstand the following between the windings and case for 1 minute. • PK513P, PK52□PM, PK52□P, PK54□PM, PK54□P: 0.5 kVAC 50/60 Hz

- PK513P, PK52LPM, PK52LP, PK54L
 PK54L: 1.0 kVAC 50/60 Hz
- PK52 HPM, PK52 HP, PK56 PM, PK56 : 1.5 kVAC 50/60 Hz

Driver

• Degree of protection

IP20

• Operation environment

Ambient temperature	0 to +40 °C (+32 to +104 °F) (non-freezing)
Humidity	85% or less (non-condensing)
Altitude	Up to 1000 m (3300 ft.) above sea level
Surrounding atmosphere	No corrosive gas, dust, water or oil

• Storage environment, Shipping environment

Ambient temperature	-25 to +70 °C (-13 to +158 °F) (non-freezing)
Humidity	85% or less (non-condensing)
Altitude	Up to 3000 m (10000 ft.) above sea level
Surrounding atmosphere	No corrosive gas, dust, water or oil

Insulation resistance

100 M Ω or more when 500 VDC megger is applied between the FG terminal and power supply terminal.

Dielectric strength

Sufficient to withstand 1.0 kVAC at 50 Hz or 60 Hz applied between the FG terminal and power supply terminal for 1 minute.

8 CE Marking

Because the input power supply voltage of this product is 24 VDC, it is not subject to the Low Voltage Directive (LVD). However, install and connect this product as follows.

The product is a type with machinery incorporated, so it should be installed within an enclosure.

For the driver's power supply, use a DC power supply with reinforced insulation on its primary and secondary sides.

Installation conditions

	Motor		Driver
Overvoltage category	I		I
Pollution degree	2		2
Degree of protection	 High-resolution type High-torque type High-torque type with encoder Geared type (CRK513P and CRK523P) Standard type Standard type with encoder Standard type with electromagnetic brake 	IP20	IP20
	• Geared type (CRK543, CRK544, CRK564 and CRK566)		

EMC Directive

This product has received EMC measures under the conditions specified in "Example of motor and driver installation and wiring" on p.29. Be sure to conduct EMC measures with the product assembled in your equipment by referring to "1.6 Installing and wiring in compliance with EMC Directive" on p.28.

Applicable standards

EMI: EN 61000-6-4, EN 55011 group 1 class A EMS: EN 61000-6-2

9 Preparation

This chapter explains the items you should check, as well as the name and function of each part.

9.1 Checking the product

Verify that the items listed below are included. Report any missing or damaged items to the branch or sales office from which you purchased the product.

Verify the model number of the purchased unit against the number shown on the package label.

Check the model number of the motor and driver against the number shown on the nameplate.

The unit models and corresponding motor/driver combinations are listed on p.17.

- Items supplied with all unit models
 - Motor.....1 unit

 - Cable/CN4 connector assembly [0.6 m (2 ft.), 40 pins]1 pc.
- Item supplied with motors with electromagnetic brake
 - Varistor.....1 pc.
- Items supplied with connector-type motor units

Applicable product: High-resolution type, high-torque type, high-torque type with encoder, Geared type (**CRK513P**, **CRK523P**)

- Cable/motor connector assembly [0.6 m (2 ft.), 5 pins]1 pc.
- Items supplied with motor units with encoder [□20 mm (0.79 in.), □28 mm (1.10 in.)] Applicable product: High-torque type with encoder (**CRK513PRKD2**, **CRK52**□**PRKD2**)
 - Cable/encoder connector assembly [0.6 m (2 ft.), 8 pins]1 pc.
 - Cable/CN5 connector assembly [0.6 m (2 ft.), 9 pins]1 pc.
- Items supplied with motor units with encoder [□42 mm (1.65 in.), □60 mm (2.36 in.)]

Applicable product: High-torque type with encoder (**CRK54PRKD**), Standard type with encoder (**CRK54RKD**, **CRK56RKD**)

• Cable/CN5 connector assembly [0.6 m (2 ft.), 9 pins]1 pc.

9.2 Combinations of motors and drivers

- \Box indicates **A** (single shaft) or **B** (double shaft)
- Indicates a number of the gear ratio.

High-resolution type

Model	Motor model	Driver model
CRK523PM□KD	PK523PM□	
CRK524PM□KD	PK524PM□	CRD503-KD
CRK525PM□KD	PK525PM□	
CRK523HPM□KD	PK523HPM□	
CRK524HPM□KD	PK524HPM□	CRD507H-KD
CRK525HPM□KD	PK525HPM□	
CRK544PM□KD	PK544PM□	
CRK546PM□KD	PK546PM□	CRD507-KD
CRK564PM□KD	PK564PM□	
CRK566PM□KD	PK566PM□	CRD514-KD
CRK569PM⊡KD	PK569PM□	
	CRK523PM□KD CRK524PM□KD CRK525PM□KD CRK523HPM□KD CRK524HPM□KD CRK525HPM□KD CRK544PM□KD CRK564PM□KD CRK566PM□KD	CRK523PM□KD PK523PM□ CRK524PM□KD PK524PM□ CRK525PM□KD PK525PM□ CRK523HPM□KD PK523HPM□ CRK524HPM□KD PK524HPM□ CRK525HPM□KD PK525HPM□ CRK525HPM□KD PK525HPM□ CRK525HPM□KD PK525HPM□ CRK544PM□KD PK544PM□ CRK564PM□KD PK564PM□ CRK566PM□KD PK566PM□

■ High-torque type

Frame size [mm (in.)]	Model	Motor model	Driver model
□20 (0.79)	CRK513P□KD	PK513P□	
	CRK523P□KD	PK523P□	CRD503-KD
□28 (1.10)	CRK525P□KD	PK525P□	
□26 (1.10)	CRK523HP□KD	PK523HP□	CRD507H-KD
	CRK525HP⊡KD	PK525HP□	
□42 (1.65)	CRK544P□KD	PK544P□	
	CRK546P□KD	PK546P□	CRD507-KD

■ High-torque type with encoder

Model	Motor model	Driver model
CRK513PRKD2	PK513PA-R2GL	
CRK523PRKD2	PK523PA-R2GL	CRD503-KD
CRK525PRKD2	PK525PA-R2GL]
CRK523HPRKD2	PK523HPA-R2GL	CRD507H-KD
CRK525HPRKD2	PK525HPA-R2GL	
CRK544PRKD	PK544PA-R23L	
CRK546PRKD	PK546PA-R23L	CRD507-KD
	Model CRK513PRKD2 CRK523PRKD2 CRK525PRKD2 CRK523HPRKD2 CRK525HPRKD2 CRK544PRKD	Model Motor model CRK513PRKD2 PK513PA-R2GL CRK523PRKD2 PK523PA-R2GL CRK525PRKD2 PK525PA-R2GL CRK523HPRKD2 PK523HPA-R2GL CRK525HPRKD2 PK525HPA-R2GL CRK525HPRKD2 PK525HPA-R2GL CRK525HPRKD2 PK525HPA-R2GL CRK544PRKD PK544PA-R23L

■ Standard type with encoder

, , , , , , , , , , , , , , , , , , ,			
Frame size [mm (in.)]	Model	Motor model	Driver model
□42 (1.65)	CRK543RKD	PK543AW-R23L	
	CRK544RKD	PK544AW-R23L	CRD507-KD
	CRK545RKD	PK545AW-R23L	
□60 (2.36)	CRK564RKD	PK564AW-R23L	
	CRK566RKD	PK566AW-R23L	CRD514-KD
	CRK569RKD	PK569AW-R23L	

Standard type with electromagnetic brake

Frame size [mm (in.)]	Model	Motor model	Driver model
□42 (1.65)	CRK543AMKD	PK543AWM	
	CRK544AMKD	PK544AWM	CRD507-KD
	CRK545AMKD	PK545AWM	
	CRK564AMKD	PK564AWM	
□60 (2.36)	CRK566AMKD	PK566AWM	CRD514-KD
	CRK569AMKD	PK569AWM	

■ Standard type

Frame size [mm (in.)]	Model	Motor model	Driver model
	CRK543□KD	PK543□W	
□42 (1.65)	CRK544□KD	PK544□W	CRD507-KD
	CRK545⊡KD	PK545□W	
	CRK564□KD	PK564□W	
□60 (2.36)	CRK566□KD	PK566□W	CRD514-KD
	CRK569□KD	PK569□W	

■ TH geared type

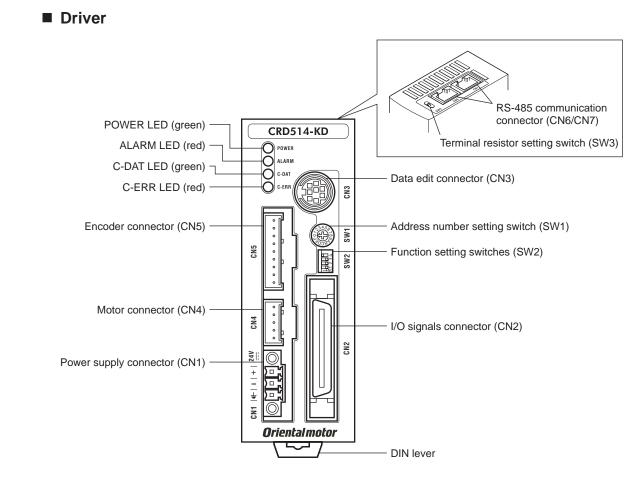
-			
Frame size [mm (in.)]	Model	Motor model	Driver model
□28 (1.10)	CRK523PAKD-T■	PK523PA-T■	CRD503-KD
□42 (1.65)	CRK543AKD-T■	PK543AW-T■	CRD507-KD
□60 (2.36)	CRK564AKD-T∎	PK564AW-T■	CRD514-KD

■ PS geared type

Frame size [mm (in.)]	Model	Motor model	Driver model	
Ø22 (0.87)	CRK513PAKD-PS■	PK513PA-PS■		
□28 (1.10)	CRK523PAKD-PS■	PK523PA-PS■	CRD503-KD	
□42 (1.65)	CRK543AKD-PS∎	PK543AW-PS■	CRD507-KD	
Ш42 (1.05)	CRK545AKD-PS∎	PK545AW-PS■	CRD507-RD	
□60 (2.36)	CRK564AKD-PS■	PK564AW-PS■	CRD514-KD	
	CRK566AKD-PS■	PK566AW-PS■	CKD314-KD	

■ PN geared type

0	<i></i>		
Frame size [mm (in.)]	Model	Motor model	Driver model
□28 (1.10)	CRK523PAKD-N■	PK523PA-N∎	CRD503-KD
□42 (1.65)	CRK544AKD-N■	PK544AW-N■	CRD507-KD
□60 (2.36)	CRK564AKD-N■	PK564AW-N■	CRD514-KD
Шоо (2.30)	CRK566AKD-N∎	PK566AW-N■	


■ Harmonic geared type

Frame size [mm (in.)]	Model	Motor model	Driver model
□20 (0.79)	CRK513PAKD-H■	PK513PA-H■S	CRD503-KD
□30 (1.18)	CRK523PAKD-H■	PK523HPA-H■S	CRD507H-KD
□42 (1.65)	CRK543AKD-H■	PK543AW-H∎S	CRD507-KD
□60 (2.36)	CRK564AKD-H■	PK564AW-H∎S	CRD514-KD

9.3 Names and functions of parts ■ Motor (Example: PK56)

• Standard type • Standard type with encoder Mounting hole (4 locations) Output shaft Pilot Pilot Motor cable Motor leads (5 wires)

1 Introduction

Name	Description	Reference
POWER LED (green)	This LED is lit while the main power is input.	-
ALARM LED (red)	This LED will blink when an alarm generates (a protective function is triggered). You can check the generated alarm by counting the number of times the LED blinks.	p.165
C-DAT LED (green)	This LED will blink or illuminate steadily when the driver is communicating with the master station properly via RS-485 communication.	-
C-ERR LED (red)	This LED will illuminate when a RS-485 communication error occurs with the master station.	-
Address number setting switch (SW1)	Use this switch when controlling the system via RS-485 communication. Set the address number of RS-485 communication. (Factory setting: 0)	
	Use this switches when controlling the system via RS-485 communication.	
Function setting switches (SW2)	Nos.1 to 3: Set the baud rate of RS-485 communication. (Factory setting: ON)	p.101
	No.4: Set the connection destination of RS-485 communication. (Factory setting: OFF)	
Terminal resistor setting switch (SW3)	Use this switch when controlling the system via RS-485 communication. Set the terminal resistor (120 Ω) of RS-485 communication. (Factory setting: OFF)	p.102
Power supply connector (CN1)	Connect main power supply (+24 VDC) using the supplied connector.	p.33
I/O signals connector (CN2)	Connect I/O signals using the supplied cable/connector assembly.	p.34
Data edit connector (CN3)	Connect a PC in which the MEXE02 has been installed, or the OPX-2A .	p.37
Motor connector (CN4)	Connect the motor.	p.30 p.31
Encoder connector (CN5)	Connect the encoder.	p.37
RS-485 communication connector (CN6/CN7)	Connect the RS-485 communication cable.	p.39

1 Introduction

2 Installation and connection

This part explains the installation method of the product, the mounting method of a load and the connection method as well as I/O signals.

3

Table of contents

1	Inst	allation 22
	1.1	Location for installation22
	1.2	Installing the motor22
	1.3	Installing a load24
	1.4	Permissible overhung load and
		permissible thrust load25
	1.5	Installing the driver 27
	1.6	Installing and wiring in compliance with
		EMC Directive
2	Con	nection
	2.1	Connecting the motor
	2.2	Connecting the connector-type motor 31
	2.3	Connecting the electromagnetic brake 32

2.4	Connecting the power supply and	
	grounding the driver3	3
2.5	Connecting the I/O signals 34	4
2.6	Connecting the data setter	7
2.7	Connecting the encoder	7
2.8	Connecting the connector type	
	encoder	8
2.9	Connecting the RS-485 communication	
	cable3	9
Ехр	lanation of I/O signals	0
3.1	Input signals4	0
3.2	Output signals4	6

1 Installation

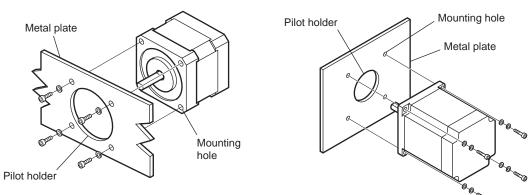
This chapter explains the installation location and installation method of the motor and driver. Also covered in this section are the installation and wiring methods that are in compliance with the relevant EMC Directives.

1.1 Location for installation

The driver is designed and manufactured for installation in equipment.

Install it in a well-ventilated location that provides easy access for inspection. The location must also satisfy the following conditions:

- Inside an enclosure that is installed indoors (provide vent holes)
- Operating ambient temperature
 - Motor: -10 to +50 °C (+14 to +122 °F) (non-freezing) **PS** geared type of Ø22 mm (Ø0.87 in.): 0 to +50 °C (+32 to +122 °F) (non-freezing) Harmonic geared type: 0 to +40 °C (+32 to +104 °F) (non-freezing) Driver: 0 to +40 °C (+32 to +104 °F) (non-freezing)
- Operating ambient humidity 85% or less (non-condensing)
- Area that is free of explosive atmosphere or toxic gas (such as sulfuric gas) or liquid
- Area not exposed to direct sun
- Area free of excessive amount of dust, iron particles or the like
- Area not subject to splashing water (rain, water droplets), oil (oil droplets) or other liquids
- Area free of excessive salt
- Area not subject to continuous vibration or excessive shocks
- Area free of excessive electromagnetic noise (from welders, power machinery, etc.)
- Area free of radioactive materials, magnetic fields or vacuum
- Up to 1000 m (3300 ft.) above sea level


1.2 Installing the motor

The motor can be installed in any direction.

Install the motor onto an appropriate flat metal plate having excellent vibration resistance and heat conductivity. When installing the motor, secure it with four bolts (not supplied) through the four mounting holes. Do not leave a gap between the motor and metal plate.

Installation method A

Installation method B

Note

• Insert the pilot located on the motor's installation surface into the mounting plate's.

• When installing the motor, do not apply strong force using a hammer or other tools. Doing so may cause damage to the motor.

Screw size, tightening torque and installation method

■ within the model name represents the gear ratio.

Frame size	_	Motor	model	Nominal	Tightening	Effective	Installatio	
[mm (in.)]	Туре	Single shaft	Double shaft	size	torque [N⋅m (oz-in)]	depth of bolt [mm (in.)]	method	
	High-torque type	PK513PA	PK513PB					
□20 (0.79)	High-torque type with encoder	PK513PA-R2GL	-	M2	0.25 (35)	2.5 (0.098)	А	
Ø22 (0.87)	Harmonic geared type	PK513PA-H∎S	PK513PB-H∎S	M2	0.25 (35)	5 (0.197)		
Ø22 (0.87)	PS geared type	PK513PA-PS■	PK513PB-PS∎	M2	0.25 (35)	3.5 (0.138)	А	
	High-resolution type	PK523PMA PK524PMA PK525PMA PK523HPMA PK524HPMA PK525HPMA	PK523PMB PK524PMB PK525PMB PK523HPMB PK524HPMB PK525HPMB					
□28 (1.10)	High-torque type	PK523PA PK525PA PK523HPA PK525HPA	PK523PB PK525PB PK523HPB PK525HPB	M2.5	0.5 (71)	2.5 (0.098)	A	
	High-torque type with encoder	PK523PA-R2GL PK525PA-R2GL PK523HPA-R2GL PK525HPA-R2GL	-					
	TH geared type	PK523PA-T∎	PK523PB-T∎	M2.5	0.5 (71)	4 (0.157)		
	PS geared type	PK523PA-PS∎	PK523PB-PS∎	M3	1 (142)	6 (0.236)		
	PN geared type	PK523PA-N■	PK523PB-N■		- (172)	0 (0.200)		
□30 (1.18)	Harmonic geared type	PK523HPA-H∎S	PK523HPB-H∎S	М3	1 (142)	6 (0.236)	А	
	High-resolution type	PK544PMA PK546PMA	PK544PMB PK546PMB				А	
	High-torque type	PK544PA PK546PA	PK544PB PK546PB					
	High-torque type with encoder	PK544PA-R23L PK546PA-R23L	-			4.5 (0.177)		
	Standard type with encoder	PK543AW-R23L PK544AW-R23L PK545AW-R23L	-	M3	1 (142)			
□42 (1.65)	Standard type with electro- magnetic brake	PK543AWM PK544AWM PK545AWM	-					
	Standard type	PK543AW PK544AW PK545AW	PK543BW PK544BW PK545BW					
	TH geared type	PK543AW-T∎	PK543BW-T∎					
	PS geared type	PK543AW-PS■ PK545AW-PS■	PK543BW-PS■ PK545BW-PS■	M4	2 (280)	8 (0.315)		
	PN geared type	PK544AW-N∎	PK544BW-N∎		2 (200)			
	Harmonic geared type	PK543AW-H∎S	PK543BW-H∎S					
	High-resolution type	PK564PMA PK566PMA PK569PMA	PK564PMB PK566PMB PK569PMB					
	Standard type with encoder	PK564AW-R23L PK566AW-R23L PK569AW-R23L	_		2 (220)	(280) –	В	
□60 (2.36)	Standard type with electro- magnetic brake	PK564AWM PK566AWM PK569AWM	-	M4	∠ (∠80)			
	Standard type	PK564AW PK566AW PK569AW	PK564BW PK566BW PK569BW					

Frame size	Туре	Motor model		Nominal	Tightening torque	Effective depth of bolt	Installation
[mm (in.)]		Single shaft	Double shaft	size	[N⋅m (oz-in)]	[mm (in.)]	method
□60 (2.36)	TH geared type	PK564AW-T∎	PK564BW-T∎	M4	2 (280)	8 (0.315)	
	PS geared type	PK564AW-PS∎ PK566AW-PS■	PK564BW-PS∎ PK566BW-PS■			2.5 (350) 10 (0.394)	A
	PN geared type	PK564AW-N■ PK566AW-N■	PK564BW-N■ PK566BW-N■	M5 2.5 (3	2.5 (350)		
	Harmonic geared type	PK564AW-H∎S	PK564BW-H∎S				

1.3 Installing a load

When connecting a load to the motor, align the centers of the motor's output shaft and load shaft. Also, keep the overhung load and thrust load to the permissible values or below.

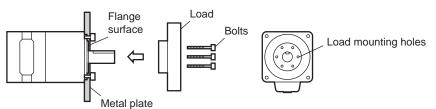
- Note When coupling the load to the motor, pay attention to the centering of the shafts, belt tension, parallelism of the pulleys, and so on. Securely tighten the coupling and pulley set screws.
 - Be careful not to damage the output shaft or bearings (ball bearing) when installing a coupling or pulley to the motor's output shaft.
 - Do not modify or machine the motor's output shaft. Doing so may damage the bearings and destroy the motor.
 - If you are using a motor with encoder, an optical encoder is housed in the motor. To prevent damage to the encoder, handle the motor with care and avoid strong impact to the motor output shaft when transporting the motor or installing the load.
- Using a coupling

Align the centers of the motor's output shaft and load shaft in a straight line.

Using a belt drive

Align the motor's output shaft and load shaft in parallel with each other, and position both pulleys so that the line connecting their centers is at a right angle to the shafts.

• Using a gear drive


Align the motor's output shaft and gear shaft in parallel with each other, and let the gears mesh at the center of the tooth widths.

• Using a fastening key (geared motor)

Connect a load to the gear output shaft having a key groove, first provide a key groove on the load and fix the load with the gear output shaft using the supplied key.

• Installing on the flange surface (harmonic geared type)

With a harmonic geared type, a load can be installed directly to the gear using the load mounting holes provided on the flange surface.

Motor model	Nominal size	Number of bolts	Tightening torque [N⋅m (oz-in)]	Effective depth of bolt [mm (in.)]
PK513	M2	3	0.35 (49)	3 (0.118)
PK523	M3	4	1.4 (198)	4 (0.157)
PK543	M3	6	1.4 (198)	5 (0.20)
PK564	M4	6	2.5 (350)	6 (0.236)

Note

• When installing a load on the flange surface, the load cannot also be affixed using the keyway (or milled surface) in the output shaft.

• Design an appropriate installation layout so that the load will not contact the metal plate or bolts used for installing the motor.

1.4 Permissible overhung load and permissible thrust load

The overhung load and the thrust load on the motor's output shaft must be kept under the permissible values listed below.

■ within the model name represents the gear ratio.

Note Failure due to fatigue may occur when the motor bearings and output shaft are subject to repeated loading by an overhung or thrust load that is in excess of the permissible limit.

Frame size	_	Motor	model		nissible once from	the tip c	of motor		Permissible
[mm (in.)]	Туре		[shaft [mm (in.)] 0 5 10 15			thrust load		
		Single shaft	Double shaft	0(0)	5 (0.20)	10 (0.39)	15 (0.59)	20 (0.79)	[N (lb.)]
	High-torque type	PK513PA	PK513PB	12	15				0.05 (0.11) *
□20 (0.79)	High-torque type with encoder	PK513PA-R2GL	-	(2.7)	(3.3)	-	-	-	0.06 (0.13) -
	Harmonic geared type	PK513PA-H∎S	PK513PB-H∎S	50 (11.2)	75 (16.8)	-	-	-	60 (13.5)
Ø22 (0.87)	PS geared type	PK513PA-PS∎	PK513PB-PS∎	20 (4.5)	30 (6.7)	-	-	-	20 (4.5)
		PK523PMA PK523HPMA	PK523PMB PK523HPMB						0.11 (0.24)
	High-resolution type	PK524PMA PK524HPMA	PK524PMB PK524HPMB	-					0.15 (0.33)
		PK525PMA PK525HPMA	PK525PMB PK525HPMB	-					0.2 (0.44) *
		PK523PA PK523HPA	PK523PB PK523HPB	25 (5.6)	34 (7.6)	52 (11.7)	_	-	0.11 (0.24)
□28 (1.10)	High-torque type	PK525PA PK525HPA	PK525PB PK525HPB						0.2 (0.44) *
	High-torque type with encoder	PK523PA-R2GL PK523HPA-R2GL	-						0.12 (0.26)
		PK525PA-R2GL PK525HPA-R2GL	-						0.21 (0.46)
	TH geared type	PK523PA-T■	PK523PB-T■	15 (3.3)	17 (3.8)	20 (4.5)	23 (18)	-	10 (2.2)
	PS geared type	PK523PA-PS∎	PK523PB-PS∎	45	60	80	100	_	20 (4.5)
	PN geared type	PK523PA-N∎	PK523PB-N■	(10.1)	(13.5)	(18)	(22)		20 (4.3)
□30 (1.18)	Harmonic geared type	PK523HPA-H∎S	PK523HPB-H■S	110 (24)	135 (30)	175 (39)	250 (56)	-	140 (31)
	High-resolution	PK544PMA	PK544PMB						0.3 (0.66) *
	type	PK546PMA	PK546PMB						0.5 (1.1) *
	High-torque type	PK544PA	PK544PB						0.3 (0.66)
	I lightiorque type	PK546PA	PK546PB]					0.5 (1.1) *
	High-torque type	PK544PA-R23L	_						0.36 (0.81)
	with encoder	PK546PA-R23L	_						0.56 (1.2)
		PK543AW-R23L	-						0.31 (0.69)
	Standard type with encoder	PK544AW-R23L	-	20 (4.5)	25 (5.6)	34		-	0.36 (0.81)
□42 (1.65)		PK545AW-R23L	-	(4.0)	(0.0)	(7.6)			0.46 (1.0)
	Standard type	PK543AWM	-						0.37 (0.81)
	with electro-	PK544AWM	-						0.42 (0.92)
	magnetic brake	PK545AWM	_]					0.52 (1.14)
		PK543AW	PK543BW]					0.25 (0.55)
	Standard type	PK544AW	PK544BW]					0.3 (0.66)
		PK545AW	PK545BW	1					0.4 (0.88)
	TH geared type	PK543AW-T∎	PK543BW-T∎	10 (2.2)	14 (3.1)	20 (4.5)	30 (6.7)	-	15 (3.3)

* indicated the motor's mass [kg (lb.)]. The thrust load should not exceed the motor's mass.

Fromo oizo		Motor	model	Permissible overhung load [N (lb.)] Distance from the tip of motor output					Permissible
Frame size [mm (in.)]	Туре			shaft [mm (in.)]					thrust load
[()]		Single shaft	Double shaft	0 (0)	5 (0.20)	10 (0.39)	15 (0.59)	20 (0.79)	[N (lb.)]
	PS geared type	PK543AW-PS∎	PK543BW-PS∎	109 (24)	127 (28)	150 (33)	184 (41)	-	50 (11.2)
D 42 (1.65)	rs geared type	PK545AW-PS∎	PK545BW-PS∎	73 (16.4)	84 (18.9)	100 (22)	123 (27)	-	50 (11.2)
□42 (1.65)	PN geared type	PK544AW-N∎	PK544BW-N■	100 (22)	120 (27)	150 (33)	190 (42)	-	100 (22)
	Harmonic geared type	PK543AW-H∎S	PK543BW-H∎S	180 (40)	220 (49)	270 (60)	360 (81)	510 (114)	220 (49)
		PK564PMA	PK564PMB		100	100	100	070	0.65 (1.43) *
	High-resolution type	PK566PMA	PK566PMB	90 (20)	100 (22)	130 (29)	180 (40)	270 (60)	0.87 (1.91) *
	lype	PK569PMA	PK569PMB	(20)	(22)	(29)	(40)	(00)	1.5 (3.3) *
		PK564AW-R23L	-					190 (42)	0.7 (1.57) *
	Standard type with encoder	PK566AW-R23L	_	-					0.9 (2.02) *
		PK569AW-R23L	_	63 (14.1)					1.4 (3.1) *
	Standard type with electro- magnetic brake	PK564AWM	_						0.9 (2) *
		PK566AWM	_		75				1.1 (2.4) *
		PK569AWM	_		(16.8)				1.6 (3.5) *
	Standard type	PK564AW	PK564BW						0.6 (1.3) *
		PK566AW	PK566BW						0.8 (1.76) *
		PK569AW	PK569BW						1.3 (2.9) *
	TH geared type	PK564AW-T	PK564BW-T	70 (15.7)	80 (18)	100 (22)	120 (27)	150 (33)	40 (9)
□60 (2.36)		PK564AW-PS25 PK564AW-PS36 PK564AW-PS50	PK564BW-PS25 PK564BW-PS36 PK564BW-PS50	330 (74)	360 (81)	400 (90)	450 (101)	520 (117)	
	PS geared type	PK566AW-PS5	PK566BW-PS5	200 (45)	220 (49)	250 (56)	280 (63)	320 (72)	
		PK566AW-PS7 PK566AW-PS10	PK566BW-PS7 PK566BW-PS10	250 (56)	270 (60)	300 (67)	340 (76)	390 (87)	100 (22)
		PK564AW-N25 PK564AW-N36 PK564AW-N50	PK564BW-N25 PK564BW-N36 PK564BW-N50	330 (74)	360 (81)	400 (90)	450 (101)	520 (117)	100 (22)
	PN geared type	PK566AW-N5	PK566BW-N5	200 (45)	220 (49)	250 (56)	280 (63)	320 (72)	
		PK566AW-N7.2 PK566AW-N10	PK566BW-N7.2 PK566BW-N10	250 (56)	270 (60)	300 (67)	340 (76)	390 (87)	
	Harmonic geared type	PK564AW-H∎S	PK564BW-H∎S	320 (72)	370 (83)	440 (99)	550 (123)	720 (162)	450 (101)

* indicated the motor's mass [kg (lb.)]. The thrust load should not exceed the motor's mass.

Permissible moment load of the harmonic geared type

When installing an arm or table on the flange surface, calculate the moment load using the formula below if the flange surface receives any eccentric load. The moment load should not exceed the permissible value specified in the table below.

Moment load: M [N·m (oz-in)] = $F \times L$

Motor model	Permissible moment load [N⋅m (oz-in)]	F T
PK513	0.7 (99)	
PK523	2.9 (410)	
PK543	5.6 (790)	
PK564	11.6 (1640)	

1.5 Installing the driver

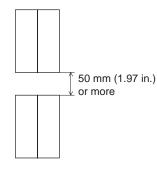
Installation direction

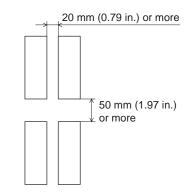
Use a DIN rail 35 mm (1.38 in.) wide to mount the driver. Provide 50 mm (1.97 in.) clearances in the horizontal and vertical directions between the driver and enclosure or other equipment within the enclosure.

Refer to the figure below for the required distances between adjacent drivers when two or more drivers are installed in parallel.

Note

Be sure to install (position) the driver vertically. When the driver is installed in any position other than vertical, the heat radiation effect of the driver will drop.

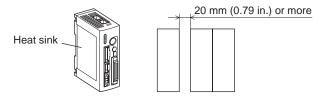

• CRD514-KD


(0.79 in.) or more.

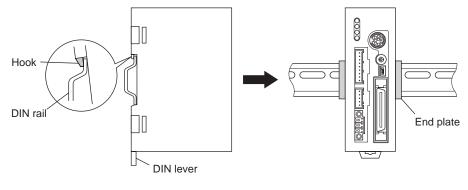
(1.97 in.) or more.

• CRD503-KD, CRD507-KD, CRD507H-KD Horizontal direction: Can be placed in contact with each other.

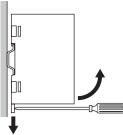
Vertical direction: Provide a clearance of 50 mm (1.97 in.) or more.



Horizontal direction: Provide a clearance of 20 mm


Vertical direction: Provide a clearance of 50 mm

• When using the CRD514-KD in parallel with another driver Another unit can be placed in contact with the right side of CRD514-KD. Provide a clearance of 20 mm (0.79 in.) or more on the left side of CRD514-KD where a heat sink is located.


Installation method

Push up the driver's DIN lever until it locks. Hang the hook at the rear to the DIN rail, and push in the driver. After installation, fix the both sides of the driver with the end plate.

Removing from DIN rail

Pull the DIN lever down until it locks using a flat tip screwdriver, and lift the bottom of the driver to remove it from the rail. Use a force of about 10 to 20 N (2.2 to 4.5 lb.) to pull the DIN lever down to lock it. Excessive force may damage the DIN lever.

1.6 Installing and wiring in compliance with EMC Directive

Effective measures must be taken against the EMI that the motor and driver may give to adjacent control-system equipment, as well as the EMS of the motor and driver itself, in order to prevent a serious functional impediment in the machinery. The use of the following installation and wiring methods will enable the motor and driver to be compliant with the EMC directive. Refer to p.16 for the applicable standards.

Oriental Motor conducts EMC measurements its motors and drivers in accordance with "Example of motor and driver installation and wiring" on p.29.

The user is responsible for ensuring the machine's compliance with the EMC Directive, based on the installation and wiring explained below.

Power supply

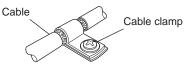
This products are specifically designed for DC power supply input.

Use a DC power supply (such as a switching power supply) compliant with the EMC Directive.

Connecting noise filter for power supply line

- Connect a noise filter in the DC power supply input part to prevent the noise generated in the driver from propagating externally through the power supply line.
- When using a power supply transformer, be sure to connect a noise filter to the AC input side of the power supply transformer.
- For a noise filter, use HF2010A-UPF (SOSHIN ELECTRIC CO., LTD.), FN2070-10-06 (Schaffner EMC) or equivalent product.
- Install the noise filter as close to the AC input terminal of DC power supply as possible. Use cable clamps and other means to secure the input and output cables (AWG18: 0.75 mm² or more) firmly to the surface of the enclosure.
- Connect the ground terminal of the noise filter to the grounding point, using as thick and short a wire as possible.
- Do not place the AC input cable (AWG18: 0.75 mm² or more) parallel with the noise filter output cable (AWG18: 0.75 mm² or more). Parallel placement will reduce noise filter effectiveness if the enclosure's internal noise is directly coupled to the power supply cable by means of stray capacitance.

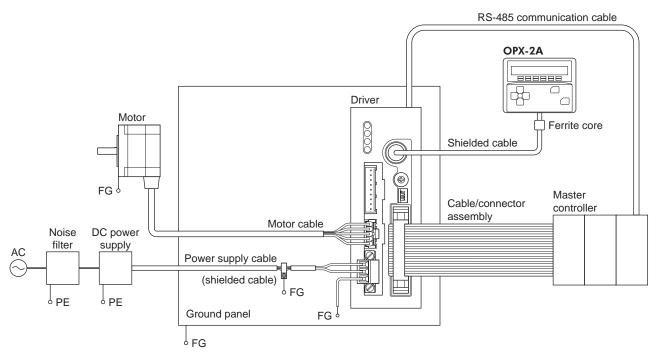
Ferrite core


If the **OPX-2A** is used, install ferrite cores. Ferrite cores have the effect of reducing external noise. For a ferrite core, use ZCAT3035-1330 (TDK Corporation) or equivalent product. Install ferrite cores as close to the **OPX-2A** as possible.

How to ground

The cable used to ground the driver and noise filter must be as thick and short as possible so that no potential difference is generated. Choose a large, thick and uniformly conductive surface for the grounding point. Install the motor onto a grounded metal surface.

Wiring the power supply cable and signal cable


- Use a shielded cable of AWG22 (0.3 mm²) or more for the power supply cable, and keep it as short as possible.
- Use a supplied cable for the I/O signals cable, and keep it as short as possible.
- To ground a power supply cable, use a metal clamp or similar device that will maintain contact with the entire circumference of the cable. Attach a cable clamp as close to the end of the cable as possible, and connect it as shown in the figure.

Notes about installation and wiring

- Connect the motor, driver and other peripheral control equipment directly to the grounding point so as to prevent a potential difference from developing between grounds.
- When relays or electromagnetic switches are used together with the system, use noise filters and CR circuits to suppress surges generated by them.
- Keep cables as short as possible without coiling and bundling extra lengths.
- Place the power cables such as the motor and power supply cables as far apart [100 mm (3.94 in.)] as possible from the signal cables. If they have to cross, cross them at a right angle. Place the AC input cable and output cable of a noise filter separately from each other.

Example of motor and driver installation and wiring

Precautions about static electricity

Note

Static electricity may cause the driver to malfunction or suffer damage. While the driver is receiving power, handle the driver with care and do not come near or touch the driver.

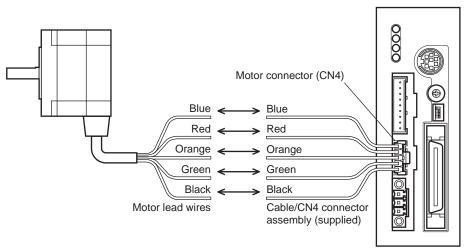
Always use an insulated screwdriver to adjust the driver's switches.

The driver uses parts that are sensitive to electrostatic charge. Before touching the driver, turn off the power to prevent electrostatic charge from generating. If an electrostatic charge is impressed on the driver, the driver may be damaged.

2 Connection

This chapter explains how to connect the power supply, driver, motor, I/O signals as well as grounding method.

- Note
- Have the connector plugged in securely. Insecure connector connection may cause malfunction or damage to the motor or driver.
- The CN2/CN4/CN5 connector have a lock mechanism. When removing these connectors, release the connector lock first. Forcibly pulling out the connector without releasing the connector lock may damage the connector.
- To cycle the power or plugging/unplugging the connector, turn off the power and then wait for at least 5 seconds.
- If the motor cable or power supply cable generates an undesirable amount of noise, shield the cable or install a ferrite core.


2.1 Connecting the motor

Applicable product

- Standard type with encoder,
- Standard type with electromagnetic brake
- Standard type
- Geared type (CRK543, CRK544, CRK564 and CRK566)

Connecting method

- 1. Connect the cable/CN4 connector assembly (5 pins) to the motor connector (CN4) on the driver.
- Connect the motor lead wires and cable/CN4 connector assembly. The customer must provide the terminal block, connectors and other items needed to interconnect the leads.

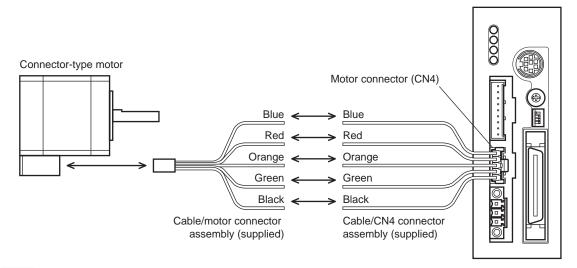
Note Keep 10 m (32.8 ft.) or less for the wiring distance between the motor and driver.

■ CN4 pin assignments

Pin No.	Connection destination	Pin No.
1	Blue motor lead	1 ── ╂── ┏
2	Red motor lead	
3	Orange motor lead	
4	Green motor lead	
5	Black motor lead	° Lig

Composition of cable/CN4 connector assembly

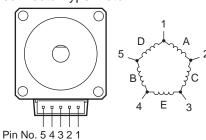
Connector housing	51103-0500 (Molex)
Contact	50351-8000 (Molex)
Crimping tool	57295-5000 (Molex)
Applicable lead size	AWG22 (0.3 mm ²)


2.2 Connecting the connector-type motor

Applicable product

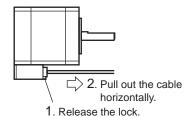
- High-resolution type
- High-torque type
- High-torque type with encoder
- Geared type (CRK513P, CRK523P)

Connecting method


- 1. Connect the supplied cable/CN4 connector assembly (5 pins) to the motor connector (CN4) on the driver.
- 2. Connect the supplied cable/motor connector assembly (5 pins) to the motor.
- 3. Connect the cable/motor connector assembly and cable/CN4 connector assembly. The customer must provide the terminal block, connectors and other items needed to interconnect the leads.

Note Keep 10 m (32.8 ft.) or less for the wiring distance between the motor and driver.

Connector pin assignments of connector-type motor


Pin No.	Description
1	Blue motor lead
2	Red motor lead
3	Orange motor lead
4	Green motor lead
5	Black motor lead

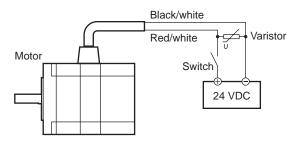
Composition of cable/motor connector assembly

Frame size [mm (in.)]	□20 (0.79) for CRK51 Ø22 (0.87) for CRK51 □28 (1.10) for CRK52	□42 (1.65) for CRK54	□60 (2.36) for CRK56
Connector housing	51065-0500 (Molex)	51103-0500 (Molex)	51144-0500 (Molex)
Contact	50212-8100 (Molex)	50351-8100 (Molex)	50539-8100 (Molex)
Crimping tool	57176-5000 (Molex)	57295-5000 (Molex)	57189-5000 (Molex)
Applicable lead size	AWG24 (0.2 mm ²)	AWG22 (0.3 mm ²)	AWG22 (0.3 mm ²)

- Note
- When connecting a motor, attach the cable in such a way as to prevent the connection point from receiving stress due to flexing of the cable. Make the cable's radius of curvature as large as possible.
- When disconnecting the connector from the connector type motor, pull the connector horizontally along the output shaft to remove. The motor may be damaged if force is applied in any other direction.
- The cable/connector assembly that comes with the following products has a connector with a lock mechanism. When removing these types of cables, release the connector lock first. Forcibly pulling out the cable without releasing the connector lock may damage the motor and connector.
 - \cdot High-resolution type CRK54, CRK56
 - \cdot High-torque type CRK54
 - High-torque type with encoder CRK54

2.3 Connecting the electromagnetic brake

Connecting the power supply for electromagnetic brake


The electromagnetic brake operates via the ON/OFF status of the DC power supply. Provide a DC power supply of 24 VDC \pm 5% 0.08 A or more for the **CRK54**, or 24 VDC \pm 5% 0.25 A or more for the **CRK56**, for use exclusively for the electromagnetic brake.

Use a shielded cable of AWG24 (0.2 mm²) or more to connect the electromagnetic brake to the DC power supply, keeping the length as short as possible.

Connecting method

Connect two leads [600 mm (23.6 in.)] from the motor to the DC power supply.

- 1. Connect the red/white lead to the +24 VDC terminal of the DC power supply, and connect the black/ white lead to the GND terminal.
- 2. Connect the varistor (supplied) in parallel between the +24 VDC terminal and the GND terminal. The varistor does not have polarity.

- **Note** Applying a voltage over the specification will increase the temperature rise in the electromagnetic brake and may damage the motor. Conversely, insufficient voltage may prevent the brake from releasing.
 - Be sure to connect the varistor to protect the switch contacts and prevent noise.
 - The leads for the electromagnetic brake are polarized. Connecting the leads in reverse polarity will not properly operate the electromagnetic brake.
 - Provide separate power supplies for the I/O signals and the electromagnetic brake.

Operating the electromagnetic brake

Operate the electromagnetic brake as follows:

- 1. Turn on the driver power and switch ON the excitation to excite the motor.
- 2. Before inputting operation commands, turn on the electromagnetic brake power and release the electromagnetic brake.

The motor is now ready to run.

- 3. When holding the load in position using the electromagnetic brake following motor operation, turn off the electromagnetic brake power after confirming that the motor has stopped.
- **Note** Apply the electromagnetic brake only after the motor has stopped. Do not use the brake to bring the moving motor to a halt. Repeated braking for such a purpose will wear the brake hub excessively, causing a decrease in its ability to hold.

2.4 Connecting the power supply and grounding the driver

Use the supplied CN1 connector (3 pins) to connect the power supply cable (AWG22: 0.3 mm²) to the power supply connector (CN1) on the driver.

- When connecting, check the silk screen of the driver and pay attention to the polarity of the power supply. Reverse-polarity connection may cause damage to the driver. The power-supply circuit and the RS-485 communication circuit are not insulated. Therefore, when controlling multiple drivers via RS-485 communication, the reverse polarity of the power supply will cause a short circuit and may result in damage to the drivers.
- Do not wire the power supply cable of the driver in the same cable duct with other power line or motor cable. Doing so may cause malfunction due to noise.

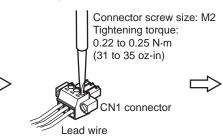
Power supply current capacity

Use a power supply that can supply the current capacity below.

Driver model	CRD503-KD	CRD507-KD CRD507H-KD	CRD514-KD
Input power supply voltage	+24 VDC±10%		
Current capacity	0.7 A or more	1.4 A or more	2.5 A or more

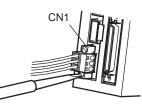
Grounding the driver

Ground the driver's Frame Ground Terminal (FG) as necessary. Ground using a wire of AWG24 to 16 (0.2 to 1.25 mm²), and do not share the protective earth terminal with a welder or any other power equipment.


CN1 pin assignments

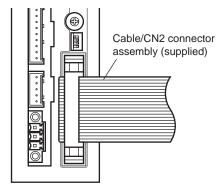
Pin No.	Name	Description	CN1 connector (supplied)
1	+24 VDC	+24 VDC power supply input	24 VDC power supply GND
2	GND	Power supply GND	24 VDC power supply
3	FG	Frame Ground	

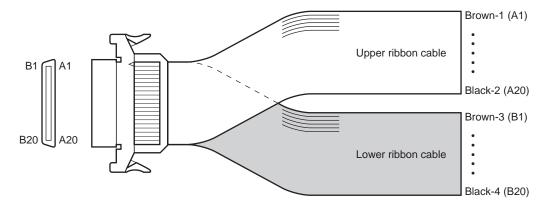
Power supply connector (CN1)


Connecting method

- 1. Strip the insulation cover of the lead wire by 7 mm (0.28 in.)
 - 7 mm
- Insert each lead wire into the CN1 connector and tighten the screw using a screwdriver.

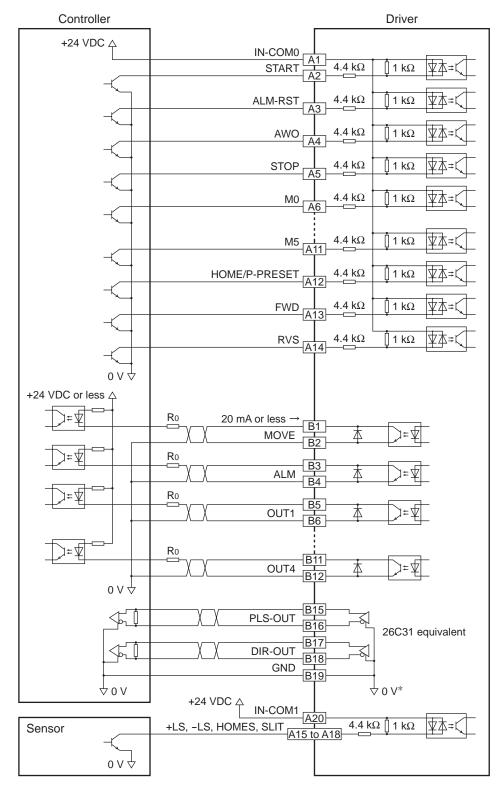
3. Insert the CN1 connector into CN1 and tighten the screws.


FG


Connector screw size: M2.5 Tightening torque: 0.4 N·m (56 oz-in)

2.5 Connecting the I/O signals

Connect the cable/CN2 connector assembly (40 pins) to the I/O signals connector (CN2) on the driver.



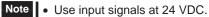
■ CN2 pin assignments

Lead wire color		Upper ril	obon cable	Lead wire	Lower ribbon cable			
	Pin No.	Signal name	Description	color	Pin No.	Signal name	Description	
Brown-1	A1	IN-COM0	Input common	Brown-3	B1	MOVE+		
Red-1	A2	START	Start input	Red-3	B2	MOVE-	Motor moving output	
Orange-1	A3	ALM-RST	Alarm reset input	Orange-3	B3	ALM+	Alarm output	
Yellow-1	A4	AWO	All windings off input	Yellow-3	B4	ALM-		
Green-1	A5	STOP	Stop input	Green-3	B5	OUT1+	Control output 1	
Blue-1	A6	MO		Blue-3	B6	OUT1-	(initial value: AREA) *	
Purple-1	A7	M1	- Data selection input	Purple-3	B7	OUT2+	Control output 2 (initial value: READY) *	
Gray-1	A8	M2		Gray-3	B8	OUT2-		
White-1	A9	M3		White-3	B9	OUT3+	Control output 3 (initial value: WNG) *	
Black-1	A10	M4		Black-3	B10	OUT3-		
Brown-2	A11	M5		Brown-4	B11	OUT4+	Control output 4 (initial value: HOME-P) *	
Red-2	A12	HOME/ P-PRESET	Return-to-home/ Position preset input	Red-4	B12	OUT4-		
Orange-2	A13	FWD	Forward input	Orange-4	B13	N.C.	Not used	
Yellow-2	A14	RVS	Reverse input	Yellow-4	B14	N.C.	Not used	
Green-2	A15	+LS	+limit sensor input	Green-4	B15	PLS-OUT+	Pulse output (Line driver output)	
Blue-2	A16	-LS	-limit sensor input	Blue-4	B16	PLS-OUT-		
Purple-2	A17	HOMES	Mechanical home sensor input	Purple-4	B17	DIR-OUT+	Direction output (Line driver output)	
Gray-2	A18	SLIT	Slit sensor input	Gray-4	B18	DIR-OUT-		
White-2	A19	N.C.	Not used	White-4	B19	GND	GND	
Black-2	A20	IN-COM1	Sensor input common	Black-4	B20	N.C.	Not used	

* These settings can be changed using the "OUT1 signal mode selection" to "OUT4 signal mode selection" parameters.

Connecting to a current sink output circuit

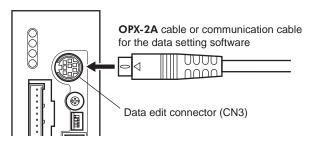
* The GND line is used in common with CN1 (not insulated).


Note • Use in

- Use input signals at 24 VDC.
- Use output signals at 24 VDC 20 mA or less. If the current exceeds 20 mA, connect an external resistor R0.
- The PLS-OUT output and DIR-OUT output are line driver outputs. When connecting a line receiver, be sure to connect pin No.B19 on the driver to the GND on the line receiver, and connect a terminal resistor of 100 Ω or more between the driver and the input of the line receiver.

Controller Driver IN-COM0 4 o ∨ 4.4 kΩ] 1 kΩ ұ本⊧ START 4.4 kΩ | 1 kΩ ALM-RST ⊻本 AWO 4.4 kΩ [] 1 kΩ $\overline{1}$ $4.4 \ \text{k}\Omega$ STOP [] 1 kΩ ☆木 4.4 kΩ [] 1 kΩ ⊈本= M0 M5 ___ $4.4 \ \text{k}\Omega$ [] 1 kΩ 東本≒ HOME/P-PRESET 4.4 kΩ] 1 kΩ ¥Ф: 4.4 kΩ] 1 kΩ FWD ⊻本 RVS A14 4.4 kΩ]1 kΩ ұ本≠ +24 VDC or less A 20 mA or less -B1 R0 MOVE 本 B2 B3 本 R٥ ALM P B5 Ro OUT1 本 ≱≠⊈ B6 B11 R٥ OUT4 本 לב⊄ B12 0 V 4 B15 PLS-OUT B16 26C31 equivalent B17 DIR-OUT \leq_{b_1} B18 GND B<u>19</u> ↓ 0 ∨ 0 V* IN-COM1 Sensor **△ +24 VDC** A20 0 V ↔ 4.4 kΩ ⋬⋣⋨ +LS, -LS, HOMES, SLIT 1 kΩ A15 to A18

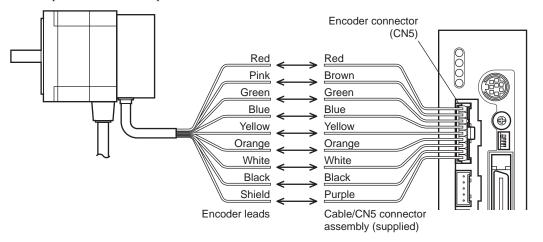
Connecting to a current source output circuit


* The GND line is used in common with CN1 (not insulated).

- Use output signals at 24 VDC 20 mA or less. If the current exceeds 20 mA, connect an external resistor R0.
- The PLS-OUT output and DIR-OUT output are line driver outputs. When connecting a line receiver, be sure to connect pin No.B19 on the driver to the GND on the line receiver, and connect a terminal resistor of 100 Ω or more between the driver and the input of the line receiver.

2.6 Connecting the data setter

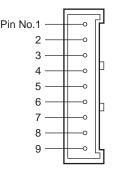
Connect the **OPX-2A** cable or communication cable for the data setting software to the data edit connector (CN3) on the driver.


The driver's power supply connector (CN1), I/O connector (CN2), data edit connector (CN3) and RS-485 communication connector (CN6/CN7) are not electrically insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the driver and PC to short, damaging both.

2.7 Connecting the encoder

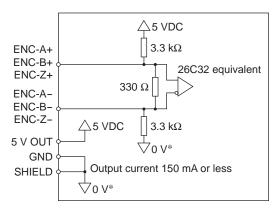
If an encoder is to be used, connect the encoder.

Connect the encoder to the encoder connector (CN5) on the driver using the cable/CN5 connector assembly (9 pins). The cable/CN5 connector assembly (9 pins) is supplied with the motor with encoder and driver package. When extending the leads, use shielded cable of AWG24 to 22 (0.2 to 0.3 mm²).


Refer to p.80 for the detailed specification of this encoder.

Note Keep 10 m (32.8 ft.) or less for the wiring distance between the motor and driver.

■ CN5 pin assignments


Pin No.	Signal name	Description	Connection destination
1	ENC-A+	Encoder input A-phase	Red encoder lead
2	ENC-A-	(Line receiver)	Pink encoder lead
3	ENC-B+	Encoder input B-phase	Green encoder lead
4	ENC-B-	(Line receiver)	Blue encoder lead
5	ENC-Z+	Encoder input Z-phase	Yellow encoder lead
6	ENC-Z-	(Line receiver)	Orange encoder lead
7	+5 VDC OUT	+5 VDC power supply output for encoder	White encoder lead
8	GND	GND	Black encoder lead
9	SHIELD	Shield (Connect to GND)	Shield lead

Composition of cable/CN5 connector assembly

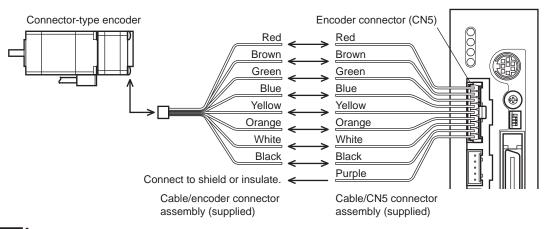
Connector housing	51103-0900 (Molex)
Contact	50351-8000 (Molex)
Crimping tool	57295-5000 (Molex)
Applicable lead size	AWG22 (0.3 mm ²)

Internal circuit diagram

* The GND line is used in common with CN1 (not insulated).

Note The current consumption of the encoder power supply should be kept to 150 mA or less. When you are providing the encoder on your own, take note that if the encoder power consumption exceeds 150 mA, an encoder power supply must be provided externally to the system. In this case, be sure to use a common GND line for the encoder power supply and encoder connector (CN5).

2.8 Connecting the connector type encoder


Applicable product

High-torque type with encoder (CRK513PRKD2, CRK52□PRKD2)

Connecting method

Connect with the supplied cable/encoder connector assembly. When extending the lead wires, use a shielded cable of AWG24 to 22 (0.2 to 0.3 mm²). Refer to p.80 for the detailed specification of this encoder.

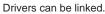
- 1. Connect the supplied cable/CN5 connector assembly (9 pins) to the encoder connector (CN5) on the driver.
- 2. Connect the supplied cable/encoder connector assembly (8 pins) to the encoder.
- 3. Connect the cable/CN5 connector assembly and cable/encoder connector assembly. The customer must provide the terminal block, connectors and other items needed to interconnect the leads.

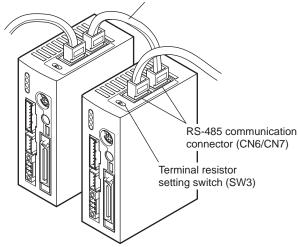
Note Keep 10 m (32.8 ft.) or less for the wiring distance between the motor and driver.

Composition of cable/encoder connector assembly

Connector housing	51021-0800 (Molex)
Contact	50079-8000 (Molex)
Crimping tool	63819-0300 (Molex)
Applicable lead size	AWG26 (0.14 mm ²)

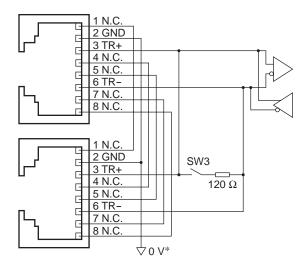
CN5 pin assignments and composition of cable/CN5 connector assembly Refer to p.37.


2.9 Connecting the RS-485 communication cable


Connect this cable if you want to control your product via RS-485 communication.

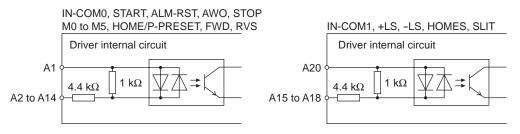
Connect RS-485 communication cable to CN6 or CN7 on the driver.

You can use the vacant connectors to connect a different driver. Accessories driver link cables (sold separately) are available. See p.172.


You can also use a commercial LAN cable to link drivers.

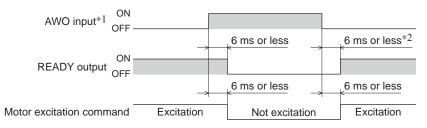
■ CN6/CN7 pin assignments

Signal name	Description
N.C.	Not used
GND	GND
TR+	RS-485 communication signal (+)
N.C.	Not used
N.C.	Not used
TR-	RS-485 communication signal (-)
N.C.	Not used
N.C.	Not used
	N.C. GND TR+ N.C. N.C. TR- N.C.



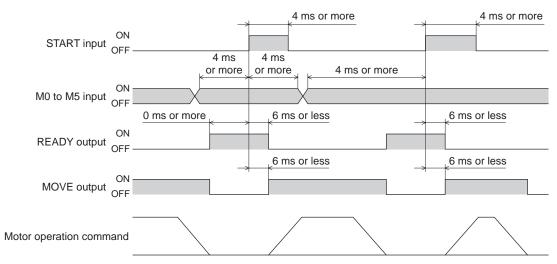
* The GND line is used in common with CN1 (not insulated).

3 Explanation of I/O signals


3.1 Input signals

Following input signals of the driver are photocoupler inputs. The signal state represents the "ON: Carrying current" or "OFF: Not carrying current" state of the internal photocoupler rather than the voltage level of the signal.

AWO input


This signal is used to cut off the motor current (factory setting: normally open). When the AWO input is turned ON, the motor current will be cut off and the motor will lose its holding torque. When the AWO input is turned OFF, current will be supplied to the motor and holding torque will be restored. You can change the input logic using the "AWO contact configuration" parameter.

- *1 When the AWO input logic is normally open.
- *2 If the "stepout detection" parameter is set to "enable," this period becomes 500 ms or less. If the parameter is set to "disable," the period becomes 6 ms or less.

START input

Turn the START input from OFF to ON to start positioning operation.

STOP input

The STOP input is used to stop the operating motor (factory setting: normally closed).

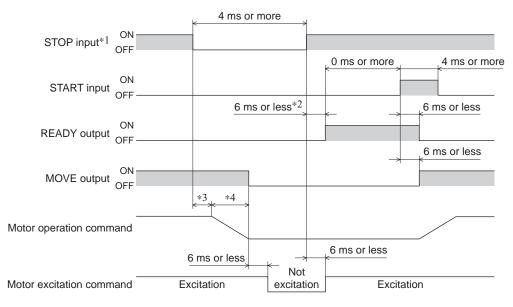
The STOP input turns OFF, the motor will stop. This input is normally closed, meaning that it is OFF when the power is turned on. You can set a desired stopping operation using the "STOP action" parameter.

- Immediate stop.......The motor will stop immediately regardless of the specified deceleration rate.
- Deceleration stopThe motor will stop according to the specified deceleration rate (initial value).
- Immediate stop + motor is not excited....... The motor will stop immediately regardless of the specified
 - deceleration rate, after which the motor excitation will be turned off.
- Deceleration stop + motor is not excited The motor will stop according to the specified deceleration rate, after which the motor excitation will be turned off.

The deceleration rate that applies when the motor decelerates to a stop in positioning operation or continuous operation can be set as follows using the "acceleration (deceleration) rate type" parameter: Separate: The deceleration rate set under the applicable operation data number will be followed. Common: The setting of the "common deceleration rate" parameter will be followed.

Note If the STOP input is normally closed, be sure to turn this input ON when operating the motor.

• When the STOP stopping method is immediate stop or deceleration stop.


	4 ms or more	
STOP input ^{*1} ON OFF		
START input ON		0 ms or more 4 ms or more
OFF —	6 ms or less	6 ms or less
READY output ON OFF-	*	6 ms or less
ON — MOVE output OFF		
	*2 *3	
Motor excitation command	Excita	ation

*1 When the STOP input logic is normally closed.

*2 The specific time varies depending on the command speed.

*3 The specific period varies depending on the setting of the "STOP action" parameter.

 When the STOP stopping method is immediate stop + motor is not excited or deceleration stop + motor is not excited.

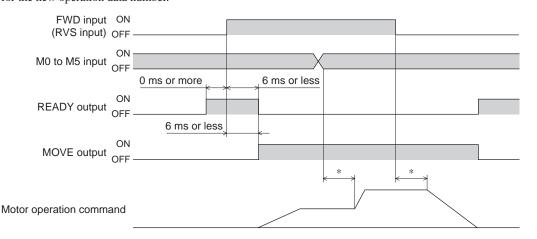
- *1 When the STOP input logic is normally closed.
 *2 If the "stepout detection" parameter is set to "enable", this period becomes 500 ms or less. If the parameter is set to "disable", the period becomes 6 ms or less.
- *3 The specific time varies depending on the command speed.
- *4 The specific period varies depending on the setting of the "STOP action" parameter.

M0 to M5 input

Select a desired operation data number for positioning operation or continuous operation based on a combination of ON/OFF states of M0 to M5 inputs.

The ON/OFF status should be held until an operation based on the selected operation data No. is executed.

Operation data No.	M5	M4	М3	M2	M1	MO	Operation data No.	M5	M4	М3	M2	M1	M0
Sequential operation	OFF	OFF	OFF	OFF	OFF	OFF	16	OFF	ON	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON	17	OFF	ON	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF	18	OFF	ON	OFF	OFF	ON	OFF
3	OFF	OFF	OFF	OFF	ON	ON	19	OFF	ON	OFF	OFF	ON	ON
4	OFF	OFF	OFF	ON	OFF	OFF	20	OFF	ON	OFF	ON	OFF	OFF
5	OFF	OFF	OFF	ON	OFF	ON	21	OFF	ON	OFF	ON	OFF	ON
6	OFF	OFF	OFF	ON	ON	OFF	22	OFF	ON	OFF	ON	ON	OFF
7	OFF	OFF	OFF	ON	ON	ON	23	OFF	ON	OFF	ON	ON	ON
8	OFF	OFF	ON	OFF	OFF	OFF	24	OFF	ON	ON	OFF	OFF	OFF
9	OFF	OFF	ON	OFF	OFF	ON	25	OFF	ON	ON	OFF	OFF	ON
10	OFF	OFF	ON	OFF	ON	OFF	26	OFF	ON	ON	OFF	ON	OFF
11	OFF	OFF	ON	OFF	ON	ON	27	OFF	ON	ON	OFF	ON	ON
12	OFF	OFF	ON	ON	OFF	OFF	28	OFF	ON	ON	ON	OFF	OFF
13	OFF	OFF	ON	ON	OFF	ON	29	OFF	ON	ON	ON	OFF	ON
14	OFF	OFF	ON	ON	ON	OFF	30	OFF	ON	ON	ON	ON	OFF
15	OFF	OFF	ON	ON	ON	ON	31	OFF	ON	ON	ON	ON	ON


Conbination table: operation data No.0 to 31

Operation data No.	M5	M4	М3	M2	M1	M0	Operation data No.	M5	M4	M3	M2	M1	M0
32	ON	OFF	OFF	OFF	OFF	OFF	48	ON	ON	OFF	OFF	OFF	OFF
33	ON	OFF	OFF	OFF	OFF	ON	49	ON	ON	OFF	OFF	OFF	ON
34	ON	OFF	OFF	OFF	ON	OFF	50	ON	ON	OFF	OFF	ON	OFF
35	ON	OFF	OFF	OFF	ON	ON	51	ON	ON	OFF	OFF	ON	ON
36	ON	OFF	OFF	ON	OFF	OFF	52	ON	ON	OFF	ON	OFF	OFF
37	ON	OFF	OFF	ON	OFF	ON	53	ON	ON	OFF	ON	OFF	ON
38	ON	OFF	OFF	ON	ON	OFF	54	ON	ON	OFF	ON	ON	OFF
39	ON	OFF	OFF	ON	ON	ON	55	ON	ON	OFF	ON	ON	ON
40	ON	OFF	ON	OFF	OFF	OFF	56	ON	ON	ON	OFF	OFF	OFF
41	ON	OFF	ON	OFF	OFF	ON	57	ON	ON	ON	OFF	OFF	ON
42	ON	OFF	ON	OFF	ON	OFF	58	ON	ON	ON	OFF	ON	OFF
43	ON	OFF	ON	OFF	ON	ON	59	ON	ON	ON	OFF	ON	ON
44	ON	OFF	ON	ON	OFF	OFF	60	ON	ON	ON	ON	OFF	OFF
45	ON	OFF	ON	ON	OFF	ON	61	ON	ON	ON	ON	OFF	ON
46	ON	OFF	ON	ON	ON	OFF	62	ON	ON	ON	ON	ON	OFF
47	ON	OFF	ON	ON	ON	ON	63	ON	ON	ON	ON	ON	ON

• Conbination table: operation data No.32 to 63

FWD input, RVS input

When the FWD input turns ON, the motor will perform continuous operation in the + direction. When the RVS input turns ON, the motor will perform continuous operation in the - direction. The FWD input and RVS input are operated at the operating speed of the selected operation No. If the FWD input and RVS input are both ON simultaneously, the motor decelerates to a stop. When the operation data number is changed during continuous operation, the speed will change to the one specified for the new operation data number.

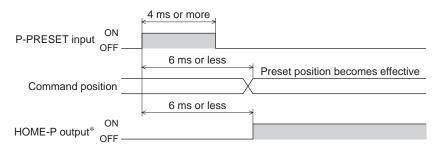
* The specific time varies depending on the command speed.

HOME/P-PRESET input

Factory setting is HOME input. Switch between HOME input and P-PRESET input using the "HOME/P-PRESET input switching" parameter.

• HOME input

The return-to-home operation starts when the HOME input turns ON.


Example: Return-to-home operation in the 3-sensor mode

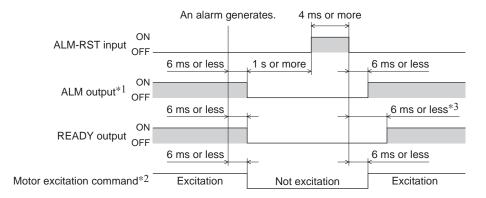
	4 ms or more	
ON HOME input OFF -		
HOMES input ON OFF -		
READY output ON OF	6 ms or less	
ON MOVE output OFF -	6 ms or less	
HOME-P output ON OFF ⁻		
Motor operation command -		

• P-PRESET input

When the P-PRESET input is turned ON, the value in the "preset position" parameter will be overwritten by the command position.

Note Perform the preset operation while the motor is stopped.

* When the "preset position" parameter is set to "0".


ALM-RST input

When an alarm generates, the ALM output will turn OFF and motor will stop. When the ALM-RST input is turned from ON to OFF, the ALM output will turn ON and the alarm will be reset. (The alarm will be reset at the OFF edge of the ALM-RST input.) Always reset an alarm after removing the cause of the alarm and after ensuring safety. For details, refer to "ALM output" on p.46, and "2.1 Alarms" on p.165.

Some alarms cannot be reset with the ALM-RST input. To reset these alarms, the power must be cycled.

· Resetting the alarm

- *1 The ALM output normally closed. This output remains ON in a normal state, and will turn OFF if an alarm generates.
- *2 Assuming generation of an alarm that stops motor excitation.
- *3 If the "stepout detection" parameter is set to "enable," this period becomes 500 ms or less. If the parameter is set to "disable," the period becomes 6 ms or less.

+LS input	ON						
-LS input	OFF -						
ALM-RST input	ON			-	*	4 n	ns or more
		6 ms or less	_	<pre>1 s or more</pre>	* -		6 ms or less
ALM output*	ON OFF						
	0	6 ms or less		←	_		6 ms or less ≮
READY output	ON OFF						

* The ALM output is normally closed. This output remains ON in a normal state, and will turn OFF if an alarm generates.

+LS input, -LS input

These signals are input from the applicable limit sensors.

They are used to detect the home during return-to-home operation. In any other operation, these signals are used to stop the motor.

You can switch the input logics for +LS input and -LS input using the "LS contact configuration" parameter. Take note, however, that only the same input logics can be set for both signals.

See p.64 for details on the return-to-home operation.

If the +LS and -LS inputs are to be used in an operation other than return-to-home, set the "hardware overtravel detection" parameter to "enable".

HOMES input

These signals are input from the applicable HOME sensors.

This input detects the mechanical home position when a return-to-home operation is executed in the 3-sensor mode. You can switch the input logic for HOMES input using the "HOMES contact configuration" parameter. See p.64 for details on the return-to-home operation.

SLIT input

This signal is used to detect the home using a slit disc, etc.

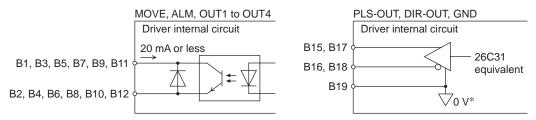
When detecting the home, use of the SLIT input in addition to the HOMES input and ±LS inputs will increase the accuracy of home detection.

You can switch the input logic for SLIT input using the "SLIT contact configuration" parameter.

Note If the SLIT input is used, set the "SLIT detection with home-seeking" parameter to "enable".

■ IN-COM0 input

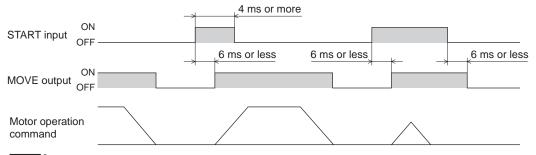
This is a common terminal for input signals.


■ IN-COM1 input

This is a common terminal for the sensors.

Note Use sensor input signals at 24 VDC±10%.

3.2 Output signals


The driver outputs signals in the photocoupler/open-collector output mode or line driver output mode. The signal state represents the "ON: Carrying current" or "OFF: Not carrying current" state of the internal photocoupler rather than the voltage level of the signal.

* The GND line is used in common with CN1 (not insulated).

MOVE output

The MOVE output becomes ON while operating the motor or return-to-home operation. Even when the current operation has completed, the next operation cannot be started while the MOVE output is ON.

Note Even when positioning operation ends, the MOVE output will not turn OFF as long as the START input remains ON.

ALM output

The ALM output is normally closed.

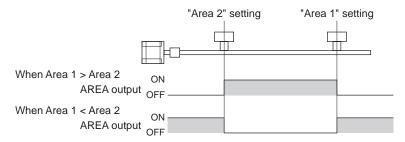
When an alarm generates, the ALM output will turn OFF. At the same time, the ALARM LED of the driver will blink and the motor will stop.

Set the host controller so that it will stop motor operation commands upon detection of an OFF status of the ALM output. You can check the cause of the alarm by counting the number of times the ALARM LED blinks. For details, refer to p.165.

OUT1 to OUT4 output

The "OUT1 signal mode selection" to "OUT4 signal mode selection" parameters are used to set the desired functions to be assigned to the OUT1 to OUT4 outputs, respectively. The following output signals can be assigned:

- AREA output (area output): Default for OUT1 output
- TIM output (timing output)
- READY output (operation ready complete output): Default for OUT2 output
- WNG output (warning output): Default for OUT3 output
- HOME-P output (return-to-home ready complete output): Default for OUT4 output
- ZSG output (Z-phase pulse output)
- R-OUT1 output (remote output 1)
- R-OUT2 output (remote output 2)
- R-OUT3 output (remote output 3)
- R-OUT4 output (remote output 4)
- O.H. output (overheat output)
- STEPOUT output (misstep detection output)


AREA output

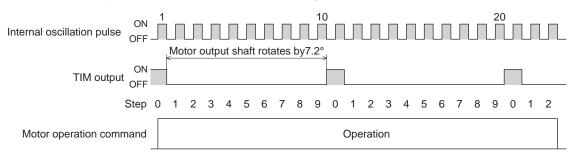
The AREA output can be assigned to a control output.

This signal will be output when the motor output shaft is inside the area set by the "area 1" and "area 2" parameters. This signal is also output while the motor is stopped.

If the AREA output is to be used during operation, set the width of the area so that the AREA output will remain ON for at least 1 ms. If the AREA output remains ON for less than 1 ms, the AREA output may not actually turn ON.

- When the area 1 boundary is greater in position coordinate than the area 2 boundary: The AREA output turns ON when the output shaft is positioned at or after the area 2 boundary or at or before the area 1 boundary.
- When the area 1 boundary is smaller in position coordinate than the area 2 boundary: The AREA output turns ON when the output shaft is positioned at or before the area 1 boundary or at or after the area 2 boundary.
- The area 1 is the same as the area 2 boundary:
- The AREA output turns ON only when the output shaft is at the specified position.

When the area 1 boundary is greater in position coordinate than the area 2 boundary


	" setting "Area 1	" setting
M0 to M5 input ON		
ON START input OFF -		
ON MOVE output OFF		
AREA output OFF		
Motor operation command		

■ TIM output

The TIM output can be assigned to a control output.

This signal turns ON when the motor is at its excitation home.

If the base step angle of the motor is 0.72° , the TIM output will turn ON every time the motor moves by 7.2° from its excitation home in synchronization with the internal oscillation pulse.

Motor tupo	Number o		
Motor type	1	10	TIM output
Motor with 0.72°/step base step angle	0.72°	0.072°	every 7.2°
Motor with 0.36°/step base step angle	0.36°	0.036°	every 3.6°
Geared motor with 7.2 gear ratio	0.1°	0.01°	every 1°

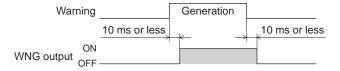
Note

• The TIM output delays behind motor movement by up to 3 ms. The output may be used to verify the stop position of the motor.

 If the TIM output is to be used during operation, set the motor operating speed to 500 Hz or below. If the motor is operated at speeds faster than 500 Hz, this signal will not be output correctly.

READY output

The READY output can be assigned to a control output.


This signal will be output when the driver becomes ready. Start operation after the READY output has turned ON. The READY output remains OFF in the following conditions:

- The motor is operating.
- An alarm is present.
- Any one of the FWD input, RVS input, HOME input and START input is ON.
- The AWO input is ON (normally open).
- The STOP input is OFF (normally closed).
- The system is operating in the test mode or copy mode via the OPX-2A.
- The system is performing test operation, downloading data or being initialized via the **MEXEO2**.
- The motor is not excited.
- Immediately after the power was turned on.

WNG output

The WNG output can be assigned to control output.

This signal is output when a warning generates. However, the operation will continue. The WNG output will turn OFF automatically once the cause of the warning is removed.

HOME-P output

The HOME-P output can be assigned to a control output.

This signal is output upon completion of return-to-home. It will turn ON when all of the following conditions are satisfied:

- The home is already set
- The command position has become 0
- The motor is stopped

The home can be set by the following methods:

- Successful completion of return-to-home operation
- Effecting the preset position
- Clearing the counter via RS-485 communication

The home will be cancelled when either of the following operations is performed:

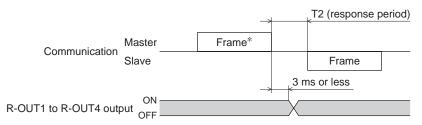
- Cycle the power.
- Stop the motor excitation (when the "stepout detection" parameter is set to "disable")

ZSG output

The ZSG output can be assigned to a control output.

This signal is used when an encoder is connected. The ZSG output signal is output when the ENC-Z input signal is input to the CN5 from the encoder.

Normally the ENC-Z input signal is input every time the motor output shaft turns one revolution.

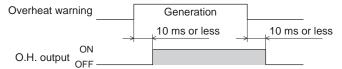


• The ZSG output signal will not be output correctly unless the ENC-Z input remains ON for at least 1 ms.

• The ZSG output delays behind motor movement by up to 3 ms. The output may be used to verify the stop position of the motor.

■ R-OUT1 to R-OUT4 output

These signals are general outputs. These signals are used when the system is controlled via RS-485 communication. Shown below is a timing chart that assumes controls according to GW Protocol Version 1.



* Frame containing the "remote output" command

O.H. output

The O.H. output can be assigned to a control output.

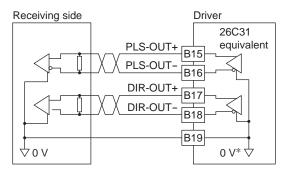
If an overheat warning generates, the O.H. output turns ON. The O.H. output will automatically turn OFF upon recovery from the warning condition.

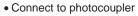
STEPOUT output The STEPOUT output can be assigned to a control output. This signal becomes effective when an encoder is connected, and a deviation error occurs. This signal will be output when the deviation between the encoder counter value and driver command position reaches the value set in the "stepout detection band" parameter. If the STEPOUT output is to be used, set the "stepout detection" parameter to "enable". For misstep, refer to p.81. Deviation abnormal Deviation normal Deviation condition 6 ms or less

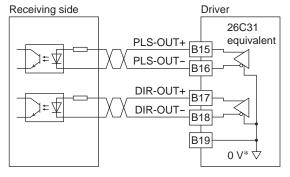
STEPOUT output OFF

- Note While the motor is not excited, the STEPOUT output is always OFF. The signal will become effective once the motor has remained excited for at least 500 ms.
 - The STEPOUT output remains OFF during return-to-home operation.

PLS-OUT output, DIR-OUT output


The PLS-OUT output is used to output the driver's internal oscillation pulses. The number of pulses to be output corresponds to the commanded travel. The pulse frequency corresponds to the operating speed. The maximum output frequency is 500 kHz.


The DIR-OUT output is used to output the driver's internal direction command.


	10µs or more	10µs or more	<k10µs more<="" or="" th=""></k10µs>
PLS-OUT+ ou	itput		
		0µs or more	
PLS-OUT- ou	itput		
DIR-OUT+ ou	itput		
DIR-OUT- ou	tput		
Motor operation comm	and	CW	CCW

Note The PLS-OUT output and DIR-OUT output are line driver outputs. When connecting to a line receiver, be sure to connect pin No. B19 of CN2 with the GND line of the line receiver. Also connect a terminal resistor of 100 Ω or more between the line receiver inputs.

Connect to line receiver

* The GND line is used in common with CN1 (not insulated)

3 Operation type and setting

This part explains the operation functions and the details of parameters.

Table of contents

1	Adju	stment and setting52
	1.1	Step angle
	1.2	Operating current
	1.3	Standstill current
	1.4	Acceleration/deceleration rate53
2	Ope	ration54
	2.1	Positioning operation55
		Operation data
		Starting method of positioning operation
		Operation function
	2.2	Return-to-home operation 64
		Additional function64
		Parameters related to return-to-home
		operation65
		• Operation sequence of the 3-sensor mode67
		 Operation sequence of the 2-sensor mode68
		Position preset
	2.3	Continuous operation
		Operation data
		Starting method of continuous operation
	.	Variable speed operation70
	2.4	Other operation
		Test operation
		Stop operation72

3	Оре	ration data	73
4	Para	ameter	74
	4.1	Parameter list	74
		Application parameter	
		System parameter	
	4.2	I/O parameter	75
	4.3	Motor parameter	76
	4.4	Speed parameter	76
	4.5	Return-to-home parameter	77
	4.6	Alarm/warning parameter	77
	4.7	Common parameter	78
	4.8	Operation setting parameter	78
	4.9	Communication parameter	79
5	Rela	ated functions	80
	5.1	Position control	80
	5.2	Encoder input	80
	5.3	Misstep detection function	81
		■ How to recover from deviation error	81
		Encoder electronic gear settings	81
		Resolution	83

1 Adjustment and setting

This chapter explains how to adjust/set the motor and driver functions.

1.1 Step angle

Set the motor step angle using the "motor step angle" parameter. When the "motor step angle" parameters are set, the step angle of the motor output shaft can be set.

Related parameters

Parameter name	Description	Setting range	Initial value
Motor step angle	Sets the motor step angle.	0 to 15	0

"Motor step angle" parameter: If the base step angle of the motor is 0.72°

Setting	Step angle	Number of divisions	Setting	Step angle	Number of divisions
0	0.72°	1	8	0.0288°	25
1	0.36°	2	9	0.018°	40
2	0.288°	2.5	10	0.0144°	50
3	0.18°	4	11	0.009°	80
4	0.144°	5	12	0.0072°	100
5	0.09°	8	13	0.00576°	125
6	0.072°	10	14	0.0036°	200
7	0.036°	20	15	0.00288°	250

"Motor step angle" parameter: If the base step angle of the motor is 0.36°

Setting	Step angle	Number of divisions	Setting	Step angle	Number of divisions
0	0.36	1	8	0.0144°	25
1	0.18°	2	9	0.009°	40
2	0.144°	2.5	10	0.0072°	50
3	0.09°	4	11	0.0045°	80
4	0.072°	5	12	0.0036°	100
5	0.045°	8	13	0.0028°	125
6	0.036°	10	14	0.0018°	200
7	0.018°	20	15	0.00144°	250

Note • Ste

- Step angles are theoretical values.
- With the geared type, the value of "step angle/gear ratio" becomes the actual step angle.
- The base step angle is 0.36° for high-resolution type motors.

1.2 Operating current

Set the motor operating current using the «operating current» parameter. If the load is small and there is an ample allowance for torque, the motor temperature rise can be suppressed by setting a lower operating current.

Related parameters

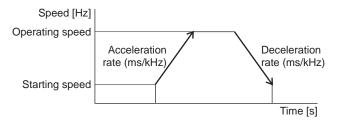
Parameter name	Description	Setting range	Initial value
Cherating current	Sets the motor operating current based on the rated current being 100%.	5 to 100%	100

Note

Excessively low operating current may cause a problem in starting the motor or holding the load in position. Do not lower the operating current more than necessary.

1.3 Standstill current

When the motor stops, the current cutback function will be actuated to lower the motor current to the standstill current. The standstill current is a value in which the set value of the «standstill current» is multiplied by the rated current (100%). The standstill current does not change even when the «operating current» parameter has been changed.


Related parameters

Parameter name	Description	Setting range	Initial value
	Sets the motor standstill current as a percentage of the rated current, based on the rated current being 100%.	0 to 50	50

1.4 Acceleration/deceleration rate

• Acceleration/deceleration unit

Set the acceleration/deceleration in ms/kHz unit.

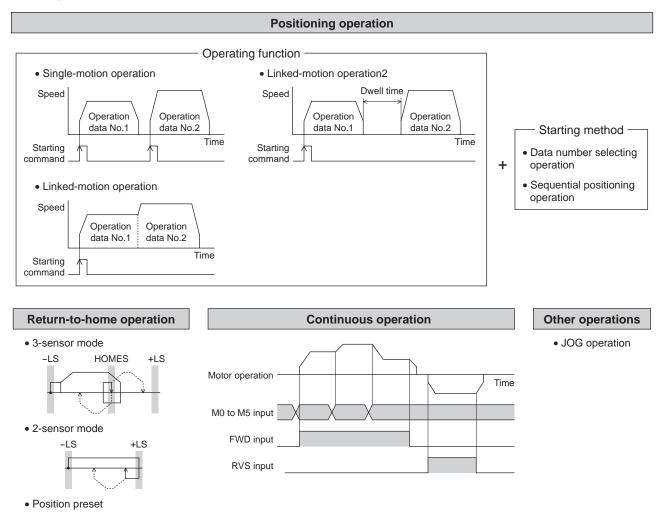
• Common setting and separate setting of the acceleration/ deceleration rate

The acceleration/deceleration for positioning operation or continuous operation can be set as follows using the «acceleration/deceleration type» parameter:

Separate: The acceleration/deceleration rate set under the applicable operation data No. will be followed. Common: The setting of the «common acceleration» and «common deceleration» parameter will be followed.

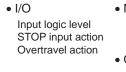
- When performing linked operation, the acceleration/deceleration rate for the starting linked operation data No. is applied even when the "acceleration/deceleration type" parameter is set to "separate".
 - See p.<?> for the acceleration/deceleration rate when performing variable speed operation.

Related parameters


Parameter name	Description	Setting range	Initial value
Acceleration/ deceleration type	Sets whether to use the common acceleration/ deceleration rate or the acceleration/deceleration rate specified for the operation data.	0: Common 1: Separate	0
Common acceleration rate	Sets the common acceleration rate in positioning operation and continuous operation.	0.001 to 1000.000	30.000
Common deceleration rate	Sets the common deceleration rate in positioning operation and continuous operation.	ms/kHz	

2 Operation

This chapter explains the types of operation and timing charts.


Operation

[Setting by operation data and parameters]

Function

[Setting by parameters]

- Motor function Operating current Standstill current
 Alarm/warning Misstep detection Warning detection
- Operation function Acceleration/deceleration rate JOG operation
- Return-to-home function
 Return-to-home speed
 Home position offset
 Return-to-home starting direction
 SLIT sensor, TIM signal detection
- Coordination setting Step angle Encoder electronic gear Motor rotation direction

2.1 Positioning operation

Positioning operation is one in which motor operating speed, position (travel amount) and other items are set as operation data and then executed. When the positioning operation is executed, the motor begins at the starting speed and accelerates until the operating speed is reached. Then, once the operating speed is reached, that speed is maintained. The motor decelerates when the stopping position approaches, and finally comes to a stop. The operation function can also be set in operation data. The operation function is how to operate consecutive operation data (example: operation data No.1, No.2, No.3).

Operation data

The following data are the operation data for positioning operation.

Name	Description	Setting range	Initial value	
Position	Sets the position (distance) for positioning operation.	-8,388,608 to +8,388,607 step	0	
Operating speed	Sets the operating speed in positioning operation and continuous operation.	1 to 500,000 Hz	1000	
Operation mode	Selects how to specify the position (travel amount) in positioning operation.	inc: Incremental Abs: Absolute	inc	
Operation function	Selects how to operate consecutive operation data.	SnGL: Single-motion Lin1: Linked-motion Lin2: Linked-motion 2	SnGL	
Sequential positioning	Sets whether to enable or disable sequential positioning operation.	0: Disable 1: Enable	0	
Acceleration rate	Sets the acceleration rate or time in positioning operation and continuous operation.	0.001 to 1000.000	30.000	
eceleration rate Sets the deceleration rate or time in positioning operation and continuous operation.		ms/kHz	30.000	
Dwell time	Sets the dwell time to be used in linked- motion operation2.	0 to 50.000 s	0	

• Position, operating speed, acceleration, deceleration

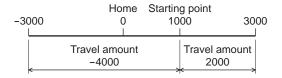
The acceleration/deceleration for positioning operation can be set as follows using the «acceleration/deceleration type» parameter:

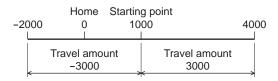
- Separate: The acceleration/deceleration rate set under the applicable operation data No. will be followed. (Each 63 data for acceleration and deceleration)
- Common: The setting of the «common acceleration» and «common deceleration» parameter will be followed. (Each 1 data for acceleration and deceleration)

• Operation modes

The following two operation modes are available:

Absolute (ABS) mode


The position (distance) from home is set [Absolute positioning].


Example: When positioning operation is performed with setting the starting point to 1000 and setting the destination to +3000 and -3000

Incremental (INC) mode

Each motor destination becomes the starting point for the next movement. This mode is suitable when the same position (distance) is repeatedly used [Incremental positioning].

Example: When positioning operation is performed with setting the starting point to 1000 and setting the destination to +3000 and -3000

• Operation function, dwell time

The following three operation functions are available:

Name	Description	Ref.
Single-motion	A single operation data set is executed.	p.60
Linked-motion	Multiple sets of operation data are linked to perform multi-variable speed operation	p.61
Linked-motion2	Dwell time (stop waiting time) can be set between operation data. Operation data whose rotation direction is different can also be linked.	p.62

Starting method of positioning operation

The following two types are available in the starting method.

Name	Description
Data number selecting operation	When the START input is turned ON with selecting the operation data No. by a combination of the M0 to M5 inputs, the positioning operation will perform.
Sequential positioning operation	Positioning operation is performed to the next operation data No. every time a START input signal is input.

• Data number selecting operation

Select an operation data based on a combination of ON/OFF status of the M0 to M5 inputs. See p.42 for details. If all M0 to M5 inputs are turned OFF, sequential operation will be selected.

Operation data No.	M5	M4	M3	M2	M1	MO
Sequential operation	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
•						•
	•	•	•	•	•	•
	•	•	•	•	•	
61	ON	ON	ON	ON	OFF	ON
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

Operating method

- 1) Check the READY output is ON.
- 2) Select the operation data No. by a combination of the M0 to M5 inputs and turn the START input ON.
- 3) The motor starts positioning operation.
- 4) Check that the READY output has been turned OFF and turn the START input OFF.
- 5) When the positioning operation is completed, the READY output will be turned ON.

		No.1	
Motor operation			
M0 to M5 input* ON No.0		No.1	
START input* ON			
READY output OFF			57
ON MOVE output OFF	3		\rightarrow

* When controlling the motor via network communication, operation is performed even if the M0 to M5 input and operation input are turned ON simultaneously.

Sequential positioning operation

When the "sequential positioning" of the operation data is set to "Enable," positioning operation for the next operation data number is performed every time the START input turns ON. This function is useful when multiple positioning operations must be performed sequentially, because there is no need to select each data number by the M0 to M5 inputs.

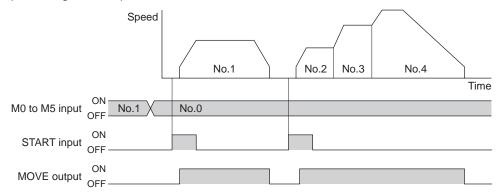
When the "sequential positioning" of the operation data is executed up to the data number set to "Disable," the operation returns to the operating data No.1 and the sequential operation will start again.

Note Set the "sequential positioning" of the operation data No.1 to "Enable" without fail because the sequential operation starts from the operating data No.1.

When the operating pattern is one type

- 1) The positioning operation for the operation data No.1 is performed by turning the START input ON.
- 2) After the operation 1) is completed, when turning the START input ON again, the positioning operation for the operation data No.2 will be performed.
- After the operation 2) is completed, when turning the START input ON again, the positioning operation for the operation data No.3 will be performed.
- 4) After the operation 3) is completed, when turning the START input ON again, the positioning operation will be performed by returning to the operation data No.1 because the sequential positioning for the operation data No.4 has been set to «disable.»

Setting example		_		
Operation data	Sequential positioning	-		
No.1		-		
No.2	Enable			
No.3				
No.4	Disable	_		
① START =ON			Operation	④ START =ON
data	No.1 data No	0.2	data No.3	


When the operating patterns are multiple

This section explains how to operate when performing the sequential positioning operation by the following operation data.

Operation data	Operation function	Sequential positioning
No.0	-	-
No.1	Single-motion	Enable
No.2	Linked-motion	Enable
No.3	Linked-motion	Enable
No.4	Single-motion	Enable
No.5	Single-motion	Disable
No.11	Single-motion	Enable
No.12	Single-motion	Enable
No.13	Single-motion	Disable

An example when executing the operation data No.0 first

- 1) When selecting the data No.0 and turning the START input ON, a single operation for the data No.1 is performed.
- 2) After the operation 1) is completed, when turning the START input ON again, the linked-motion operation for the operation data No.2 to No.4 will be performed.
- 3) After the operation 2) is completed, when turning the START input ON again, a single operation for the operation data No.1 will be performed by returning to the operation data No.1 because the "sequential positioning" for the operation data No.5 has been set to "Disable."

Note When performing the sequential positioning operation for the operation data which "operation function" is set to "Linked-motion" or "Linked-motion2," set the "sequential positioning" to "Enable."

An example when executing the operation No.0 after executing the operating data No.11

- 1) When selecting the data No.11 and turning the START input ON, a single operation for the data No.11 is performed.
- 2) After the operation 1) is completed, when selecting the data No.0 and turning the START input ON, a single operation for the operation data No.12 will be performed.
- 3) After the operation 2) is completed, when turning the START input ON again, a single operation for the operation data No.1 will be performed by returning to the operation data No.1 because the "sequential positioning" for the operation data No.13 has been set to "Disable."

An example when the "sequential positioning" for the operation data No.1 is set to "Disable"

When selecting the data No.0 and turning the START input ON while the "sequential positioning" for the operation data No.1 is set to "Disable," an operation data error alarm will generate.

An example when executing the data No.0 after executing the data No.11 and No.12 while the "sequential positioning" for the operation data No.1 is set to "Disable"

An operation data error alarm will generate.

Note

- The operation data will return to the data No.1.
- \cdot When performing return-to-home operation
- \cdot When presetting the command position
- \cdot When turning the STOP input OFF
- \cdot When performing continuous operation
- · When turning the AWO input ON (factory setting: normally open)
- · When resetting an alarm after it was generated
- \cdot When performing teaching function or JOG operation using the **OPX-2A** or **MEXE02**

Operating method

- 1) Check the READY output is ON.
- 2) Turn the START input ON.
- 3) The motor starts positioning operation.
- 4) Check that the READY output has been turned OFF and turn the START input OFF.
- 5) When the positioning operation is completed, the READY output will be turned ON.

Motor operation		\downarrow
ON SSTART input OFF -		
READY output ON OFF		57
ON MOVE output OFF -	3	
END output OF		

Stop the positioning operation

When the STOP input is turned ON, the current positioning operation stops. (Factory setting: normally closed)

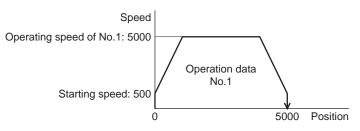
Absolute mode

In the absolute mode, the absolute position (distance) is set with reference to the home position. If the operation is resumed after stopping the motor on the way, it will move to the specified position.

Incremental mode

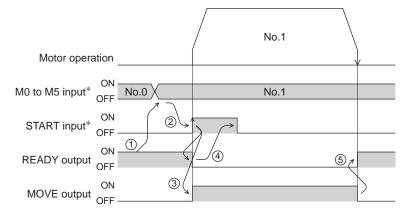
The incremental mode, the destination of each movement (current position) becomes the starting point of the next movement. If the operation is stopped on the way, the stopped position (current position) will become the starting point of the next operation.

Operation function


• Single-motion

The positioning operation is performed only once using a single operation data set.

• Example of single-motion operation


Operation data	Position	Operating speed	Acceleration	Deceleration	Operation mode	Operation function	Dwell time	Sequential positioning
No.1	5000	5000	30000	30000	INC	Single- motion	Not used	Not used

Operation example

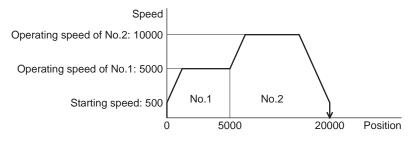
Operating method

- 1) Check the READY output is ON.
- 2) Select the operation data No.1 by turning the M0 input ON, and turn the START input ON.
- 3) The motor starts positioning operation of the operation data No.1.
- 4) Check that the READY output has been turned OFF and turn the START input OFF.
- 5) When the positioning operation is completed, the READY output will be turned ON.

• Linked-motion operation

When the "operation function" is set to "linked-motion" using operation data, positioning operation based on the next data number will be performed without stopping the motor.

If operation data includes data for which "single-motion" is set, the motor will stop after the positioning with respect to the "single" operation data is completed.


A maximum of 4 operation data can be linked. Note that only operation data of the same direction can be linked.

- Note Multiple operation data of different directions cannot be linked. An operation data error alarm will generate during operation.
 - Up to four sets of operation data can be linked. When combining the linked-motion operation and the linked-motion operation2, make sure the total number of linked operation data sets does not exceed four. When linked-motion operation is performed with five or more sets of operation data linked together, an operation data error alarm will generate upon start of operation.
 - No.1 will not be linked even when "linked-motion" is set for data No.63, because the operation pertaining to No.63 will be processed independently.
 - The acceleration/deceleration in linked-motion operation corresponds to the acceleration/ deceleration specified for the operation data No. with which the linked-motion operation is started.

• Example of linked-motion operation

Operation data	Position	Operating speed	Acceleration	Deceleration	Operation mode	Operation function	Dwell time	Sequential positioning
No.1	5000	5000	30000	30000	INC	Linked- motion	Not used	Not used
No.2	20000	10000	Not used	Not used	INC	Single- motion	Not used	Not used

Operation example

Operating method

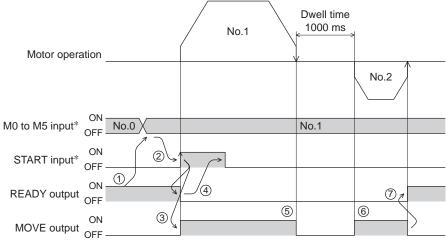
- 1) Check the READY output is ON.
- 2) Select the operation data No.1 by turning the M0 input ON and turn the START input ON.
- 3) The motor starts the positioning operation in which the operation data No.1 and No.2 are linked.
- 4) Check that the READY output has been turned OFF and turn the START input OFF.
- 5) When the positioning operation is completed, the READY output will be turned ON.

	_	/		
Motor operation		No.1	No.2	
M0 to M5 input* ON	lo.0 X	١	No.1	
ON START input [*] OFF —		\rightarrow		
READY output		4		57
ON MOVE output OFF	3			

• Linked-motion operation2

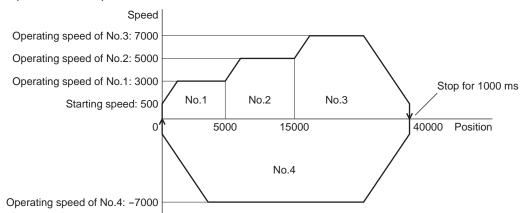
By setting the "operation function" of operation data to "Linked-motion2," an operation data whose rotation direction is different can be linked. In this case, the system stops for the dwell time after each positioning operation, and then performs operation according to the next operation data. If operation data includes data for which "single-motion" is set, the motor will stop after the positioning with respect to the "single" operation data is completed.

- Up to four sets of operation data can be linked. When combining the linked-motion operation and the linked-motion operation2, make sure the total number of linked operation data sets does not exceed four. When linked-motion operation is performed with five or more sets of operation data linked together, an operation data error alarm will generate upon start of operation.
 - No.1 will not be linked even when "linked-motion2" is set for data No.63, because the operation pertaining to No.63 will be processed independently.

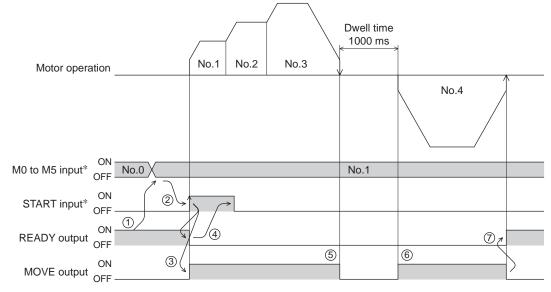

• Example of	linked-motion	operation
	minicu motion	operation

Operation data	Position	Operating speed	Acceleration	Deceleration	Operation mode	Operation function	Dwell time	Sequential positioning
No.1	5000	5000	30000	30000	INC	Linked- motion2	1000	Not used
No.2	-3000	3000	30000	30000	INC	Single- motion	0	Not used

Operating method


- 1) Check the READY output is ON.
- 2) Select the operation data No.1 by turning the M0 input ON and turn the START input ON.
- 3) The motor starts the positioning operation for the operation data No.1.
- 4) Check that the READY output has been turned OFF and turn the START input OFF.
- 5) When the positioning operation 3) is completed, the MOVE output will be turned OFF.
- 6) When the dwell time has passed, the positioning operation for the operation data No.2 will automatically start. At the same time, the MOVE output will be turned ON.
- 7) When the positioning operation for the operation data No.2 is completed, the READY output will be turned ON.

Operation data	Position	Operating speed	Acceleration	Deceleration	Operation mode	Operation function	Dwell time	Sequential positioning
No.1	5000	3000	30000	30000	INC	Linked- motion	Not used	Not used
No.2	10000	5000	Not used	Not used	INC	Linked- motion	Not used	Not used
No.3	25000	7000	Not used	Not used	INC	Linked- motion2	1000	Not used
No.4	0	7000	30000	30000	ABS	Single- motion	Not used	Not used


• Example of linked-motion operation

Operation example

Operating method

- 1) Check the READY output is ON.
- 2) Select the operation data No.1 by turning the M0 input ON and turn the START input ON.
- 3) The motor starts the positioning operation in which the operation data from No.1 to No.3 are linked.
- 4) Check that the READY output has been turned OFF and turn the START input OFF.
- 5) When the positioning operation 3) is completed, the MOVE output will be turned OFF.
- 6) When the dwell time has passed, the positioning operation for the operation data No.4 will automatically start. At the same time, the MOVE output will be turned ON.
- 7) When the positioning operation for the operation data No.4 is completed, the READY output will be turned ON.

2.2 **Return-to-home operation**

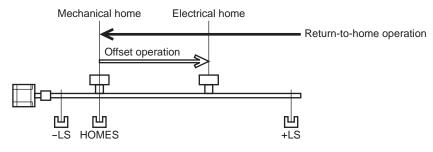
Return-to-home is an operation in which the reference point of positioning (mechanical home position) is detected automatically. Return-to-home operation is performed to return to the home position from the current position when the power supply is turned on or the positioning operation is completed. R

	Return-to-home opera	tion can be perfo	ormed in the foll	owing three modes:
--	----------------------	-------------------	-------------------	--------------------

Item	Description	Feature
	The motor operates at the "operating speed of home-seeking."	• 3 external sensors are needed *1
3-sensor mode	When the HOME sensor is detected, the motor will stop and the stop position will be the home position.	 Operating speed is high (Operating speed of return to-home)
2-sensor mode	The motor operates at the "starting speed of home-seeking." When the limit sensor is detected, the motor will rotate in the reverse direction and escape from the limit sensor. After escaping from the limit sensor, the motor will move 200 steps and stop, and then the stop position will be the home position. *2	 2 external sensors are needed Operating speed is low (Starting speed of return- to-home)
Position preset	When executing the P-PRESET input at the position that the motor stops, the command position will be the value of the "preset position" parameter. The home position can be set to any position.	 No external sensor is needed The home position can be set to any position.

*1 In the case of a rotating mechanism, even when using one external sensor, the home position can be detected.

*2 The factory setting is 200 steps. It can be changed to a desired value using the "backward steps in 2-sensor mode homeseeking" parameter.


Additional function

Item	2-sensor mode 3-sensor mode	Position preset	Related parameter
Home offset	Possible	Not possible	Position offset of home-seeking
External sensor (signal) detection	Possible	Not possible	SLIT detection with home-seekingTIM signal detection with home-seeking
Command position after returning to home	The position becomes "0"	Any position	Preset position

Home offset

This is a function to perform positioning operation of the offset amount set by the parameter after return-to-home operation and to set the stop position to the home position. The position set by the home offset is called «electrical home» in distinction from the usual home position.

If the amount of offset from mechanical home is "0," the mechanical home and electrical home will become the same.

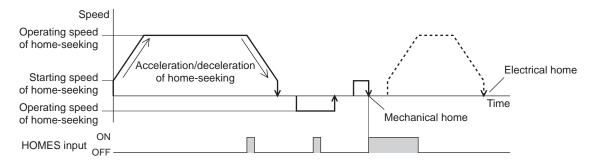
Detecting the external sensor (signal)

When detecting the home, use of the SLIT input and/or TIM signal will increase the accuracy of home detection.

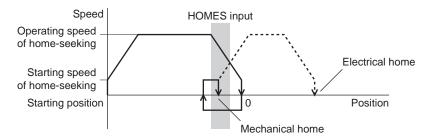
Note When the TIM output is used, set the resolution to be an integral multiple of 50.

· Command position after returning to home

When executing the P-PRESET input at the position that the motor stops, the command position will be the value of the «preset position» parameter.


Parameter name	Description	Setting range	Initial value
Home-seeking mode	Set the mode for return-to-home operation.	0: 2-sensor mode 1: 3-sensor mode	1
Operating speed of home-seeking	Sets the operating speed for return-to-home operation.	1 to 500,000 Hz	1000
Acceleration/ deceleration of home- seeking	Sets the acceleration/deceleration rate or time for return-to-home operation.	0.001 to 1000.000 ms/kHz	30.000
Starting speed of home- seeking	Sets the starting speed for return-to-home operation.	1 to 500,000 Hz	100
Position offset of home- seeking	Sets the amount of offset from mechanical home.	-8,388,608 to 8,388,607 step	0
Starting direction of home-seeking	Sets the starting direction for home detection.	0: Negative direction 1: Positive direction	1
SLIT detection with home-seeking	Sets whether or not to concurrently use the SLIT input for return-to-home operation.	0: Disable 1: Enable	
TIM signal detection with home-seeking	Sets whether or not to concurrently use the TIM signal or ZSG signal for return-to-home operation.	0: Disable 1: Enable (TIM) 2: Enable (ZSG) *	0
Backward steps in 2-sensor mode home- seeking	Sets the travel amount after the motor pulls out from the LS sensor in 2-sensor return- to-home operation.	0 to 32767 step	200

Parameters related to return-to-home operation


* This signal is used when an encoder is connected.

• Operation example (when using 3-sensor mode)

Operating sequence in seeing a time axis

Operating sequence in seeing a travel amount

- Operating method
 - 1) Check the READY output is ON.
 - 2) Turn the HOME input ON.
 - 3) Return-to-home operation will be started.
 - 4) Check that the READY output has been turned OFF and turn the HOME input OFF.
 - 5) When return-to-home operation is completed, the HOME-P output will be turned ON.

Motor operation			
ON HOME input OFF -			
READY output ON -			
ON MOVE output OFF -	3)
ON HOME-P output OFF -		5	
ON HOMES input OFF -			

Operation sequence of the 3-sensor mode

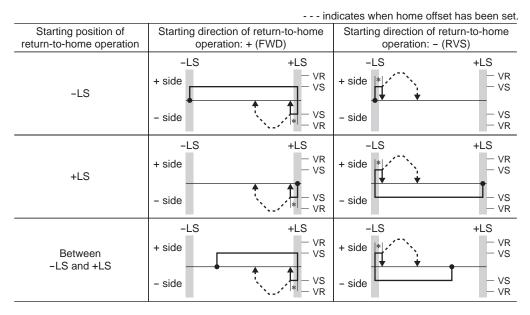
The home is detected using the three sensors of +LS, -LS and HOMES. The ON edge of HOMES defines the home. If the "SLIT detection with home-seeking" parameter is set to "Enable," an AND gate will be applied to the ON edge of HOMES and the SLIT input, thereby enabling more accurate home detection.

Also note that by setting the "TIM signal detection with home-seeking" parameter to "Enable," an AND gate can be applied to the TIM signal or encoder Z-phase signal.

	indicates when home offset has been se					
Starting position of	Starting direction of return-to-home				lirection of return-	
return-to-home operation	operation: + (FWD)			0	peration: - (RVS)	
	-LS	HOMES	+LS	-LS	HOMES	+LS
-LS	+ side		— VR — VS	+ side		— VR — VS
	- side	↑ []	— VS — VR	- side		— VS — VR
	-LS	HOMES	+LS	-LS	HOMES	+LS
+LS	+ side	∨∟∏↓	— VR — VS	+ side		— VR — VS
	- side		- VS - VR	- side		
	-LS	HOMES	+LS	-LS	HOMES	+LS
HOMES	+ side	VL T	— VR — VS	+ side		— VR — VS
	- side	↑ LI `_/	— VS — VR	– side		— VS — VR
	-LS	HOMES	+LS	-LS	HOMES	+LS
Between HOMES and -LS	+ side		— VR — VS	+ side		— VR — VS
	- side		— VS — VR	- side		— VS — VR
	-LS	HOMES	+LS	-LS	HOMES	+LS
Between HOMES and +LS	+ side	VL T	- VR - VS	+ side		— VR — VS
	- side		- VS - VR	- side		- VS - VR

VS: Starting speed of home-seeking

VR: Operating speed of home-seeking


VL: Last speed of return-to-home (When VS < 500 Hz: VS, When VS \ge 500 Hz: 500 Hz)

Operation sequence of the 2-sensor mode

The home is detected using +LS and -LS. When the motor pulls off of the limit sensor and both +LS and -LS turn OFF, the applicable position will be used to define the home.

If the "SLIT detection with home-seeking" parameter is set to "Enable," an AND gate will be applied to the ON edge of HOMES and the SLIT input, thereby enabling more accurate home detection.

Also note that by setting the "TIM signal detection with home-seeking" parameter to "Enable," an AND gate can be applied to the TIM signal or encoder Z-phase signal.

VS: Starting speed of home-seeking VR: Operating speed of home-seeking

* After pulling off of the limit sensor, the equipment will move by the value set in the "backward steps in 2-sensor mode home-seeking" parameter (initial value: 200 steps).

When an AND gate is applied to the SLIT signal, TIM signal or encoder Z-phase signal, the home position will be detected after moving the value set in the "backward steps in 2-sensor mode home-seeking" parameter.

Position preset

When the P-PRESET input is turned ON, the command position is set as the value of the «preset position» parameter. However, the preset will not execute in the following conditions.

- When the motor is operating
- When an alarm is present

Related parameters

Parameter name	Description	Setting range	Initial value
Preset position	Sets the preset position.	-8,388,608 to 8,388,607 step	0

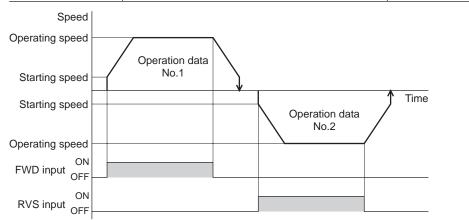
- Operating method
 - 1) Check the READY output is ON.
 - 2) Turn the P-PRESET input ON
 - 3) When the driver internal processing is completed, the HOME-P output will be turned ON.
 - 4) Check the HOME-P output has been turned ON, and then turn the P-PRESET input OFF.

ON P-PRESET input OFF	
ON READY output OFF	
ON HOME-P output OFF	<u>3()</u>
Command position ON OFF	Preset position

2.3 Continuous operation

The motor operates continuously while the FWD or RVS input is ON.

Operation is performed based on the FWD or RVS input and the operating speed corresponding to the selected operation data No. When the operation data No. is changed during continuous operation, the speed will change to the speed specified by the new operation data No.


When the FWD or RVS input is turned OFF, the motor will decelerate to a stop. If the signal of the same direction is turned ON again during deceleration, the motor will accelerate and continue operating.

If the FWD and RVS inputs are turned ON simultaneously, the motor will decelerate to a stop.

Operation data

Operation data for continuous operation are as follows.

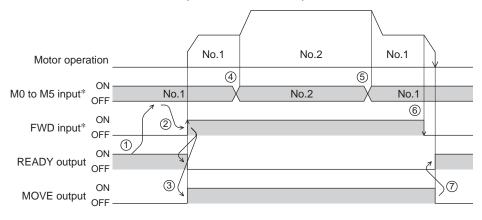
Name	Description	Setting range	Initial value
Operating speed	Sets the operating speed in continuous operation.	1 to 500,000 Hz	1000
Acceleration rate	Sets the acceleration rate in continuous operation.	0.001 to 100.000	30.000
Deceleration rate	Sets the deceleration rate in continuous operation.	ms/kHz	30.000

* The acceleration/deceleration for continuous operation can be set as follows using the «acceleration/deceleration type» parameter:

Separate: The acceleration/deceleration set under the applicable operation data No. will be followed. (Each 63 data for acceleration and deceleration)

Common: The setting of the «common acceleration» and «common deceleration» parameter will be followed. (Each 1 data for acceleration and deceleration)

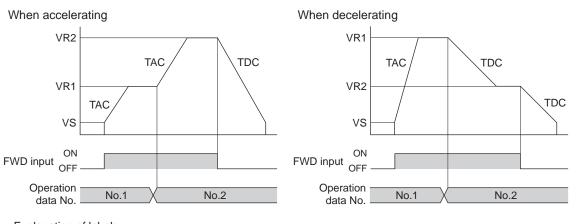
Starting method of continuous operation


When selecting the operation data No. and turning the FWD input or RVS input ON, continuous operation will be started.

Select an operation data based on a combination of ON/OFF status of the M0 to M5 inputs. See p.<?> for details.

Operation data No.	M5	M4	M3	M2	M1	M0
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
3	OFF	OFF	OFF	OFF	ON	ON
	•	•	•	•	•	•
	•	•	•	•	•	•
61	ON	ON	ON	ON	OFF	ON
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

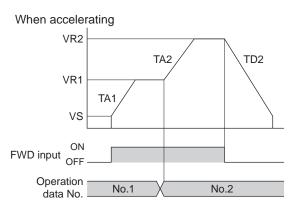
Operating method

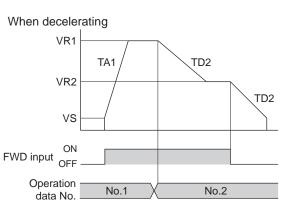

- 1) Check the READY output is ON.
- 2) Select the operation data No. by a combination of the M0 to M5 inputs and turn the FWD input ON.
- 3) The motor starts continuous operation. The READY output will be turned OFF.
- 4) Select the operation data No.2 by turning the M0 input ON. The motor accelerates to the operating speed of the operation data No.2.
- 5) Select the operation data No.1 by turning the M0 input OFF and M1 input ON. The motor decelerates to the operating speed of the operation data No.1.
- 6) Turn the FWD input OFF.
- 7) The motor will decelerate to a stop and the READY output will be turned ON.

* When controlling the motor via network communication, operation is performed even if the M0 to M5 input and operation input are turned ON simultaneously.

Variable speed operation

• When acceleration/deceleration rate is «common»




Explanation of labels

- VS: Starting speed (Hz)
- VR1: Operating speed of operation data No.1 (Hz)
- VR2: Operating speed of operation data No.2 (Hz)
- TAC: Common acceleration rate

TDC: Common deceleration rate

• When acceleration/deceleration rate is «separate»

• Explanation of labels

VS: Starting speed (Hz)

VR1: Operating speed of operation data No.1 (Hz) VR2: Operating speed of operation data No.2 (Hz)

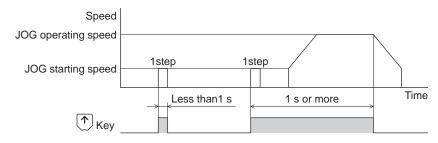
TA1: Acceleration rate of operation data No.1 TA2: Acceleration rate of operation data No.2 TD2: Deceleration rate of operation data No.2

2.4 Other operation

Test operation

Test operation is performed using the **OPX-2A** or **MEXE02**. JOG operation, teaching function and positioning operation can be performed.

For details, refer to the operating manual for each product.


JOG operation

Connection condition or operation status for the motor and driver can be checked using JOG operation.

Related parameters

Parameter name	Description	Setting range	Initial value
JOG operating speed	Sets the operating speed for JOG operation.	1 to 500,000 Hz	1000
Acceleration/deceleration rate of JOG	Sets the acceleration/deceleration rate or time for JOG operation.	0.001 to 1000.000 ms/kHz	30.000
JOG starting speed	Sets the starting speed for JOG operation.	1 to 500,000 Hz	100

Example: When performing JOG operation with the OPX-2A

Teaching function

This is a function to move the motor using the **OPX-2A** or **MEXE02** and set the current position as the position (travel amount) of the operation data. When the position (travel amount) is set using teaching function, the «operation mode» will always be the absolute mode. The operating speed, acceleration/deceleration and starting speed of teaching function are same as those of JOG operation.

Positioning operation

This is a function to check the set operation data in advance using the **OPX-2A** or **MEXE02**. It is a convenient function when checking the operation without connecting a programmable controller. Stop operation

STOP action

When the STOP input is turned ON or STOP is commanded via RS-485 communication while the motor is operating, the motor will stop. The stopping mode is determined by the setting of the "STOP input action" parameter.

For example, the operation when setting "STOP input action" parameter to "deceleration stop" is shown in the figure to the right.

• Hardware overtravel

Hardware overtravel is the function that limits the operation range by installing the limit sensor $(\pm LS)$ at the upper and lower limit of the operation range. If the "hardware overtravel" parameter is set to "enable", the motor can be stopped when detecting the limit sensor.

The stopping mode is determined by the setting of "overtravel action" parameter.

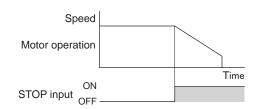
The operation example when setting the "overtravel action" parameter to «immediate stop» is shown in the figure to the right.

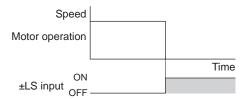
• Software overtravel

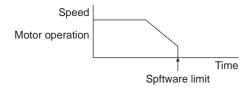
The software overtravel is a function that limits the range of movement via software settings.

If the "software overtravel" parameter is set to "enable", the motor can be stopped when exceeding the software limit. The stopping mode is determined by the setting of "overtravel action" parameter.

The operation example shown on the right applies when an operation where a software limit is to be exceeded is started.


Note Software overtravel will become effective after the position origin is set. See p.80 for setting the position origin.


• Escape from the limit sensor


It is possible to escape in the negative direction when detecting the positive direction limit, and possible to escape in the positive direction when detecting the negative direction limit.

The following operations can be used when escaping from the limit sensor.

Types of operation	Limit sensors (±LS)	Software limit
Positioning operation	Will not operate (unable to escape)	
Continuous operation Test operation Return-to-home operation	Allowed to operate (able to escape)	Allowed to operate (able to escape)

3 Operation data

Up to 63 operation data can be set (data Nos.1 to 63).

If the data is changed, a recalculation and setup will be performed after the operation is stopped.

Name	Description	Setting range	Initial value
Position No.1 to Position No.63	Sets the position (distance) for positioning operation.	-8,388,608 to +8,388,607 step	0
Operating speed No.1 to Operating speed No.63	Sets the operating speed in positioning operation and continuous operation.	0 to 500,000 Hz	1000
Operation mode No.1 to Operation mode No.63	Selects how to specify the position (travel amount) in positioning operation (absolute mode or incremental mode).	0: INC (Incremental) 1: ABS (Absolute)	0
Operation function No.1 to Operation function No.63	Selects how to operate consecutive operation data.	0: Single-motion 1: Linked-motion 2: Linked-motion 2	0
Acceleration rate No.1 to Acceleration rate No.63	Sets the acceleration rate in positioning operation and continuous operation. *	0.001 to 1000.000	30.000
Deceleration rate No.1 to Deceleration rate No.63	Sets the deceleration rate in positioning operation and continuous operation. *	ms/kHz	
Sequential positioning No.1 to Sequential positioning No.63	Sets whether to enable or disable sequential positioning operation.	0: Disable 1: Enable	0
Dwell time No.1 to Dwell time No.63	Sets the dwell time to be used in linked-motion operation 2.	0 to 50000 (1=0.001 s)	0

* This item is effective when the "acceleration/deceleration type" parameter is set to "separate". If this parameter is set to "common", the values of the "common acceleration" and "common deceleration" parameters will be used (initial value: separate).

Parameter 4

The parameters are saved in the RAM or non-volatile memory. The data saved in the RAM will be erased once the power supply is turned off. On the other hand, the parameters saved in the non-volatile memory will be retained even after the power supply is turned off.

When turning the driver 24 VDC power ON, the parameters saved in the non-volatile memory will be sent to the RAM. Then, the recalculation and setup for the parameters are executed in the RAM.

Note • The parameters are written in the RAM when writing via RS-485 communication.

• The non-volatile memory can be rewritten approximately 100,000 times.

4.1 Parameter list

	Application	parameter
--	-------------	-----------

	START input mode	Data No. input mode
	I/O STOP input	 AWO contact configuration
	STOP action	Hardware overtravel detection
	STOP contact configuration	 LS contact configuration
	C-ON logic configuration	 HOMES contact configuration
I/O parameter (p.75)	OUT1 signal mode selection	 SLIT contact configuration
	OUT2 signal mode selection	Overtravel action
	OUT3 signal mode selection	Preset position
	OUT4 signal mode selection	• Area 1
	HOME/P-PRESET input switching	• Area 2
	Motor excitation mode	 Encoder counter preset value
	HOME/FWD/RVS input mode	
Motor parameter	Operating current	
(p.76)	Standstill current	
Speed parameter	Common acceleration rate	 Jog operating speed
	Common deceleration rate	 Jog acceleration (deceleration) rate
(p.76)	Starting speed	 Jog starting speed
		Acceleration (deceleration) rate type
	Home-seeking mode	Starting direction of home-seeking
	 Operating speed of home-seeking 	 SLIT detection with home-seeking
Return-to-home parameter (p.77)	 Acceleration (deceleration) rate of home-seeking 	 TIM signal detection with home- seeking
	Starting speed of home-seeking	 Backward steps in 2-sensor mode
	Position offset of home-seeking	home-seeking
	Stepout detection band	
Alarm/warning parameter (p.77)	Overvoltage warning	
(p.77)	Overheat warning	
	Software overtravel	Communication timeout action
•	Positive software limit	Receive period
Common parameter (p.78)	Negative software limit	 Response interval
	• Negative Software minit	
(p.78)	• Display mode of the data setter speed	1

System parameter

Operation setting parameter (p.78)	Motor rotation direction	Encoder electronic gear A
	Stepout detection	Encoder electronic gear B
(p.70)	Motor step angle	
Communication parameter (p.79)	Communication axis number	 Transmission waiting time
	Communication protocol	 Communication timeout
	Communication parity	 Communication error alarm
	Communication stop bit	

Note When a system parameter has been changed, the new parameter will become effective after the power is cycled.

4.2 I/O parameter

•			
Parameter name	Description	Setting range	Initial value
START input mode *1	Sets whether to input the START input signal via I/O or RS-485 communication.	0: RS-485 communication 1: I/O	1
I/O STOP input *1*2	Changes the setting to enable/disable STOP input of I/O.	0: Disable 1: Enable	1
STOP action	Sets how the motor should stop when a STOP input is turned ON.	0: Immediate stop 1: Decelerate stop 2: Immediate stop & Current OFF 3: Decelerate stop & Current OFF	1
STOP contact configuration	Sets the STOP input logic.	0: Make (N.O.) 1: Break (N.C.)	1
C-ON logic configuration *3	Sets the C-ON logic for RS-485 communication.	0: 0=Not excited, 1=Excited 1: 0=Excited, 1=Not excited	0
OUT1 signal mode selection	Sets the function assigned to the OUT1 output.	5: AREA 11: R-OUT1	5
OUT2 signal mode selection	Sets the function assigned to the OUT2 output.	6: TIM 12: R-OUT2 7: READY 13: STEPOUT *5	7
OUT3 signal mode selection	Sets the function assigned to the OUT3 output.	8: WNG 14: O.H. 9: HOME-P 15: R-OUT3 10: ZSG *5 16: R-OUT4	8
OUT4 signal mode selection	Sets the function assigned to the OUT4 output.		9
HOME/P-PRESET input switching	Sets whether to use HOME or P-PRESET input.	0: HOME 1: P-PRESET	0
Motor excitation mode *1	Sets whether to control the motor excitation via I/O or RS-485 communication.		
HOME/FWD/RVS input mode *1	Sets whether to input the HOME, FWD and RVS input signals via I/O or RS-485 communication.	0: RS-485 communication 1: I/O	1
Data No. input mode *1	Sets whether to input the M0 to M5 input signals via I/O or RS-485 communication.		
AWO contact configuration	Sets the AWO input logic.	0: Make (N.O.) 1: Break (N.C.)	0
Hardware overtravel detection *4	Sets whether to enable or disable hardware overtravel detection using LS inputs.	0: Disable 1: Enable	1
LS contact configuration	Sets the ±LS input logics.		
HOMES contact configuration	Sets the HOMES input logic.	0: Make (N.O.) 1: Break (N.C.)	0
SLIT contact configuration	Sets the SLIT input logic.]	
Overtravel action	Sets the motor action to take place upon the occurrence of overtravel.	0: Immediate stop 1: Decelerate stop	0
		· · ·	1

*1 Set the parameter when controlling the system via RS-485 communication.

*2 If this parameter is disabled, the I/O STOP input will become ineffective and only the stop input received via RS-485 communication will become effective.

*3 When "Motor excitation mode" parameter is set to "RS-485 communication", the excitation condition of the motor at the power ON varies depending on the "C-ON logic configuration" parameter. The motor is not excited if the "C-ON logic configuration" parameter is set to "0," and excited if the parameter is set to "1."

*4 Even when this parameter is disabled, the ±LS will still become effective during a return-to-home operation.

*5 This signal is used when an encoder is connected.

Parameter name	Description	Setting range	Initial value
Preset position	Sets the preset position.		
Area 1	Sets the range for AREA output. The AREA output will be ON when the motor is inside	-8,388,608 to +8,388,607 step	
Area 2	the area set by the area 1 and area 2.		0
Encoder counter preset value *6	Sets the encoder counter preset value.		

*6 This parameter is used when an encoder is connected.

4.3 Motor parameter

Parameter name	Description	Setting range	Initial value
Operating current	Sets the motor operating current based on the rated current being 100%.	5 to 100%	100
Standstill current	Sets the motor standstill current as a percentage of the rated current, based on the rated current being 100%.	5 to 50%	50

• Decrease the operating current and standstill current when there is an allowance in the motor torque and you wish to reduce vibration during operation or suppress heat generation from the motor. However, be careful of an excessive decrease in current, since the motor torque and holding brake force will drop in rough proportion to the operating current.

• The standstill current is the rated current (100%) multiplied by the standstill current ratio.

4.4 Speed parameter

Parameter name	Description	Setting range	Initial value
Common acceleration rate	Sets the common acceleration rate in positioning operation and continuous operation.	0.001 to 1000.000 ms/kHz	30.000
Common deceleration rate	Sets the common deceleration rate in positioning operation and continuous operation.	0.001 to 1000.000 ms/kmz	
Starting speed	Sets the starting speed in positioning operation and continuous operation. The motor will operate at the starting speed if the operating speed is below the starting speed.	1 to 500,000 Hz	100
Jog operating speed	Sets the operating speed for JOG operation.		1000
Jog acceleration/ deceleration rate	Sets the acceleration/deceleration rate for JOG operation.	0.001 to 1000.000 ms/kHz	30.000
Jog starting speed	Sets the starting speed for JOG operation.	1 to 500,000 Hz	100
Acceleration/ deceleration type	Sets whether to use the common acceleration/ deceleration rate or the acceleration/deceleration rate specified for the operation data.	0: Common 1: Separate	0

4.5 Return-to-home parameter

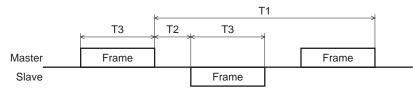
Parameter name	Description	Setting range	Initial value
Home-seeking mode	Set the mode for return-to-home operation.	0: 2 sensors 1: 3 sensors	1
Operating speed of home- seeking	Sets the operating speed for return-to-home operation.	1 to 500,000 Hz	1000
Acceleration/ deceleration rate of home-seeking	Sets the acceleration/deceleration rate for return-to- home operation.	0.001 to 1000.000 ms/kHz	30.000
Starting speed of home- seeking	Sets the starting speed for return-to-home operation.	1 to 500,000 Hz	100
Position offset of home- seeking	Sets the amount of offset from mechanical home.	-8,388,608 to +8,388,607 step	0
Starting direction of home- seeking	Sets the starting direction for home detection.	0: Negative direction 1: Positive direction	1
SLIT detection with home- seeking	Sets whether or not to concurrently use the SLIT input for return-to-home operation.	0: Disable 1: Enable	0
TIM signal detection with home-seeking	Sets whether or not to concurrently use the TIM (ZSG) output for return-to-home operation.	0: Disable 1: Enable (TIM) 2: Enable (ZSG) *	0
Backward steps in 2-sensor mode home-seeking	Sets the travel amount after the motor pulls out from the LS sensor in 2-sensor return-to-home operation.	0 to 32767 step	200

* This signal is used when an encoder is connected.

4.6 Alarm/warning parameter

Parameter name	Description	Setting range	Initial value
Stepout detection band *	Sets the judgment condition for misstep detection using the deviation (angle) between the command position and encoder counter value.	0.1 to 360.0 deg	7.2
Overvoltage warning	Sets the voltage at which an overvoltage warning generates.	25.0 to 35.0 V	31.0
Overheat warning	Sets the temperature at which an overheat warning generates.	40 to 85 °C (104 to 185 °F)	85

* This signal is used when an encoder is connected.


4.7 Common parameter

Parameter name	Description	Setting range	Initial value
Software overtravel	Sets whether to enable or disable software overtravel detection using soft limits.	0: Disable 1: Enable	1
Positive software limit	Sets the value of soft limit in +direction.	-8,388,608 to	8,388,607
Negative software limit	Sets the value of soft limit in -direction.	+8,388,607 steps	-8,388,608
Display mode of the data setter speed	Sets the display method of monitored speed in the OPX-2A .	0: Signed 1: Absolute	0
The data setter editing mode *1	Sets whether to enable editing by the OPX-2A when the power is turned on.	0: Disable 1: Enable	1
Communication timeout action	Sets how to stop the motor when a communication timeout occurs.	0: Immediate stop 1: Decelerate stop	1
Receive period *2	Sets the receive period for RS-485 communication (T1). See p.104 for details.	0: Function disabled 0.01 to 9.99 sec.	0
Response interval *2	Sets the response period for RS-485 communication (T2). See p.104 for details.	0 to 1000 ms	50
Receive monitoring *2	Sets the receive monitor period for RS-485 communication (T3). See p.104 for details.	0.01 to 9.99 sec.	0.10
Stepout detection action *3	Sets the operation to be performed when the deviation between the command position and encoder counter value reaches the stepout detection band.	0: No operation (alarm/ warning not present) 1: Warning 2: Alarm	0

*1 The edit lock function can be activated/cancelled using the **OPX-2A**.

*2 Set this parameter when GW Protocol Version 1 is used.

*3 This parameter is used when an encoder is connected.

4.8 Operation setting parameter

-	• •		
Parameter name	Description	Setting range	Initial value
Motor rotation direction	Sets the rotation direction of motor output shaft.	0: +direction=CCW 1: +direction=CW	1
Stepout detection *	Sets whether to enable or disable the misstep detection function.	0: Disable 1: Enable	0
Motor step angle	Sets the motor step angle.	See table below.	0
Encoder electronic gear A *	Sets the encoder electronic gear A.	- 1 to 250,000	500
Encoder electronic gear B *	Sets the encoder electronic gear B.	1 10 250,000	500

* When an encoder is connected, this parameter is used in the misstep detection function. It does not affect the encoder counter value.

• "Motor step angle" parameter: If the base step angle of the motor is 0.72°

Setting	Step angle	Number of divisions	Setting	Step angle	Number of divisions
0	0.72°	1	8	0.0288°	25
1	0.36°	2	9	0.018°	40
2	0.288°	2.5	10	0.0144°	50
3	0.18°	4	11	0.009°	80
4	0.144°	5	12	0.0072°	100
5	0.09°	8	13	0.00576°	125
6	0.072°	10	14	0.0036°	200
7	0.036°	20	15	0.00288°	250

• "Motor step angle" parameter: If the base step angle of the motor is 0.36°

		, ,			
Setting	Step angle	Number of divisions	Settin	g Step angle	Number of divisions
0	0.36°	1	8	0.0144°	25
1	0.18°	2	9	0.009°	40
2	0.144°	2.5	10	0.0072°	50
3	0.09°	4	11	0.0045°	80
4	0.072°	5	12	0.0036°	100
5	0.045°	8	13	0.0028°	125
6	0.036°	10	14	0.0018°	200
7	0.018°	20	15	0.00144°	250

Note
Step angles are theoretical values.
With the geared type, the value of "step angle/gear ratio" becomes the actual step angle.
The base step angle is 0.36° for high-resolution type motors.

4.9 Communication parameter

Parameter name	Description	Setting range	Initial value
Communication axis number	Sets the axis number for RS-485 communication.	0 to 31	15
Communication protocol	Sets the protocol for RS-485 communication.	0: Modbus RTU 1: GW Ver.1	0
Communication parity *	Sets the parity for RS-485 communication.	0: None 1: Even number 2: Odd number	1
Communication stop bit *	Sets the stop bit for RS-485 communication.	0: 1 bit 1: 2 bits	0
Transmission waiting time *	Sets the transmission waiting time for RS-485 communication.	0 to 1000.0 ms	10.0
Communication timeout *	Sets the condition in which a communication timeout occurs in RS-485 communication.	0: Not monitored 1 to 10000 ms	0
Communication error alarm	Sets the condition in which a RS-485 communication error alarm generates. A communication error alarm generates after a RS-485 communication error has occurred by the number of times set here.	1 to 10 times	3

* Set this parameter when Modbus RTU Protocol is used.

5 Related functions

This chapter explains the useful functions that facilitate operation, functions that become available when an encoder is connected, and the like.

5.1 Position control

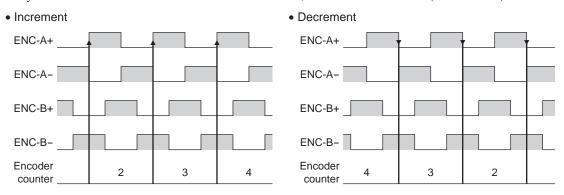
The driver has an internal oscillating-pulse counter. The command position can be read from this counter using the **OPX-2A**, **MEXE02** or RS-485 communication. You can also check the command position by counting the number of times a PLS-OUT or DIR-OUT output signal has been output.

The control range of command positions is -2,147,483,648 to 2,147,483,647.

The command position will be cleared to 0 once the return-to-home operation ends successfully. If a preset is performed using the P-PRESET input, the command position will change to the value set in the "preset position" parameter.

If an encoder is connected and the "stepout detection" parameter is set to "enable", the command position will be refreshed by the encoder counter value while the motor is not excited.

5.2 Encoder input


- You can use the **OPX-2A**, **MEXEO2** or RS-485 communication command's "encoder counter" to read the 90° phase difference signal that is input from the encoder. The read value has been multiplied by 1.
- The encoder counter can be cleared to 0 by executing the RS-485 communication command's "clear counter". Also, a successful completion of return-to-home operation resets the encoder counter to 0.
- Executing the **OPX-2A**, **MEXEO2** or RS-485 communication command's "preset encoder counter" changes the encoder counter value to the one set as the "encoder counter preset value".
- When an encoder is connected, the misstep detection function becomes available. Take note that the encoder input is counted even when the misstep detection function is not used.

Note Perform a counter clear or encoder counter preset while the motor is stopped.

Encoder input specifications

	• •	
A-phase	Input frequency	100 kHz max.
	Counting range	-2,147,483,648 to +2,147,483,647 pulse
B-phase	Counting mode	90° phase difference input, multiplied by 1
	Interface	Differential line receiver (26C32 or equivalent)
7 . 1	Input width	1 ms or more
Z-phase	Interface	Differential line receiver (26C32 or equivalent)
Encoder cable length		10 m (32.8 ft.) max. *

* If you want to extend the leads between the encoder and driver, use wires of AWG24 to 22 (0.2 to 0.3 mm²).

This example assumes that the "motor rotation direction" parameter is set to "+direction=CW". If this parameter is set to "+direction=CCW", the counter value will decrease with each increment, and increase with each decrement.

5.3 Misstep detection function

This function becomes effective when an encoder is connected. Specifically, the deviation between the command position and encoder counter is monitored.

The sub-functions specified below become available when the "stepout detection" parameter is set to "enable".

• Deviation error detection

When the deviation reaches the value set in the "stepout detection band" parameter (initial value: 7.2°), a deviation error will be recognized.

If the base step angle of the motor is 0.72° , set the value of the "stepout detection band" parameter to 7.2° . If the base step angle of the motor is 0.36° , set the value of the "stepout detection band" parameter to 3.6° . Deviation error detection will start after the motor has remained excited for 500 ms. This function is disabled during return to mechanical home operation.

STEPOUT output

This signal notifies a deviation error. Assign the STEPOUT output to one of the OUT0 to OUT4 outputs.

Alarm/warning

You can cause an alarm or warning to be generated upon detection of a deviation error.

- Generate an excessive position deviation alarm: Set the "stepout detection action" parameter to "alarm".
- Generate an excessive position deviation warning: Set the "stepout detection action" parameter to "warning".
- Do not generate an alarm or warning: Set the "stepout detection action" parameter to "no operation".

Command position update

The command position is corrected by the encoder counter while the motor is not excited. The command position will still be refreshed even when the motor output shaft is turned by an external force while the motor excitation is stopped.

How to recover from deviation error

Perform one of the following operations to recover from the deviation error:

- Stop the motor excitation.
- Perform return to mechanical home.
- Clear the counter.

When the "stepout detection action" parameter is set to "alarm"

When a deviation error is detected, an excessive position deviation alarm will generate. In this case, reset the alarm by following the procedure below:

- 1. Stop the motor excitation or clear the counter to recover from the deviation error.
- 2. Turn the ALM-RST input ON to reset the alarm.
- 3. Perform return-to-home operation, if necessary.

Note If an excessive position deviation alarm generates, turning the ALM-RST input ON alone will not reset the alarm. Be sure to recover from the deviation error first, and then reset the alarm.

Encoder electronic gear settings

Even when the motor resolution is different from the encoder resolution, you can still detect a deviation error by setting the encoder electronic gears. The encoder electronic gears are used to determine a deviation error and will not affect the encoder counter value.

Parameter	Description
Encoder electronic gear A	Set the encoder resolution. Set to 500 if the encoder pulse count per motor revolution is 500 P/R. Note that the resolution is 500 P/R for motors with encoder.
Encoder electronic gear B	Set the motor resolution. Set to 1000 if the pulse count required for one motor revolution is 1000 P/R.

• Setting example 1

A setting example where the base step angle is 0.72° and encoder resolution is 500 P/R is given below.

Motor step angle	Number of divisions	"Encoder electronic gear A " parameter	"Encoder electronic gear B" parameter
0.72°	1		500
0.36°	2		1000
0.288°	2.5		1250
0.18°	4		2000
0.144°	5		2500
0.09°	8		4000
0.072°	10		5000
0.036°	20	500	10000
0.0288°	25	500	12500
0.018°	40		20000
0.0144°	50		25000
0.009°	80		40000
0.0072°	100		50000
0.00576°	125		62500
0.0036°	200		100,000
0.00288°	250		125,000

• Setting example 2

A setting example where the base step angle is 0.36° and encoder resolution is 500 P/R is given below.

Motor step angle	Number of divisions	"Encoder electronic gear A " parameter	"Encoder electronic gear B" parameter
0.36°	1		1000
0.18°	2		2000
0.144°	2.5		2500
0.09°	4		4000
0.072°	5		5000
0.045°	8		8000
0.036°	10	500	10000
0.018°	20		20000
0.0144°	25	500	25000
0.009°	40		40000
0.0072°	50		50000
0.0045°	80		80000
0.0036°	100		100,000
0.00288°	125		125,000
0.0018°	200		200,000
0.00144°	250		250,000

Note

• The accuracy of deviation varies depending on the operating speed and load. Be sure to check the deviation on the actual system.

- If you are providing the encoder on your own and installing it to the motor, take note that the accuracy of deviation error detection is also affected by the encoder resolution and assembly accuracy. Be sure to check the deviation on the actual system.
- If misstep occurs, the home position on the equipment side deviates from the home position recognized by the driver. If the operation is continued in this condition, the equipment may be damaged. Accordingly, take prompt actions if misstep is detected.
- If the motor step angle has been changed, be sure to change the value of the "encoder electronic gear B" parameter accordingly. Similarly if the encoder resolution has changed, be sure to change the value of the "encoder electronic gear A" parameter accordingly. If the gears are not set properly, the command position will not be updated correctly and a deviation error will be detected.

Resolution

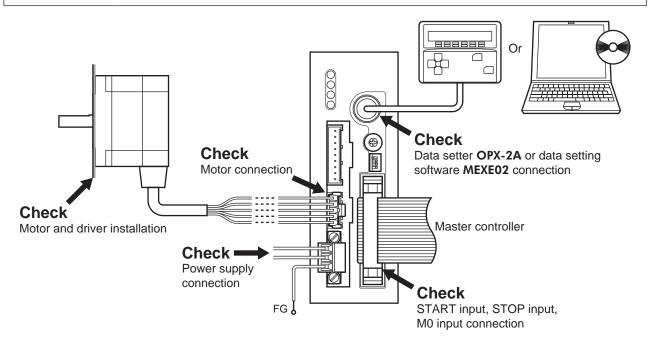
If the misstep function is used, use of an encoder with a resolution of 500 P/R.

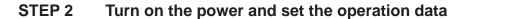
Note If you are providing the encoder on your own, use the one that meets the specifications on p.80.

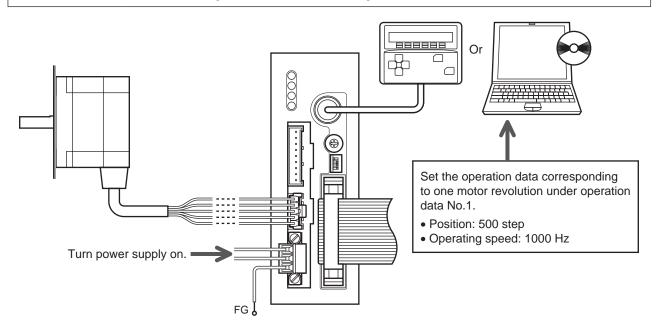
4 Method of control via I/O

This part explains when the operation is controlled via I/O after setting the operation data and parameters by the **OPX-2A** or **MEXE02**.

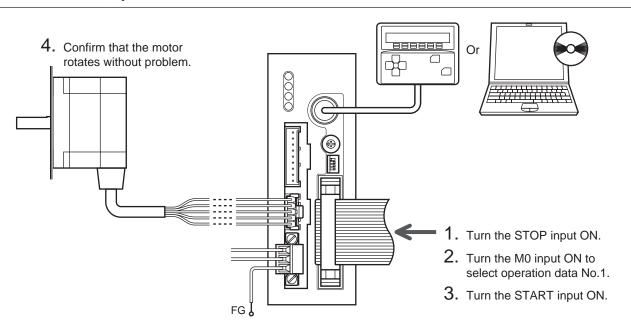
Table of contents


1	Guid	lance	86
2	Ope	ration data	88
3	Para	meter	89
	3.1	Parameter list	89
		Application parameter	89
		System parameter	89
	3.2	I/O parameter	90
	3.3	Motor parameter	91
	3.4	Speed parameter	91
	3.5	Return-to-home parameter	
	3.6	Alarm/warning parameter	91
	3.7	Common parameter	92
	3.8	Operation setting parameter	92
	3.9	Communication parameter	93
4	Timi	ng charts	94


1 Guidance


If you are new to the **CRK** Series built-in controller type, read this section to understand the operating methods along with the operation flow.

Note Before operating the motor, check the condition of the surrounding area to ensure safety.



STEP 3 Operate the motor

STEP 4 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is the STOP input ON? (factory setting: normally closed)
- Is any alarm present?
- Are the power supply and motor connected securely?

For more detailed settings and functions, refer to "3 Parameter" on p.89.

2 Operation data

Up to 63 operation data can be set (data Nos.1 to 63).

If the data is changed, a recalculation and setup will be performed after the operation is stopped.

Name	Setting range	Initial value
Position No.1 to Position No.63	-8,388,608 to +8,388,607 step	0
Operating speed No.1 to Operating speed No.63	0 to 500,000 Hz	1000
Operation mode No.1 to Operation mode No.63	0: INC (Incremental) 1: ABS (Absolute)	0
Operation function No.1 to Operation function No.63	0: Single-motion 1: Linked-motion 2: Linked-motion 2	0
Acceleration rate No.1 * to Acceleration rate No.63 * Deceleration rate No.1 * to Deceleration rate No.63 *	- 0.001 to 1000.000 ms/kHz	30.000
Sequential positioning No.1 to Sequential positioning No.63	0: Disable 1: Enable	0
Dwell time No.1 to Dwell time No.63	0 to 50000 (1=0.001 s)	0

* This item is effective when the "acceleration/deceleration type" parameter is set to "separate". If this parameter is set to "common", the values of the "common acceleration" and "common deceleration" parameters will be used (initial value: separate).

3.1 Parameter list

Application parameter

•• •		
	START input mode	Data No. input mode
	I/O STOP input	 AWO contact configuration
	STOP action	Hardware overtravel detection
	 STOP contact configuration 	 LS contact configuration
	C-ON logic configuration	 HOMES contact configuration
I/O parameter	OUT1 signal mode selection	 SLIT contact configuration
(p.90)	OUT2 signal mode selection	Overtravel action
	OUT3 signal mode selection	Preset position
	OUT4 signal mode selection	• Area 1
	HOME/P-PRESET input switching	• Area 2
	Motor excitation mode	 Encoder counter preset value
	HOME/FWD/RVS input mode	
Motor parameter	Operating current	
(p.91)	Standstill current	
	Common acceleration rate	Jog operating speed
Speed parameter	Common deceleration rate	 Jog acceleration (deceleration) rate
(p.91)	Starting speed	 Jog starting speed
		 Acceleration (deceleration) rate type
	Home-seeking mode	 Starting direction of home-seeking
	 Operating speed of home-seeking 	 SLIT detection with home-seeking
Return-to-home parameter (p.91)	 Acceleration (deceleration) rate of home-seeking 	 TIM signal detection with home- seeking
	 Starting speed of home-seeking 	 Backward steps in 2-sensor mode
	Position offset of home-seeking	home-seeking
	Stepout detection band	
Alarm/warning parameter (p.91)	Overvoltage warning	
(p.91)	Overheat warning	
	Software overtravel	Communication timeout action
0	Positive software limit	Receive period
Common parameter (p.92)	Negative software limit	 Response interval
(P.02)	• Display mode of the data setter speed	Receive monitoring
	• The data setter editing mode	 Stepout detection action

System parameter

Operation setting parameter (p.92)	 Motor rotation direction Stepout detection Motor step angle 	 Encoder electronic gear A Encoder electronic gear B
Communication parameter (p.93)	Communication axis number Communication protocol Communication parity Communication stop bit	 Transmission waiting time Communication timeout Communication error alarm

Note When a system parameter has been changed, the new parameter will become effective after the power is cycled.

3.2 I/O parameter

Parameter name	Setting range	Initial value
START input mode *1	0: RS-485 communication 1: I/O	1
I/O STOP input *1*2	0: Disable 1: Enable	1
STOP action	0: Immediate stop 1: Decelerate stop 2: Immediate stop & Current OFF 3: Decelerate stop & Current OFF	1
STOP contact configuration	0: Make (N.O.) 1: Break (N.C.)	1
C-ON logic configuration *3	0: 0=Not excited, 1=Excited 1: 0=Excited, 1=Not excited	0
OUT1 signal mode selection	5: AREA 9: HOME-P 13: STEPOUT *5	5
OUT2 signal mode selection	6: TIM 10: ZSG *5 14: O.H.	7
OUT3 signal mode selection	7: READY 11: R-OUT1 15: R-OUT3	8
OUT4 signal mode selection	8: WNG 12: R-OUT2 16: R-OUT4	9
HOME/P-PRESET input switching	0: HOME 1: P-PRESET	0
Motor excitation mode *1		
HOME/FWD/RVS input mode *1	0: RS-485 communication	1
Data No. input mode *1		
AWO contact configuration	0: Make (N.O.) 1: Break (N.C.)	0
Hardware overtravel detection *4	0: Disable 1: Enable	1
LS contact configuration		
HOMES contact configuration	│0: Make (N.O.) │1: Break (N.C.)	0
SLIT contact configuration	- 1. DIEAN (N.C.)	
Overtravel action	0: Immediate stop 1: Decelerate stop	0
Preset position		
Area 1		
Area 2		0
Encoder counter preset value *5		

*1 Set the parameter when controlling the system via RS-485 communication.

*2 If this parameter is disabled, the I/O STOP input will become ineffective and only the stop input received via RS-485 communication will become effective.

*3 When "Motor excitation mode" parameter is set to "RS-485 communication", the excitation condition of the motor at the power ON varies depending on the "C-ON logic configuration" parameter. The motor is not excited if the "C-ON logic configuration" parameter is set to "0," and excited if the parameter is set to "1."

*4 Even when this parameter is disabled, the \pm LS will still become effective during a return-to-home operation.

*5 This parameter is used when an encoder is connected.

3.3 Motor parameter

Parameter name	Setting range	Initial value
Operating current	5 to 100%	100
Standstill current	5 to 50%	50

- Decrease the operating current and standstill current when there is an allowance in the motor torque and you wish to reduce vibration during operation or suppress heat generation from the motor. However, be careful of an excessive decrease in current, since the motor torque and holding brake force will drop in rough proportion to the operating current.
 - The standstill current is the rated current (100%) multiplied by the standstill current ratio.

3.4 Speed parameter

Parameter name	Setting range	Initial value
Common acceleration rate		20.000
Common deceleration rate	0.001 to 1000.000 ms/kHz	30.000
Starting speed	1 to 500 000 Hz	100
Jog operating speed	1 to 500,000 Hz	1000
Jog acceleration/ deceleration rate	0.001 to 1000.000 ms/kHz	30.000
Jog starting speed	1 to 500,000 Hz	100
Acceleration/ deceleration type	0: Common 1: Separate	0

3.5 Return-to-home parameter

Parameter name	Setting range	Initial value
Home-seeking mode	0: 2 sensors 1: 3 sensors	1
Operating speed of home-seeking	1 to 500,000 Hz	1000
Acceleration/ deceleration rate of home-seeking	0.001 to 1000.000 ms/kHz	30.000
Starting speed of home-seeking	1 to 500,000 Hz	100
Position offset of home-seeking	-8,388,608 to +8,388,607 step	0
Starting direction of home-seeking	0: Negative direction 1: Positive direction	1
SLIT detection with home-seeking	0: Disable 1: Enable	0
TIM signal detection with home-seeking	0: Disable 1: Enable (TIM) 2: Enable (ZSG) *	0
Backward steps in 2-sensor mode home-seeking	0 to 32767 step	200

* This signal is used when an encoder is connected.

3.6 Alarm/warning parameter

Parameter name	Setting range	Initial value
Stepout detection band *	0.1 to 360.0 deg	7.2
Overvoltage warning	25.0 to 35.0 V	31.0
Overheat warning	40 to 85 °C (104 to 185 °F)	85

* This signal is used when an encoder is connected.

3.7 Common parameter

Parameter name	Setting range	Initial value
Software overtravel	0: Disable 1: Enable	1
Positive software limit	-9.299.609 to 19.299.607 stopp	8,388,607
Negative software limit	-8,388,608 to +8,388,607 steps	-8,388,608
Display mode of the data setter speed	0: Signed 1: Absolute	0
The data setter editing mode *1	0: Disable 1: Enable	1
Communication timeout action	0: Immediate stop 1: Decelerate stop	1
Receive period *2	0: Function disabled 0.01 to 9.99 sec.	0
Response interval *2	0 to 1000 ms	50
Receive monitoring *2	0.01 to 9.99 sec.	0.10
Stepout detection action *3	0: No operation (alarm/warning not present) 1: Warning 2: Alarm	0

*1 The edit lock function can be activated/cancelled using the OPX-2A.

*2 Set this parameter when GW Protocol Version 1 is used.

*3 This parameter is used when an encoder is connected.

3.8 Operation setting parameter

Parameter name	Setting range	Initial value
Motor rotation direction	0: +direction=CCW 1: +direction=CW	1
Stepout detection *	0: Disable 1: Enable	0
Motor step angle	See table below.	0
Encoder electronic gear A *	- 1 to 250.000	500
Encoder electronic gear B *		500

* When an encoder is connected, this parameter is used in the misstep detection function. It does not affect the encoder counter value.

Note • Step angles are theoretical values.

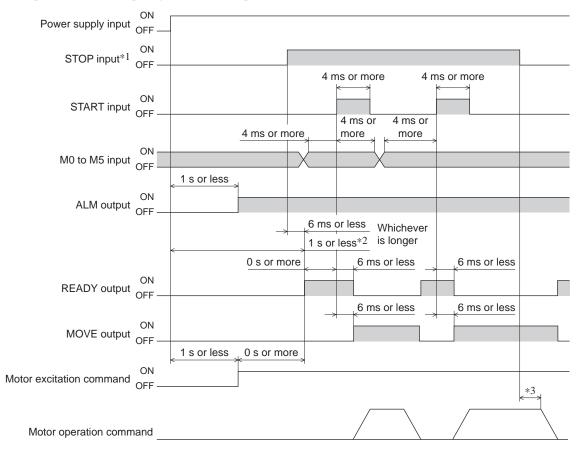
- With the geared type, the value of "step angle/gear ratio" becomes the actual step angle.
- The base step angle is 0.36° for high-resolution type motors.
- "Motor step angle" parameter: If the base step angle of the motor is 0.72°

Setting	Step angle	Number of divisions	Setting	Step angle	Number of divisions
0	0.72°	1	8	0.0288°	25
1	0.36°	2	9	0.018°	40
2	0.288°	2.5	10	0.0144°	50
3	0.18°	4	11	0.009°	80
4	0.144°	5	12	0.0072°	100
5	0.09°	8	13	0.00576°	125
6	0.072°	10	14	0.0036°	200
7	0.036°	20	15	0.00288°	250

• "Motor step angle" parameter: If the base step angle of the motor is 0.36°

Setting	Step angle	Number of divisions	Setting	Step angle	Number of divisions
0	0.36°	1	8	0.0144°	25
1	0.18°	2	9	0.009°	40
2	0.144°	2.5	10	0.0072°	50
3	0.09°	4	11	0.0045°	80
4	0.072°	5	12	0.0036°	100
5	0.045°	8	13	0.0028°	125
6	0.036°	10	14	0.0018°	200
7	0.018°	20	15	0.00144°	250

3.9 Communication parameter

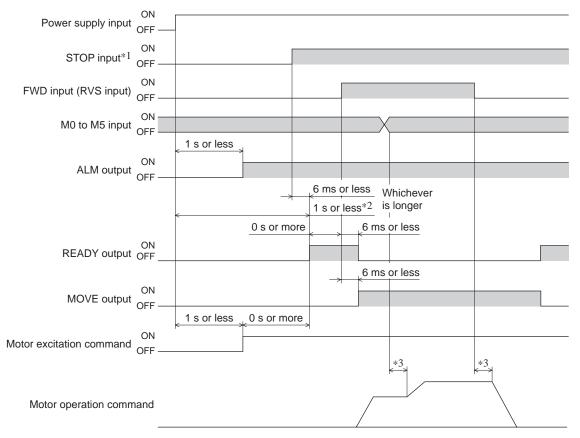

Parameter name	Setting range	Initial value
Communication axis number	0 to 31	15
Communication protocol	0: Modbus RTU 1: GW Ver.1	0
Communication parity *	0: None 1: Even number 2: Odd number	1
Communication stop bit *	0: 1 bit 1: 2 bits	0
Transmission waiting time *	0 to 1000.0 ms	10.0
Communication timeout *	0: Not monitored 1 to 10000 ms	0
Communication error alarm	1 to 10 times	3

* Set this parameter when Modbus RTU Protocol is used.

4 Timing charts

Positioning operation

When the power is turned on and the STOP input is turned ON (normally closed), the READY output will turn ON and input of the START input signal will become possible.



*1 When the STOP input logic is normally closed (factory setting).

- *2 If the "stepout detection" parameter is set to "enable," this period becomes 1.5 s or less.
- *3 The specific time varies depending on the command speed.

Continuous operation

When the power is turned on and the STOP input is turned ON (normally closed), the READY output will turn ON and input of the FWD (RVS) input signal will become possible.

- *1 When the STOP input logic is normally closed (factory setting).
- *2 If the "stepout detection" parameter is set to "enable," this period becomes 1.5 s or less.
- *3 The specific time varies depending on the command speed.

5 Method of control via Modbus RTU (RS-485 communication)

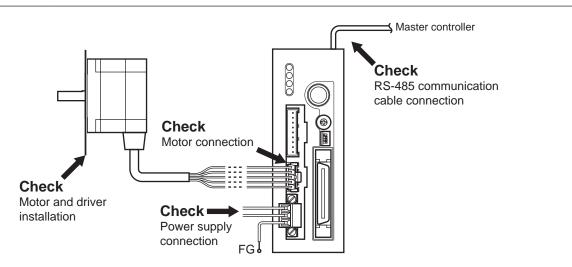
This part explains how to control from the master controller via RS-485 communication. The protocol for the RS-485 communication is the Modbus protocol.

Table of contents

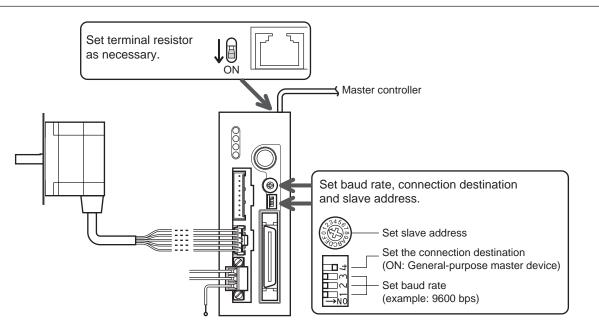
1	Guio	Jance 98
2	Con	munication specifications 100
3	Sett	ing the switches101
4		ing the RS-485 munication103
5	Con	munication mode and
	com	munication timing104
	5.1	Communication mode 104
	5.2	Communication timing104
6	Mes	sage 105
	6.1	Query 105
	6.2	Response 107
7	Fun	ction code109
	7.1	Reading from a holding register(s) 109
	7.2	Writing to a holding register 110
	7.3	Diagnosis 110
	7.4	Writing to multiple holding registers111
	7.5	Control method selection 112

8	Regi	ister address list	113	
	8.1	Register address types	113	
	8.2	Operation area	114	
	8.3	Maintenance area	117	
	8.4	Monitor area	118	
	8.5	Parameter area		
	8.6	Operation data area	123	
9	Grou	up send	124	
10 Detection of communication				
	erro	rs	126	
	00	•		
	10.1	Communication errors		
	10.1		126	
11	10.1 10.2	Communication errors	126 126	
	10.1 10.2 Timi	Communication errors	126 126	
	10.1 10.2 Timi Exa	Communication errors Alarms and warnings ng charts	126 126 127	
	10.1 10.2 Timi Exa	Communication errors Alarms and warnings ng charts nple of communication	126 126 127 129	
	10.1 10.2 Timi Exan setti 12.1 12.2	Communication errors Alarms and warnings ng charts nple of communication ng Positioning operation	126 126 127 129 129 131	

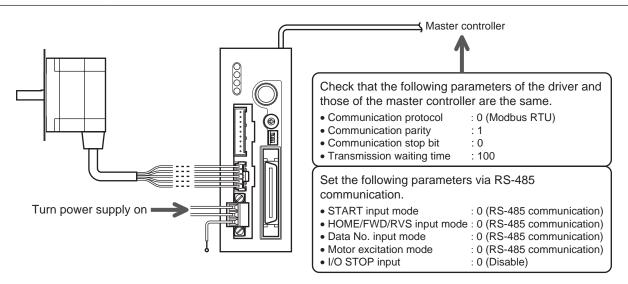
1 Guidance


The Modbus protocol is simple and its specification is open to the public, so this protocol is used widely in industrial applications. Modbus communication is based on the single-master/multiple-slave method. Only the master can issue a query (command). Each slave executes the requested process and returns a response message.

If you are new to the **CRK** Series built-in controller type, read this section to understand the operating methods along with the operation flow.

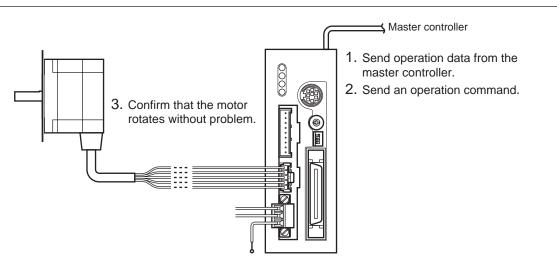

This is an example how to operate the motor based on the operation data and parameters set to the driver by the master controller.

Note Before operating the motor, check the condition of the surrounding area to ensure safety.


STEP 1 Check the installation and connection

STEP 2 Set the switches

STEP 3 Turn on the power and set the parameters



Check that the parameters of the driver and those of the master controller are the same. Use the **OPX-2A** or **MEXEO2** when changing the driver parameters.

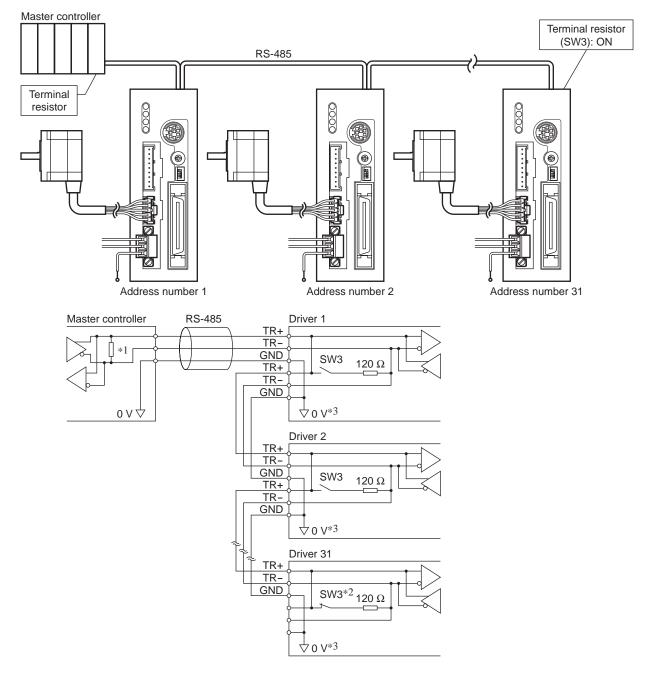
STEP 4 Cycle the power

System parameters will become effective only after the power is cycled. If you have changed any of the system parameters, be sure to cycle the power.

STEP 5 Operate the motor

STEP 6 Were you able to operate the motor properly?

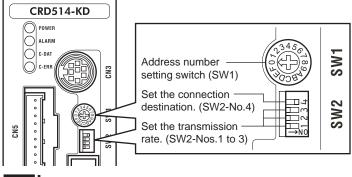
How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:


- Is any alarm present?
- Are the power supply, motor and RS-485 communication cable connected securely?
- Are the slave address, baud rate and terminal resistor set correctly?
- Is the C-ERR LED lit?
- Is the C-DAT LED lit?

For more detailed settings and functions, refer to the following pages.

2 Communication specifications

Electrical characteristics	In conformance with EIA-485, straight cable Use a twisted pair cable (TIA/EIA-568B CAT5e or higher is recommended) and keep the total wiring distance including extension to 50 m (164 ft.) or less.
Communication mode	Half duplex, Asynchronous mode (data: 8 bits, stop bit: 1 bit/2 bits, parity: none/even number/odd number)
Transmission rate	Selectable from 9600 bps, 19200 bps, 38400 bps, 57600 bps and 115,200 bps.
Protocol	Modbus RTU mode
Connection pattern	Up to 31 drivers can be connected to one master controller.


Connection example

*1 Terminal resistor 120 Ω

- *2 Turn the terminal resistor (SW3) to ON.
- *3 The GND line is used in common with CN1 (not insulated).

3 Setting the switches

Note Be sure to turn off the driver power before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the driver power is cycled.

Slave address

Set the slave address using the address setting switch (SW1) and "communication axis number" parameter. If SW1 is set to "F," the slave address set in the "communication axis number" parameter is selected (initial value: 15).

Make sure each slave address you set for each driver is unique.

Slave address 0 is reserved for broadcasting, so do not use this address.

Factory setting 0 (broadcast)

SW1	Slave address	SW1	Slave address
0	Broadcast	8	8
1	1	9	9
2	2	A	10
3	3	В	11
4	4	С	12
5	5	D	13
6	6	E	14
7	7	F	Setting value of "communication axis number" parameter *

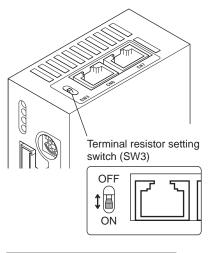
* The default value of the "communication axis number" parameter is "15." Set the "communication axis number" parameter using the OPX-2A or MEXE02.

Setting the connection device

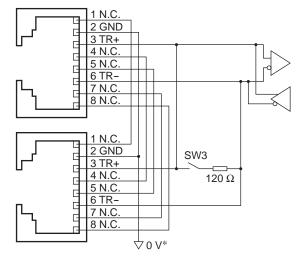
Set the SW2-No.4 of the function setting switch to ON. The Modbus protocol is selected. Factory setting OFF

Baud rate

Set the baud rate using Nos. 1 to 3 of the function setting switch (SW2) to. The baud rate to be set should be the same as the baud rate of the master device. Factory setting All ON (625,000 bps)


Baud rate (bps)	SW2-No.3	SW2-No.2	SW2-No.1
9600	OFF	OFF	OFF
19200	OFF	OFF	ON
38400	OFF	ON	OFF
57600	OFF	ON	ON
115,200	ON	OFF	OFF

Note


Make sure the baud rate does not exceed 115,200 bps. Also note that although switch combinations other than those specified above are also available, such other switch combinations cannot be used to communicate with the master device. Accordingly, do not set the switches other than as specified above.

Termination resistor

Use a termination resistor for the driver located farthest away (positioned at the end) from the master controller. Turn the terminal resistor setting switch (SW3) ON to set the terminal resistor for RS-485 communication (120 Ω). Factory setting OFF (termination resistor disabled)

SW3	Termination resistor (120 Ω)
OFF	Disabled
ON	Enabled

* The GND line is used in common with CN1 (not insulated).

4 Setting the RS-485 communication

Parameter name	Setting range	Initial value	Description	
Communication parity0: None 1: Even number 2: Odd number1Sets the parity for RS-485 communication		Sets the parity for RS-485 communication.		
Communication stop bit	0: 1 bit 1: 2 bits	0	Sets the stop bit for RS-485 communication.	
Transmission waiting time	0 to 1000.0 ms	10.0	Sets the transmission waiting time for RS-485 communication.	
Communication timeout	0 to 10000 ms	0	Sets the condition in which a communication timeout occurs in RS-485 communication. It is not monitored when the set value is 0.	
Communication error alarm 1 to 10 times		3	Sets the condition in which a RS-485 communication error alarm generates. A communication error alarm generates after a RS-485 communication error has occurred by the number of times set here.	

Set the following parameters using the OPX-2A, MEXEO2 or via RS-485 communication.

5 Communication mode and

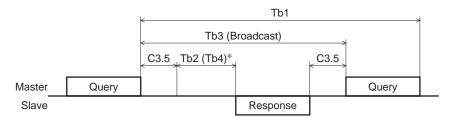
communication timing

5.1 Communication mode

Modbus protocol communication is based on the single-master/multiple-slave method. Under this protocol, messages are sent in one of two methods.

Unicast mode

The master sends a query to only one slave. The slave executes the process and returns a response.


Master	Query	
Slave		Response

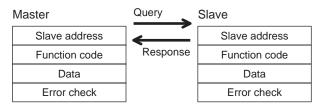
Broadcast mode

If slave address 0 is specified on the master, the master can send a query to all slaves. Each slave executes the process, but does not return a response.

Master Query Slave No response

5.2 Communication timing

* If Tb2 (transmission waiting time) < Tb4 (processing time), a response is returned after Tb4+C3.5.


Character	Name	Description
Tb1	Communication timeout	Intervals between received messages are monitored. If no message could be received after the time set in the "communication timeout" parameter, a communication timeout alarm generates.
Tb2	Transmission waiting time	The time after the slave switches its communication line to the transmission mode upon receiving a query from the master, until it starts sending a response. Sets using the "transmission waiting time" parameter. The actual transmission waiting time corresponds to the silent interval (C3.5) + transmission waiting time (Tb2).
Tb3	Broadcasting interval	The time until the next query is sent in broadcasting. A time equivalent to or longer than the silent interval (C3.5) plus 5 ms is required.
C3.5	Silent interval	Be sure to provide a waiting time of 3.5 characters or more. If this waiting time is less than 3.5 characters long, the driver cannot respond. See the following table for transmission waiting time.
Tb4	Processing time	The time to process a received message. The specific time varies depending on the length of the received message. The maximum processing time is 1.5 ms.

Transmission waiting time of the "silent interval"

Transmission rate (hps)	Transmission waiting time
Transmission rate (bps)	
9600	4 ms or more
19200 38400 57600 115,200	2.5 ms or more

6 Message

The message format is shown below.

6.1 Query

The query message structure is shown below.

Slave address	Function code	Data	Error check
8 bits	8 bits	N×8 bits	16 bits

Slave address

Specify the slave address (unicast mode).

If the slave address is set to 0, the master can send a query to all slaves (broadcast mode).

Function code

The function codes and message lengths supported by the **CRK** Series built-in controller type are as follows.

Function code	Description	Message length		Broadcast
FUNCTION CODE	Description	Query	Response	Dioducasi
03h	Read from a holding register(s).	8	7 to 25	Impossible
06h	Write to a holding register.	8	8	Possible
08h	Perform diagnosis.	8	8	Impossible
10h	Write to multiple holding registers.	11 to 29	8	Possible

Data

Set data associated with the selected function code. The specific data length varies depending on the function code.

Error check

In the Modbus RTU mode, error checks are based on the CRC-16 method. The slave calculates a CRC-16 of each received message and compares the result against the error check value included in the message. If the calculated CRC-16 value matches the error check value, the slave determines that the message is normal.

- CRC-16 calculation method
 - 1. Calculate an exclusive-OR (XOR) value of the default value of FFFFh and slave address (8 bits).
 - 2. Shift the result of step 1 to the right by 1 bit. Repeat this shift until the overflow bit becomes "1."
 - 3. Upon obtaining "1" as the overflow bit, calculate an XOR of the result of step 2 and A001h.
 - 4. Repeat steps 2 and 3 until a shift is performed eight times.
 - Calculate an XOR of the result of step 4 and function code (8 bits). Repeat steps 2 to 4 for all bytes. The final result gives the result of CRC-16 calculation.

• Example of CRC-16 calculation (slave address: 02h, function code: 07h)

The following table is a calculation example when setting the slave address of the first byte to 02h and setting the function code of the second byte to 07h.

The result of actual CRC-16 calculation is calculated including the data on and after the third byte.

Description	Result	Overflow digit
Default value in CRC register FFFh	1111 1111 1111 1111	-
First byte 02h	0000 0000 0000 0010	-
XOR with default value FFFFh	1111 1111 1111 1101	_
First shift to right	0111 1111 1111 1110	1
XOR with A001h	1010 0000 0000 0001 1101 1111 1111 1111	-
Second shift to right	0110 1111 1111 1111	1
XOR with A001h	1010 0000 0000 0001 1100 1111 1111 1110	-
Third shift to right	0110 0111 1111 1111	0
Fourth shift to right	0011 0011 1111 1111	1
XOR with A001h	1010 0000 0000 0001 1001 0011 1111 1110	-
Fifth shift to right	0100 1001 1111 1111	0
Sixth shift to right	0010 0100 1111 1111	1
XOR with A001h	1010 0000 0000 0001 1000 0100 1111 1110	-
Seventh shift to right	0100 0010 0111 1111	0
Eighth shift to right	0010 0001 0011 1111	1
XOR with A001h	1010 0000 0000 0001 1000 0001 0011 1110	-
XOR with next byte 07h	0000 0000 0000 0111 1000 0001 0011 1001	-
First shift to right	0100 0000 1001 1100	1
XOR with A001h	1010 0000 0000 0001 1110 0000 1001 1101	-
Second shift to right	0111 0000 0100 1110	1
XOR with A001h	1010 0000 0000 0001 1101 0000 0100 1111	-
Third shift to right	0110 1000 0010 0111	1
XOR with A001h	1010 0000 0000 0001 1100 1000 0010 0110	-
Fourth shift to right	0110 0100 0001 0011	0
Fifth shift to right	0011 0010 0000 1001	1
XOR with A001h	1010 0000 0000 0001 1001 0010 0000 1000	-
Sixth shift to right	0100 1001 0000 0100	0
Seventh shift to right	0010 0100 1000 0010	0
Eighth shift to right	0001 0010 0100 0001	0
Result of CRC-16	0001 0010 0100 0001	-
	·	·

6.2 Response

Slave-returned responses are classified into three types: normal response, no response, and exception response. The response message structure is the same as the command message structure.

Slave address	Function code	Data	Error check
8 bits	8 bits	N×8 bits	16 bits

Normal response

Upon receiving a query from the master, the slave executes the requested process and returns a response.

No response

The slave may not return a response to a query sent by the master. This condition is referred to as "No response." The causes of no response are explained below.

Transmission error

The slave discards the query and does not return a response if any of the following transmission errors is detected.

Cause of transmission error	Description
Framing error	Stop bit 0 was detected.
Parity error	A mismatch with the specified parity was detected.
Mismatched CRC	The calculated value of CRC-16 was found not matching the error check value.
Invalid message length	The message length exceeded 256 bytes.

• Other than transmission error

A response may not be returned without any transmission error being detected.

Cause	Description		
Broadcast	If the query was broadcast, the slave executes the requested process but does not return a response.		
Mismatched slave address	The slave address in the query was found not matching the slave address of the driver.		

Exception response

An exception response is returned if the slave cannot execute the process requested by the query. Appended to this response is an exception code indicating why the process cannot be executed. The message structure of exception response is as follows.

Slave address	Function code	Exception code	Error check	
8 bits	8 bits	8 bits	16 bits	

• Function code

The function code in the exception response is a sum of the function code in the query and 80h. Example) query: $03h \rightarrow Exception$ response: 83h

• Example of exception response

Master			Query	Slave	
Slave	Slave address		`	Slave address	01h
Functi	Function code		Response	Function code	86h
Register ad	Register address (upper)			Data	03h
Register ad	Register address (lower)			Error check (lower)	02h
Value writ	Value written (upper)			Error check (upper)	61h
Value wri	tten (lower)	FFh			
Error che	Error check (lower)				
Error che	eck (upper)	C4h			

• Exception code

This code indicates why the process cannot be executed.

Exception code	Cause	Description
01h	Invalid function	 The process could not be executed because the function code was invalid. The function code is not supported. The sub-function code for diagnosis (08h) is other than 00h.
02h	Invalid data address	The process could not be executed because the data address was invalid. • The address is not supported.
03h	Invalid data	 The process could not be executed because the data was invalid. The number of registers is 0. The number of bytes is other than twice the number of registers. The data is outside the specified range. The data length is outside the specified range.
04h	Slave error	 The process could not be executed because an error occurred at the slave. User I/F communication in progress The OPX-2A is currently connected in a mode other than the monitor mode. Downloading or initialization is in progress using the MEXE02 Non-volatile memory processing in progress Internal processing was in progress. (S-BSY is ON.) An EEPROM error alarm was present.

7 Function code

7.1 Reading from a holding register(s)

This function code is used to read a register (16 bits). Up to 10 successive registers (10×16 bits) can be read. If two registers specifying the upper byte and lower byte (32 bits), respectively, constitute one value, then the two registers must be read simultaneously (example: position, operating speed). If not, an invalid value may be read. If multiple holding registers are read, they are read in order of register addresses.

Example of read

Read operation data for positions Nos.1 and 2 of slave address 1.

Description	Register address	Value read	Corresponding decimal
Operation data position No.1 (upper)	0402h	0000h	10000
Operation data position No.1 (lower)	0403h	2710h	10000
Operation data position No.2 (upper)	0404h	FFFFh	10000
Operation data position No.2 (lower)	0405h	D8F0h	-10000

	Master		Query	Slave		
	Slave address	01h	\leftarrow	Slave address	01h	
Register address to ——	Function code	03h	Response	Function code	03h	
	Register address	04h			Twice the number of registers in the query	
	(upper) Register address	02h		Value read from register address (upper)	00h	Value read from register
(0402h)	(lower)	0211		Value read from register	00h	address 0402h
Number of registers to — be read from the starting	Number of registers (upper)	00h		address (lower)		
	Number of registers	04h		Value read from register address+1 (upper)	27h	└ Value read from register
register address (4 registers=0004h)	(lower)	E 41		Value read from register address+1 (lower)	10h	address 0403h
(4 registers=0004h)	Error check (lower)	E4h				
	Error check (upper) F9h		Value read from register address+2 (upper)	FFh	└ Value read from register	
				Value read from register address+2 (lower)	FFh	address 0404h

Value read from register

address+3 (upper)

Value read from register

address+3 (lower) Error check (lower)

Error check (upper)

D8h

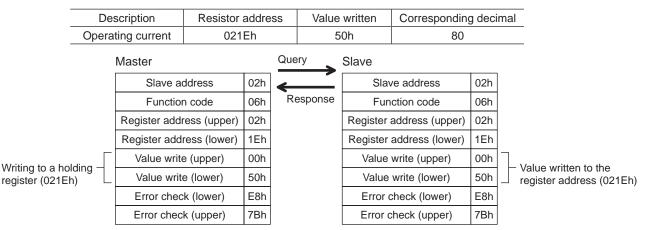
F0h

08h

A3h

Value read from register

address 0405h


7.2 Writing to a holding register

This function code is used to write data to a specified register address.

If two registers specifying the upper byte and lower byte (32 bits), respectively, constitute one value, refer to "Writing to multiple holding registers (10h)."

Example of write

Write 80 (50h) as operating current to slave address 2.

7.3 Diagnosis

This function code is used to diagnose the communication between the master and slave. Arbitrary data is sent and the returned data is used to determine whether the communication is normal. 00h (reply to query) is the only sub-function supported by this function code.

Example of diagnosis

Send arbitrary data (1234h) to the slave.

Master		Query	Slave	
Slave address	03h	``	Slave address	03h
Function code	08h	Response	Function code	08h
Sub function code (upper)	00h		Sub function code (upper)	00h
Sub function code (lower)	00h		Sub function code (lower)	00h
Data value (upper)	12h		Data value (upper)	12h
Data value (lower)	34h		Data value (lower)	34h
Error check (lower)	ECh		Error check (lower)	ECh
Error check (upper)	9Eh		Error check (upper)	9Eh

7.4 Writing to multiple holding registers

This function code is used to write data to multiple successive registers. Up to 10 registers can be written. If two registers specifying the upper byte and lower byte (32 bits), respectively, constitute one value, then the two registers must be written simultaneously (example: position, operating speed). If not, an invalid value may be written. Registers are written in the order of register addresses. Note that even when an exception response is returned because some data is invalid as being outside the specified range, etc., other data may have been written properly.

Example of write

Set the following data as acceleration rate Nos.2 to 4 as part of operation data at slave address 4.

Description	Resistor address	Value written	Corresponding decimal	
Operation data acceleration rate No.2 (upper)	0904h	0000h	10000	
Operation data acceleration rate No.2 (lower)	0905h	2710h	10000	
Operation data acceleration rate No.3 (upper)	0906h	0000h	20000	
Operation data acceleration rate No.3 (lower)	0907h	4E20h	20000	
Operation data acceleration rate No.4 (upper)	0908h	0007h	500,000	
Operation data acceleration rate No.4 (lower)	0909h	A120h	- 500,000	

	Master	Query	Slave		
	Slave address	04h	\leftarrow	Slave address	04h
	Function code	10h	Response	Function code	10h
Register address to start	Register address (upper)	09h		Register address (upper)	09h
writing from (0904h)	Register address (lower)	04h		Register address (lower)	04h
Number of registers to be written from the starting	Number of registers (upper)	00h		Number of registers (upper)	00h
register address (6 registers=0006h)	Number of registers (lower)	06h		Number of registers (lower)	06h
Twice the number of	Number of data bytes	0Ch		Error check (lower)	02h
Value written to register	Value written to register address (upper)	00h		Error check (upper)	03h
address 0904h	Value written to register address (lower)	00h			
	Value written to register address+1 (upper)	27h			
Value written to register address 0905h	Value written to register address+1 (lower)	10h			
	Value written to register address+2 (upper)	00h			
Value written to register address 0906h	Value written to register address+2 (lower)	00h			
Volue written to register	Value written to register address+3 (upper)	4Eh			
Value written to register address 0907h	Value written to register address+3 (lower)	20h			
Value written to register	Value written to register address+4 (upper)	00h			
address 0908h	Value written to register address+4 (lower)	07h			
Value written to register	Value written to register address+5 (upper)	A1h			
address 0909h	Value written to register address+5 (lower)	20h			
	Error check (lower)	28h			
	Error check (upper)	5Ah			

7.5 Control method selection

Communication setting

Set the following parameters using the **OPX-2A** or **MEXE02**.

Parameter name	Setting range	Initial value	Description
Communication protocol	0: Modbus RTU 1: GW Ver.1.0	0	Sets the protocol for RS-485 communication. Set "0: Modbus RTU".
Communication parity	0: None 1: Even number 2: Odd number	1	Sets the parity for RS-485 communication.
Communication stop bit	0: 1 bit 1: 2 bits	0	Sets the stop bit for RS-485 communication.
Transmission waiting time	0 to 1000.0 ms	10.0	Sets the transmission waiting time for RS-485 communication.

Selection from I/O control and RS-485 communication control

Prior to shipment, I/O control is set as the method to select the operation command input method or operation data number. To change this control method to RS-485 communication, change the applicable settings using the **OPX-2A**, **MEXEO2** or via RS-485 communication.

The table below lists the items whose control can be switched between I/O and RS-485 communication. You can use both methods simultaneously, such as controlling the operation via RS-485 communication and inputting a stop signal via I/O.

Item	Method of control via I/O	Method of control via RS-485 communication	This command is used to change the control method.	
Positioning operation	START input	START for command 1 (001Eh)	START input mode	
Excitation control	AWO input	C-ON for command 1 (001Eh)	Motor excitation mode	
Stop	STOP input	STOP for command 1 (001Eh) *	I/O STOP input	
Select data No.	M0 to M5 input	M0 to M5 for command 1 (001Eh)	Data number input mode	
Return-to-home operation	HOME input	HOME for command 1 (001Eh)		
Continuous operation (forward)	FWD input	FWD for command 1 (001Eh)	HOME/FWD/RVS input mode	
Continuous operation (reverse)	RVS input	RVS for command 1 (001Eh)		
Reset alarm	ALM-RST input	Alarm reset (0040h)	None (both are always	
Position preset	P-PRESET input	Position preset (0048h)	effective)	

* STOP for command 1 (001Eh) is always effective. Even if the "I/O STOP input" parameter is set to "enable," operation still stop when STOP is input for command 1 (001Eh).

Note Data set via RS-485 communication is written to the driver's RAM, but data in the RAM will be cleared once the power is turned off. To save the data set via RS-485 communication to the non-volatile memory, execute "Batch NV memory write." Note that only operation data and parameters are saved to the non-volatile memory.

8.1 Register address types

An attempt to read from an unused address or write-only register address in the following address range will return an invalid value.

A value written to an unused address or read-only register address in the following address range will be ignored.

Address	Туре	WRITE/ READ	Saving to NV memory	Description
0000h to 003Fh	Operation	W/R *		Specify operations.
0040h to 007Fh	Maintenance	W/R	Impossible	Clear alarm or warning records or perform batch processing of the NV memory.
0100h to 013Fh	Monitor	R		
0200h to 027Fh 0300h to 033Fh	Parameter			WRITE/READ parameter.
0400h to 047Fh 0500h to 057Fh 0600h to 063Fh 0700h to 073Fh 0800h to 083Fh 0900h to 097Fh 0A00h to 0A7Fh 0C00h to 0C3Fh	Operation data	W/R	Possible	WRITE/READ operation data.

* Including read-only areas.

• An attempt to write operation data or parameters in the following condition may fail. Also, invalid values may be read if operation data or parameters are read in this condition:

- See "10.1 Communication errors" on p.126 for details
- · User interface communication in progress
- · Non-volatile memory processing in progress
- An attempt to clear the history or process the non-volatile memory in the following condition may fail. Note, however, that the non-volatile memory can still be initialized even when an EEPROM error alarm is present:

See "10.1 Communication errors" on p.126 for details

- \cdot User interface communication in progress
- Non-volatile memory processing in progress

8.2 Operation area

Address	WRITE/READ	Name	Initial value
0012h		Dwell time for the selected data number	
0013h		Sequential positioning for the selected data number	
0014h		Operating mode for the selected data number	
0015h		Positioning mode for the selected data number	
0016h		Deceleration rate for the selected data number (upper)	
0017h		Deceleration rate for the selected data number (lower)	
0018h		Acceleration rate for the selected data number (upper)	
0019h	W/R	Acceleration rate for the selected data number (lower)	
001Ah		Operating speed for the selected data number (upper)	
001Bh		Operating speed for the selected data number (lower)	
001Ch		Position for the selected data number (upper)	
001Dh		Position for the selected data number (lower)	
001Eh		Command 1	
001Fh		Command 2	
0020h	P	Status 1	1
0021h	R	Status 2	1
0030h	W/R	Group	-1

Operation data for the selected data number (0012h to 001Dh)

Operation data is read or written from/to the selected data number indirectly. The actual area to be read or written in this operation is the area where the operation data is stored.

• Example) Operation data No.2 is selected

001Ch is written (read) in the exact same manner as 0404h is written (read). 001Dh is written (read) in the exact same manner as 0405h is written (read).

Address	WRITE/READ	Name
001Ch	W/R	Position for the operation data No.2 (upper)=0404h
001Dh		Position for the operation data No.2 (lower)=0405h

• Example) Operation data No.3 is started after changing the original operating speed and position

By "writing to multiple holding registers" at 001Ah to 001Fh, you can change the operating speed and position for operation data No.3 and start the operation with a single command. Select operation data No.3 and then send the following command.

Address	WRITE/READ	Name
001Ah		Operating speed for the operation data No.3 (upper)
001Bh		Operating speed for the operation data No.3 (lower)
001Ch	W/R	Position for the operation data No.3 (upper)
001Dh		Position for the operation data No.3 (lower)
001Eh		Command 1

Command 1 (001Eh)

Commands the slave to perform an operation.

byte	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
Upper	-	-	C-ON	STOP	HOME	RVS	FWD	STAR	RT T	
Lower	-	-	M5	M4	M3	M2 M1 M0				
Signal name Description Setting range									Initial value	
M0 to M5	Specify	pecify the operation data number using six bits. 0 to 63: Operating data No.							0	
START	Perfor	Perform positioning operation.					0: No action 1: Start operation *1			
FWD		Perform continuous operation in the forward direction.					0: Deceleration stop			
RVS		erform continuous operation in the reverse rection.			erse	1: Operation			0	
HOME	Perfor	m return-to-	home opera	ation.		0: No action 1: Start operation *1			0	
STOP	Stop th	Stop the motor. 0: No action 1: Stop				0				
C-ON		Switch the motor excitation setting (excited/not excited).0: Motor is not excited *2 1: Motor is excited *2					*2	0		

*1 Operation starts at the ON edge from 0 to 1. Return the bit to "0" once the operation has started.
*2 When the "C-ON logic configuration" parameter is set to "0."

Command 2 (001Fh)

Commands the slave to perform an operation.

-	1	1		1	1		r	1		
byte	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
Upper	-	-	-	-	-	-	-	-		
Lower	-	-	-	-	R-OUT4	R-OUT3	R-OUT2	R-OUT	T1	
Signal	name		Description			Setting r	ange		Initial value	
R-OUT1 t	o R-OUT4	These sigr R-OUT1 to	als set ON R-OUT4 o	OFF of utputs.	0: OFF (ph 1: ON (pho	notocoupler otocoupler e		ed)	0	

Status 1 (0020h)

Indicates the slave condition.

byte	bit7	,	bit6	bit5	bit4	bit3	bit2		bit1	bit0	
Upper	ARE		_	READY	-	HOME-P	MOV		STEPOUT	START_R	
Lower	ALN		WNG	M5_R	M4_R	M3_R	M2_I	-	M1_R	M0_R	
 Signal n	ame			Des	cription			Range			
M0_R to	M5_R	Sel	ected opera	ation data n	umber *				63: Selected onber	operation data	
WNG	3	Aw	arning is pi	esent.					Varning not pre Varning presen		
ALM	1	An alarm is present					0: Alarm not present 1: Alarm present				
START	_R	Indicates the status of START. * 0: START=OFF 1: START=ON									
STEPC	DUT	The	e step devia	ition is abno	normal.				Deviation error I Deviation error		
MOV	Έ	Indicates the operating cond			condition of the motor.				/lotor stopped /lotor operating		
HOME-P Indicates that the motor is at home position. It can be used as a home-seeking completion signal.		d at home									
READY Indicates that the driver is ready. 0: Not ready 1: Ready											
ARE	A	The	e motor out	out shaft is	inside the s	specified ran	0: Outside area				

* START and M0 to M5 can be turned ON/OFF via I/O or RS-485 communication. If these signals are controlled via I/O, the I/O-controlled ON/OFF status is returned. If the signals are controlled via RS-485 communication, the RS-485-communication-controlled ON/OFF status is returned. I/O control is selected as the default prior to shipment.

■ Status 2 (0021h)

Indicates the slave condition.

byte	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Upper	-	-	-	-	-	-	-	-
Lower	-	-	-	ZSG	TIM	O.H.	ENABLE	S-BSY

Signal name	Description	Read range
S-BSY	Indicates the internal processing condition as a result of RS-485 communication.	0: Internal processing not in progress 1: Internal processing in progress
ENABLE	Indicates the excitation condition of the motor.	0: Motor not excited 1: Motor excited
O.H.	Indicates whether or not an overheat warning is present.	0: Overheat warning not present 1: Overheat warning present
TIM	Indicates the excitation condition of the motor. "1" is read when the motor is at its excitation home.	0: TIM not being detected 1: TIM being detected
ZSG	Indicates the Z-phase condition of the encoder input.	0: ZSG not being detected 1: ZSG being detected

Group (0030h)

See p.124 for group details.

8.3 Maintenance area

All commands can be read and written (READ/WRITE).

- It takes time to clear the history or read/write the NV memory. The internal processing inprogress signal (S-BSY) remains ON while the processing is being executed. Do not issue maintenance commands while the internal processing is in progress.
 - Do not issue maintenance commands while the motor is operating.
 - Set "1" for maintenance data. Return it to "0" after the applicable operation is finished.

Address	Name	Description	Setting range
0040h	Reset alarm	Resets the alarms that are present.	
0041h	Clear alarm records	Clear alarm records.	
0042h	Clear warning records	Clear warning records.	
0044h	Batch NV memory read	Reads the operation data and parameters saved in the non-volatile memory, to the RAM. All operation data and parameters previously saved in the RAM are overwritten.	
0045h	Batch NV memory write	Writes the operation data and parameters saved in the RAM to the non-volatile memory.	
0046h	All data initialization *2	Resets the operation data and parameters saved in the RAM and non-volatile memory, to their defaults.	
0048h	Preset position	Presets the command position as the value of the "preset position" parameter.	0: Do not execute
0049h	Clear communication error records	Clears the communication error records.	1: Execute
004Ah	Preset encoder counter *1	Presets the encoder counter value as the value of the "encoder counter preset value" parameter.	
004Bh	Clear counter	Clears the command position and encoder counter value to 0. Internal deviations of the driver are also cleared, so any deviation error, if present, is reset.	
004Ch	Operation data initialization	Resets the operation data saved in the RAM and non-volatile memory, to their defaults.	
004Dh	Application parameters initialization	Resets the application parameters saved in the RAM and non-volatile memory, to their defaults.	
004Eh	System parameters initialization *2	Resets the system parameters saved in the RAM and non-volatile memory, to their defaults	

*1 This resistor address is used when an encoder is connected.

*2 The communication axis number, communication protocol, communication parity, communication stop bit and transmission waiting time are not initialized.

8.4 Monitor area

All commands can be read (READ).

Address	Name	Description	Setting range
0100h	Present alarm	Monitors the present alarm code.	
0101h	Alarm record 1		
0102h	Alarm record 2		
0103h	Alarm record 3		
0104h	Alarm record 4		
0105h	Alarm record 5		
0106h	Alarm record 6	Check the alarm records 1 to 10	
0107h	Alarm record 7		
0108h	Alarm record 8		
0109h	Alarm record 9		
010Ah	Alarm record 10		
010Bh	Present warning	Monitors the present warning code.	
010Ch	Warning record 1		
010Dh	Warning record 2		
010Eh	Warning record 3		
010Fh	Warning record 4		
0110h	Warning record 5		
0111h	Warning record 6	Check the warning records 1 to 10	
0112h	Warning record 7		
0113h	Warning record 8		
0114h	Warning record 9		
0115h	Warning record 10		
0116h	Present selected operation data number	Check the operation data number currently selected.	
0117h	Present operation data number	Check the operation data number corresponding to the data used in the current positioning operation. This address is used in linked-motion operation and sequential operation. While the motor is stopped, the last used operation data number is indicated.	0 to 63
0118h	Command position (upper)	Manitors the command position	-2,147,483,648 to
0119h	Command position (lower)	Monitors the command position.	2,147,483,647 step
011Ch	Command speed (upper)	Monitors the current command speed.	-500,000 to +500,000 Hz +: Forward
011Dh	Command speed (lower)		-: Reverse 0: Stop
011Eh	Encoder counter (upper) *	Monitors the encoder counter value.	-2,147,483,648 to
011Fh	Encoder counter (lower) *		2,147,483,647 step
0124h	Remaining dwell time	Indicates how much of the dwell time used in the linked-motion operation 2 remains.	0 to 50000 (1=0.001 s)
0126h	I/O status (upper)	Monitor the each I/O signal (CN2) of the driver.	0: OFF (photocoupler un-energized)
0127h	I/O status (lower)	(see table on next page.)	1: ON (photocoupler energized)
0128h	Communication error code	Indicates the last received communication error code.	
0129h	Communication error code record 1		
012Ah	Communication error code record 2		
012Bh	Communication error code record 3	Check the communication error records that have	-
012Ch	Communication error code record 4	Check the communication error records that have occurred in the past.	
012Dh	Communication error code record 5		
012Eh	Communication error code record 6		
012Fh	Communication error code record 7		

* This resistor address is used when an encoder is connected.

Address	Name	Description	Setting range
0130h	Communication error code record 8		
0131h	Communication error code record 9	Check the communication error records that have occurred in the past.	-
0132h	Communication error code record 10		
0133h	Driver status (upper)	Monitors the driver statue (ass table below)	0: OFF
0134h	Driver status (lower)	Monitors the driver status. (see table below.)	1: ON

■ I/O status (0126h/0127h)

byte	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
3 (most significant bit)	-	-	OUT4	OUT3	OUT2	OUT1	ALM	MOVE
2	-	-	-	-	SLIT	HOMES	-LS	+LS
1	_	RVS	FWD	HOME/ P-PRESET	STOP	AWO	ALM-RST	START
0 (least significant bit)	-	-	M5	M4	M3	M2	M1	M0

■ Driver status (0133h/0134h)

byte	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
3 (most significant bit)				ALN	1CD			
2	ZSG	TIM	M5_R	M4_R	M3_R	M2_R	M1_R	M0_R
1	START_R	O.H.	HOMES	SLIT	-LS	+LS	STEPOUT	WNG
0 (least significant bit)	ENABLE	ALM	AREA	S-BSY	READY	HOME-P	0	MOVE

Signal name of driver status

Signal name	Description	Read range
MOVE	Indicates the operating condition of the motor.	0: Motor stopped 1: Motor operating
HOME-P	Indicates that the motor is at home position. It can be used as a home-seeking completion signal.	0: Motor not positioned at home 1: Motor positioned at home (home-seeking completed)
READY	Indicates that the driver is ready.	0: Not ready 1: Ready
S-BSY	Indicates the internal processing condition as a result of RS- 485 communication.	0: Internal processing not in progress 1: Internal processing in progress
AREA	The motor output shaft is inside the specified range.	0: Outside area 1: Inside area
ALM	An alarm is present.	0: Alarm not present 1: Alarm present
ENABLE	Indicates the excitation condition of the motor.	0: Motor not excited 1: Motor excited
WNG	A warning is present.	0: Warning not present 1: Warning present
STEPOUT	The deviation is abnormal.	0: Deviation error not present 1: Deviation error present
+LS	Indicates the condition of the I/O +LS input.	
-LS	Indicates the condition of the I/O -LS input.	0: OFF (photocoupler un-energized)
SLIT	Indicates the condition of the I/O SLIT input.	1: ON (photocoupler energized)
HOMES	Indicates the condition of the I/O HOMES input.	
O.H.	Indicates whether or not an overheat warning is present.	0: Overheat warning not present 1: Overheat warning present
START_R	Indicates the status of START. *	0: START=OFF 1: START=ON
TIM	Indicates the excitation condition of the motor. "1" is read when the motor is at its excitation home.	0: TIM not being detected 1: TIM being detected
ZSG	Indicates the Z-phase condition of the encoder input.	0: ZSG not being detected 1: ZSG being detected
M0_R to M5_R	Selected operation data number *	0 to 63: Operation data number
ALMCD	Indicates the alarm code of the present alarm.	Alarm code

* START and M0 to M5 can be turned ON/OFF via I/O or RS-485 communication. If these signals are controlled via I/O, the I/O-controlled ON/OFF status is returned. If the signals are controlled via RS-485 communication, the RS-485-communication-controlled ON/OFF status is returned. I/O control is selected as the default prior to shipment.

8.5 Parameter area

All commands can be read and written (READ/WRITE).

Address	Name	Setting range	Initial value	
0200h	START input mode	0: RS-485 communication 1: I/O	1	
0201h	I/O STOP input	0: Disable 1: Enable	1	
0202h	STOP action	 0: Immediate stop 1: Decelerate stop 2: Immediate stop & Current OFF 3: Decelerate stop & Current OFF 	1	
0203h	STOP contact configuration	0: Make (N.O.) 1: Brake (N.C.)	1	
0204h	C-ON logic configuration	0: 0=Not excited, 1=Excited 1: 0=Excited, 1=Not excited	0	
0206h	OUT1 signal mode selection	5: AREA 11: R-OUT1	5	
0207h	OUT2 signal mode selection	6: TIM 12: R-OUT2 7: READY 13: STEPOUT *	7	
0208h	OUT3 signal mode selection	8: WNG 14: O.H.	8	
0209h	OUT4 signal mode selection	9: HOME-P 15: R-OUT3 10: ZSG * 16: R-OUT4	9	
0203h	HOME/P-PRESET input switching	0: HOME 1: P-PRESET	0	
020Bh	Motor excitation mode			
020Ch	HOME/FWD/RVS input mode	0: RS-485 communication	1	
020Dh	Data No. input mode	1: I/O		
020Eh	AWO contact configuration	0: Make (N.O.) 1: Brake (N.C.)	0	
020Fh	Hardware overtravel detection	0: Disable 1: Enable	1	
0210h	LS contact configuration			
0211h	HOMES contact configuration	0: Make (N.O.) 1: Brake (N.C.)	0	
0212h	SLIT contact configuration			
0213h	Overtravel action	0: Immediate stop 1: Decelerate stop	0	
0214h	Preset position (upper)			
0215h	Preset position (lower)			
0216h	Area 1 (upper)			
0217h	Area 1 (lower)	-8,388,608 to +8,388,607 step	0	
0218h	Area 2 (upper)			
0219h	Area 2 (lower)			
021Ch	Encoder counter preset value (upper)	-		
021Dh	Encoder counter preset value (lower)			
021Eh	Operating current	5 to 100%	100	
021Fh	Standstill current	5 to 50%	50	
0224h	Common acceleration rate (upper)	-		
0225h	Common acceleration rate (lower)	0.001 to 1000.000 ms/kHz	30.000	
0226h	Common deceleration rate (upper)			
0227h	Common deceleration rate (lower)			
0228h	Starting speed (upper)		100	
0229h	Starting speed (lower)	1 to 500,000 Hz		
0230h	Jog operating speed (upper)		1000	
0231h	Jog operating speed (lower) Jog acceleration (deceleration) rate (upper)			
0232h			1	

Application parameters

* indicates the parameter that is used when an encoder is connected.

Address	Name	Setting range	Initial value
0234h	Jog starting speed (upper)	1 to 500 000 Hz	100
0235h	Jog starting speed (lower)	1 to 500,000 Hz	100
0236h	Acceleration (deceleration) rate type	0: Common 1: Separate	0
0237h	Home-seeking mode	0: 2 sensors 1: 3 sensors	1
023Ah	Operating speed of home-seeking (upper)	- 1 to 500,000 Hz	1000
023Bh	Operating speed of home-seeking (lower)	1 to 500,000 Hz	1000
023Ch	Acceleration (deceleration) rate of home- seeking (upper)	- 0.001 to 1000.000 ms/kHz	30.000
023Dh	Acceleration (deceleration) rate of home- seeking (lower)	0.001 10 1000.000 His/kHz	30.000
023Eh	Starting speed of home-seeking (upper)	1 to 500 000 11-	100
023Fh	Starting speed of home-seeking (lower)	– 1 to 500,000 Hz	100
0240h	Position offset of home-seeking (upper)	0.200 C00 to 10.200 C07 stor	0
0241h	Position offset of home-seeking (lower)		0
0242h	Starting direction of home-seeking	0: Negative direction 1: Positive direction	1
0243h	SLIT detection with home-seeking	0: Disable 1: Enable	0
0244h	TIM signal detection with home-seeking	0: Disable 1: Enable (TIM) 2: Enable (ZSG) *	0
0245h	Backward steps in 2 sensor mode home- seeking	0 to 32767 step	200
0246h	Stepout detection band *	1 to 3600 (1=0.1 deg)	72
024Ah	Overvoltage warning	250 to 350 (1=0.1 V)	310
024Ch	Overheat warning	40 to 85 ° C (104 to 185 ° F)	85
0252h	Software overtravel	0: Disable 1: Enable	1
0254h	Positive software limit (upper)		.0.000.00
0255h	Positive software limit (lower)		+8,388,607
0256h	Negative software limit (upper)		0.000.000
0257h	Negative software limit (lower)		-8,388,608
0258h	Display mode of the data setter speed	0: Signed 1: Absolute	0
0259h	The data setter editing mode	0: Disable 1: Enable	1
025Bh	Communication timeout action	0: Immediate stop 1: Decelerate stop	1
025Ch	Stepout detection action *	0: No operation (alarm/warning not resent) 1: Warning 2: Alarm	0

 \ast indicates the parameter that is used when an encoder is connected.

System parameters

All commands can be read and written (READ/WRITE).

- Note To make the new system parameter settings effective, execute "Batch NV memory write" and then cycle the power.
 - The communication axis number, communication parity, communication stop bit and transmission waiting time parameters relate to sending/receiving of data through communication. If these parameters are changed and the new settings become effective, communication may be disabled. Exercise due caution.

Address	Name	Setting range	Initial value
030Eh	Motor rotation direction	0: +direction=CCW 1: +direction=CW	1
0310h	Stepout detection *	0: Disable 1: Enable	0
0311h	Motor step angle	See table below.	0
0312h	Encoder electronic gear A (upper) *		
0313h	Encoder electronic gear A (lower) *	1 to 250,000	500
0314h	Encoder electronic gear B (upper) *	1 10 250,000	500
0315h	Encoder electronic gear B (lower) *		
0316h	Communication axis number	0 to 31	15
0318h	Communication parity	0: None 1: Even number 2: Odd number	1
0319h	Communication stop bit	0: 1 bit 1: 2 bits	0
031Ah	Transmission waiting time	0.1 to 1000.0 ms	10.0
031Bh	Communication timeout	0: Not monitored 1 to 10000 ms	0
031Ch	Communication error alarm	1 to 10 times	3

* This parameter is used when an encoder is connected.

\bullet "Motor step angle" parameter: If the base step angle of the motor is 0.72°

Setting	Step angle	Number of divisions		Setting	Step angle	Number of divisions
0	0.72°	1	_	8	0.0288°	25
1	0.36°	2	_	9	0.018°	40
2	0.288°	2.5	-	10	0.0144°	50
3	0.18°	4	-	11	0.009°	80
4	0.144°	5	-	12	0.0072°	100
5	0.09°	8	-	13	0.00576°	125
6	0.072°	10	_	14	0.0036°	200
7	0.036°	20	-	15	0.00288°	250
		·	-			· · · · · · · · · · · · · · · · · · ·

• "Motor step angle" parameter: If the base step angle of the motor is 0.36°

Setting	Step angle	Number of divisions	-	Setting	Step angle	Number of divisions
0	0.36°	1	-	8	0.0144°	25
1	0.18°	2	-	9	0.009°	40
2	0.144°	2.5		10	0.0072°	50
3	0.09°	4	-	11	0.0045°	80
4	0.072°	5	-	12	0.0036°	100
5	0.045°	8	-	13	0.0028°	125
6	0.036°	10		14	0.0018°	200
7	0.018°	20	-	15	0.00144°	250

Note • Step angles are theoretical values.

- With the geared type, the value of "step angle/gear ratio" becomes the actual step angle.
- The base step angle is 0.36° for high-resolution type motors.

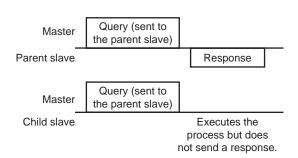
8.6 Operation data area

All commands can be read and written (READ/WRITE).

Address	Name	Setting range	Initial value
0402h 0403h to 047Eh 047Fh	Position No.1 (upper) Position No.1 (lower) to Position No.63 (upper) Position No.63 (lower)	-8,388,608 to 8,388,607 step	0
0502h 0503h to 057Eh 057Fh	Operating speed No.1 (upper) Operating speed No.1 (lower) to Operating speed No.63 (upper) Operating speed No.63 (lower)	1 to 500,000 Hz	1000
0601h to 063Fh	Positioning mode No.1 to Positioning mode No.63	0: Incremental 1: Absolute	0
0701h to 073Fh	Operating mode No.1 to Operating mode No.63	0: Single-motion 1: Linked-motion 2: Linked-motion 2	0
0801h to 083Fh	Sequential positioning No.1 to Sequential positioning No.63	0: Disable 1: Enable	0
0902h 0903h to 097Eh 097Fh 0A02h 0A03h to 0A7Eh	Acceleration rate No.1 (upper) Acceleration rate No.1 (lower) to Acceleration rate No.63 (upper) Acceleration rate No.63 (lower) Deceleration rate No.1 (upper) Deceleration rate No.1 (lower) to Deceleration rate No.63 (upper)	- 0.001 to 1000.000 ms/kHz	30.000
0A7Fh 0C01h to 0C3Fh	Deceleration rate No.63 (lower) Dwell time No.1 to Dwell time No.63	0 to 50000 (1=0.001 s)	0

9 Group send

Multiple slaves are made into a group and a command is sent to all slaves in the group at once.


Group composition

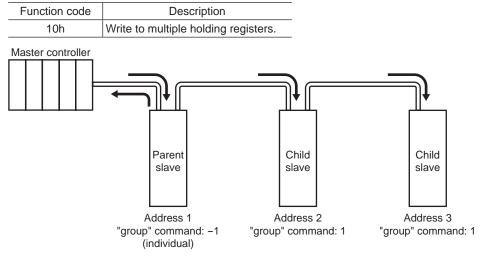
A group consists of one parent slave and child slaves and only the parent slave returns a response.

Group address

To perform a group send, set a group address to the child slaves to be included in the group.

The child slaves to which the group address has been set can receive a query sent to the parent slave.

Parent slave


No special setting is required on the parent slave to perform a group send. The address of the parent slave becomes the group address. When a command is sent to the parent slave from the master, the parent slave executes the requested process and then returns a response (same with the unicast mode).

Child slave

Use a "group" command to set a group address to each child slave. Change the group in the unicast mode.

Address	Setting range	Initial value
0030h	 -1: No group specification (Group send is not performed) 1 to 31: Sets a group address. 	-1

Function code supporting the group send

Master to slave	Start of positioning operation of address 1		Start of positioning operation of address 2	
Slave to master		Response from address 1		Response from address 2
Motor operation at address 1 (parent slave)				
Motor operation at address 2 (child slave)				
Motor operation at address 3 (child slave)				

10 Detection of communication errors

This function detects abnormalities that may occur during RS-485 communication. The abnormalities that can be detected include communication errors, alarms and warnings.

10.1 Communication errors

A communication error record will be saved in the RAM. You can check the communication errors using the **MEXEO2** or "communication error record" command via RS-485 communication.

Note The communication error record will be cleared once the driver power is turned off.

Type of communication error	Error code	Cause	Ref.
RS-485 communication error	84h	A transmission error was detected.	p.107
Command not yet defined	88h	An exception response (exception code 01h, 02h) was detected.	n 107
User interface communication in progress	89h	An exception response (exception code 04h)	
Non-volatile memory processing in progress 8Ah		was detected.	p.107
Outside setting range	8Ch	An exception response (exception code 03h) was detected.	

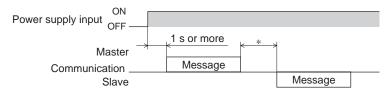
10.2 Alarms and warnings

When an alarm generates, the ALM output will turn OFF and the motor will stop. At the same time, the ALARM LED will start blinking.

When a warning generates, the WNG output will turn ON. The motor will continue to operate. Once the cause of the warning is removed, the WNG output will turn OFF automatically.

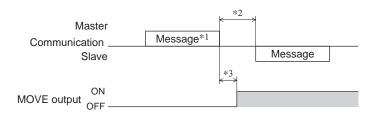
Note You can also clear the warning records by turning off the driver power.

RS-485 communication error (84h)

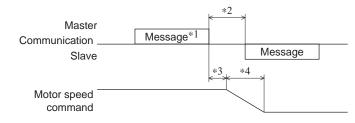

The table below shows the relationship between alarms and warnings when an RS-485 communication error occurs.

Description of error	Description
	A warning generates when one RS-485 communication error (84h) has been detected. If normal reception occurs while the warning is present, the warning will be reset automatically.
	An alarm generates when a RS-485 communication error (84h) has been detected consecutively by the number of times set in the "communication error alarm" parameter. While the alarm is present, RS-485 communication is cut off and the motor becomes unexcited.

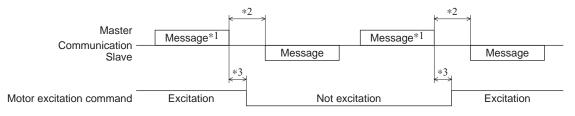
RS-485 communication timeout (85h)


If communication is not established with the master after an elapse of the time set by the "communication timeout" parameter, a RS-485 communication timeout alarm will generate. The motor stopping method can be set using the "communication timeout action" parameter.

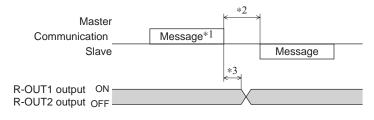
Communication start


 * Tb2 (transmission waiting time)+C3.5 (silent interval) Tb4 (processing time)+C3.5 (silent interval) if Tb2 < Tb4

Operation start


- *1 A message including a command to start operation via RS-485 communication.
- *2 Tb2 (transmission waiting time)+C3.5 (silent interval)
- Tb4 (processing time)+C3.5 (silent interval) if Tb2 < Tb4
- *3 C3.5 (silent interval)+4 ms or less

Operation stop, speed change


- *1 A message including a command to start operation and another to change the speed via RS-485 communication.
- *2 Tb2 (transmission waiting time)+C3.5 (silent interval)
- Tb4 (processing time)+C3.5 (silent interval) if Tb2 < Tb4
- *3 The specific time varies depending on the command speed.
- *4 The specified time varies according to the value set by the "STOP action" parameter.

Excitation control

- *1 A message including a command for excitation control via RS-485 communication.
- *2 Tb2 (transmission waiting time)+C3.5 (silent interval)
- Tb4 (processing time)+C3.5 (silent interval) if Tb2 < Tb4
- *3 C3.5 (silent interval)+4 ms or less

Remote output

*1 A message including a command for remote output via RS-485 communication.

- *2 Tb2 (transmission waiting time)+C3.5 (silent interval) Tb4 (processing time)+C3.5 (silent interval) if Tb2 < Tb4
- *3 C3.5 (silent interval)+4 ms or less

12 Example of communication setting

The data required for each operation is set using the OPX-2A, MEXEO2 or via RS-485 communication.

12.1 Positioning operation

See p.55 for details on the positioning operation. How to perform the following positioning operation is explained as an example.

- Slave address: 1
- Position (distance): 1000 step
- Operating speed: 5000 Hz
- 1. Send the following query to turn ON the motor excitation.

Field name	Data	Description	
Slave address	01h	Slave address 1	
Function code	06h	Write to a holding register	
Register address (upper)	00h	Command 1, 001Eb	
Register address (lower)	1Eh	Command 1=001Eh	
Value written (upper)	20h		
Value written (lower)	00h	Turn ON C-ON=2000h	
Error check (lower)	F0h	Booult of CBC 16, 0CE0b	
Error check (upper)	0Ch	Result of CRC-16=0CF0h	

2. Send the following query to set the position (travel amount) for operation data No.01 to 1000 steps.

Field name	Data	Description	
Slave address	01h	Slave address 1	
Function code	10h	Write to multiple holding registers.	
Register address (upper)	04h		
Register address (lower)	02h	Position No.1=0402h	
Number of registers (upper)	r) 00h		
Number of registers (lower)	02h	- Number of successive registers=2	
Number of data bytes	04h	Total number of data bytes=4	
Value written to register address (upper)	00h		
Value written to register address (lower)	00h	1000 stor. 0000 02585	
Value written to register address+1 (upper)	03h	- 1000 step=0000 03E8h	
Value written to register address+1 (lower)	E8h		
Error check (lower)	40h	Result of CRC-16=0840h	
Error check (upper)	08h	Result of CRC-16=0840n	

3. Send the following query to set the operating speed for operation data No.01 to 5000 Hz.

Field name	Data	Description
Slave address	01h	Slave address 1
Function code	10h	Write to multiple holding registers.
Register address (upper)	05h	Operating around No.1. 0502h
Register address (lower)	02h	Operating speed No.1=0502h
Number of registers (upper)	00h	Number of oursessing registers 2
Number of registers (lower)	02h	-Number of successive registers=2
Number of data bytes	04h	Total number of data bytes=4
Value written to register address (upper)	00h	
Value written to register address (lower)	00h	5000 LI- 0000 4288b
Value written to register address+1 (upper)	13h	- 5000 Hz=0000 1388h
Value written to register address+1 (lower)	88h	
Error check (lower)	40h	Result of CRC-16=7040h
Error check (upper)	70h	

4. Send the following query to select operation data No.01 and turn the START input ON (start operation). Position operation starts.

Field name	Data	Description
Slave address	01h	Slave address 1
Function code	06h	Write to holding register.
Register address (upper)	00h	Command 1, 001 Fb
Register address (lower)	1Eh	Command 1=001Eh
Value written (upper)	21h	Turn ON C ON START and MO. 2404h
Value written (lower)	01h	Turn ON C-ON, START and M0=2101h
Error check (lower)	30h	Result of CRC-16=5C30h
Error check (upper)	5Ch	

5. Once the positioning operation has started, send the following query to turn the START input OFF again (no operation).

Field name	Data	Description	
Slave address	01h	Slave address 1	
Function code	06h	Write to holding register.	
Register address (upper)	00h	Command 1=001Eh	
Register address (lower)	1Eh		
Value written (upper)	20h	Turn OFF START, Turn ON M0 and C-ON=2001h	
Value written (lower)	01h		
Error check (lower)	31h	Booult of CBC 16, CC21h	
Error check (upper)	CCh	Result of CRC-16=CC31h	

12.2 Continuous operation

See p.69 for details on the continuous operation. How to perform the following continuous operation is explained as an example.

- Slave address: 1
- Rotation direction: Forward
- Operating speed: 5000 Hz
- 1. Send the following query to turn ON the motor excitation.

Field name	Data	Description
Slave address	01h	Slave address 1
Function code	06h	Write to a holding register
Register address (upper)	00h	Command 1=001Eh
Register address (lower)	1Eh	
Value written (upper)	20h	Turn ON C-ON =2000h
Value written (lower)	00h	
Error check (lower)	F0h	Result of CRC-16=0CF0h
Error check (upper)	0Ch	

2. Send the following query to set the operating speed for operation data No.01 to 5000 Hz.

 Field name	Data	Description
	Dala	Description
Slave address	01h	Slave address 1
Function code	10h	Write to multiple holding registers.
Register address (upper)	05h	Operating aread No.1. 0502h
Register address (lower)	02h	Operating speed No.1=0502h
Number of registers (upper)	00h	Number of eucosciators
Number of registers (lower)	02h	Number of successive registers=2
Number of data bytes	04h	Total number of data bytes=4
Value written to register address (upper)	00h	
Value written to register address (lower)	00h	- 5000 Hz=0000 1388h
Value written to register address+1 (upper)	13h	- 5000 HZ=0000 138811
Value written to register address+1 (lower)	88h	
Error check (lower)	40h	Deputt of CDC 1C 7040h
Error check (upper)	70h	Result of CRC-16=7040h

3. Send the following query to select operation data No.01 and turn the FWD input ON (operation). Continuous operation starts.

Field name	Data	Description
Slave address	01h	Slave address 1
Function code	06h	Write to holding register.
Register address (upper)	00h	Command 1=001Eh
Register address (lower)	1Eh	
Value written (upper)	22h	
Value written (lower)	01h	Turn ON C-ON, FWD and M0=2201h
Error check (lower)	30h	Result of CRC-16=AC30h
Error check (upper)	ACh	

4. To stop the continuous operation, send the following query to turn the FWD input OFF again (deceleration stop).

Field name	Data	Description	
Slave address	01h	Slave address 1	
Function code	06h	Write to holding register.	
Register address (upper)	00h	Command 1=001Eh	
Register address (lower)	1Eh		
Value written (upper)	20h	Turn OFF FMD Turn ON MO and C ON 2004h	
Value written (lower)	01h	Turn OFF FWD, Turn ON M0 and C-ON=2001h	
Error check (lower)	31h	Beault of CPC 16, CC21h	
Error check (upper)	CCh	Result of CRC-16=CC31h	

12.3 Return-to-home operation

See p.64 for details on the return-to-home operation. How to perform the following return-to-home operation is explained as an example.

- Slave address: 1
- 1. Send the following query to turn ON the motor excitation.

Field name	Data	Description
Slave address	01h	Slave address 1
Function code	06h	Write to a holding register
Register address (upper)	00h	Command 1=001Eh
Register address (lower)	1Eh	
Value written (upper)	20h	Turn ON C-ON=2000h
Value written (lower)	00h	
Error check (lower)	F0h	Result of CRC-16=0CF0h
Error check (upper)	0Ch	

2. Send the following query to turn the HOME input ON (start operation). Return-to-home operation starts.

Field name	Data	Description
Slave address	01h	Slave address 1
Function code	06h	Write to a holding register
Register address (upper)	00h	Command 1=001Eh
Register address (lower)	1Eh	
Value written (upper)	28h	Turn ON C-ON and HOME=2800h
Value written (lower)	00h	
Error check (lower)	F7h	Result of CRC-16=CCF7h
Error check (upper)	CCh	

3. Once the return-to-home operation has started, send the following query to turn the HOME input OFF again (no operation).

Field name	Data	Description
Slave address	01h	Slave address 1
Function code	06h	Write to holding register.
Register address (upper)	00h	Command 1=001Eh
Register address (lower)	1Eh	
Value written (upper)	20h	TURN OFF LIGNE TURN ON C ON 2000h
Value written (lower)	00h	Turn OFF HOME, Turn ON C-ON=2000h
Error check (lower)	F0h	Result of CRC-16=0CF0h
Error check (upper)	0Ch	

6 Method of control via industrial network

This part explains how to control via industrial network. This product can be controlled via CC-Link communication or MECHATROLINK communication in combination with a network converter (sold separately).

Table of contents

1	Met	hod of control via CC-Link	
	con	nmunication13	4
	1.1	Guidance13	34
	1.2	Setting the switches 13	37
	1.3	Remote register list 13	38
	1.4	Assignment for remote I/O of 6 axes	
		connection mode13	38
		Assignment list of remote I/O1	38
		■ Input/output of remote I/O12	
		■ Details of remote I/O assignment14	40
	1.5	Assignment for remote I/O of 12 axes	
		connection mode14	11
		Assignment list of remote I/O14	41
		■ Input/output of remote I/O14	
		Details of remote I/O assignment14	44
2	Met	hod of control via	
	ME	CHATROLINK communication14	6
	2.1	Guidance14	16
	2.2	Setting the switches 14	19
	2.3	I/O field map for the NETC01-M2 15	
	2.4	I/O field map for the NETC01-M3 15	51

	2.5	Communication format151Remote I/O input151Remote I/O output152Remote register input152Remote register output152
3	Deta	ils of remote I/O153
	3.1	Input signals to the driver 153
	3.2	Output signals from the driver 153
4	Com	mand code list155
	4.1	Group function155
	4.1	Group function155
	4.1 4.2	Group function155 Maintenance command156
	4.1 4.2 4.3	Group function
	4.1 4.2 4.3 4.4	Group function
	4.1 4.2 4.3 4.4 4.5	Group function

1 Method of control via CC-Link

communication

See the following explanation when using the **CRK** Series built-in controller type in combination with the network converter **NETCO1-CC** via CC-Link communication.

Refer to "3 Details of remote I/O" on p.153 and "4 Command code list" on p.155 for remote I/O and command code.

1.1 Guidance

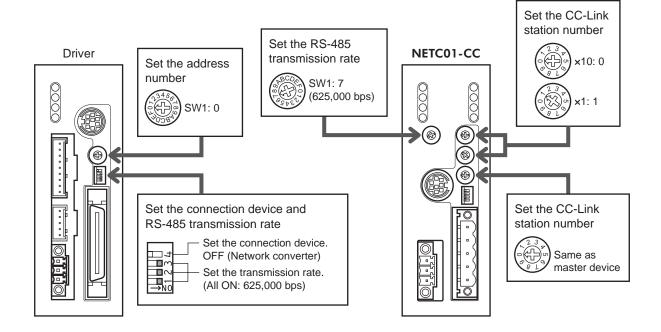
If you are new to the **CRK** Series built-in controller type, read this section to understand the operating methods along with the operation flow.

• Before operating the motor, check the condition of the surrounding area to ensure safety.

• See the network converter **NETC01-CC** USER MANUAL for how to set the parameter.

STEP 1 Set the transmission rate, station address and address number.

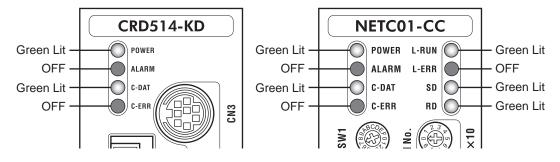
Using the parameter


- 1. Set the "connection (address number 0) (1D80h)" parameter of the NETC01-CC to "1: Enable."
- 2. Execute the "batch NV memory write (3E85h)" of the NETC01-CC.
- 3. Cycle the NETC01-CC power.

Note • "Connection" parameters will be enabled after the power is cycled.


• The "connection" parameters and "batch NV memory write" command can be executed using the **OPX-2A** or **MEXE02**.

Using the switches


- Setting condition of driver
- Address number of the driver: 0
- RS-485 transmission rate: 625,000 bps
- SW2-No.4 of the function setting switch: OFF
- Setting condition of NETC01-CC
- CC-Link station number: 1
- RS-485 transmission rate: 625,000 bps
- CC-Link baud rate: Same as the master station
- Operation mode: 6 axes connection mode

Check that the LED condition has become as shown in the figures.

- When C-ERR (red) of the driver or **NETC01-CC** is lit: Check the transmission rate or address number of RS-485 communication.
- When L-ERR (red) of the **NETC01-CC** is lit: Check the type of the CC-Link communication error.

STEP 4 Set the driver parameters

- 1. Set the "START input mode (1C00h)" parameter of the driver to "0: RS-485 communication." (Initial value: I/O)
- Set the "HOME/FWD/RVS input mode (1C0Ch)" parameter of the driver to "0: RS-485 communication." (Initial value: I/O)
- Set the "Data No. input mode (1C0Dh)" parameter of the driver to "0: RS-485 communication." (Initial value: I/O)
- 4. Set the "STOP contact configuration (1C03h)" parameter of the driver to "0: make." (Initial value: brake)
- 5. Select operation data No.01 by turning ON the M0 of the address number 0 for remote I/O of CC-Link communication.
- Perform continuous operation by turning ON the FWD of the address number 0 for remote I/O of CC-Link communication.
- **Note** The parameters are written in the RAM when writing via CC-Link communication. The data saved in the RAM will be erased once the driver power is turned off. When saving data to the non-volatile memory, execute "batch NV memory write" of the maintenance command. Refer to p.156.

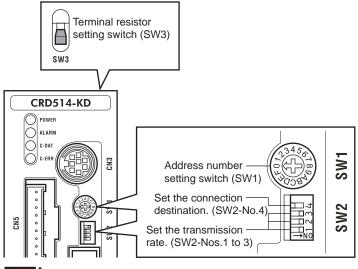
STEP 5 Execute continuous operation via remote I/O of CC-Link communication.

Perform continuous operation by turning ON the FWD of the address number 0 for remote I/O of CC-Link communication.

Command RY (Master to NETC01-CC)							
Device No.	Signal name	Initial value					
RY0	MO						
RY1	M1						
RY2	M2	Coloct the operation date No					
RY3	M3	Select the operation data No.					
RY4	M4						
RY5	M5						
RY6	_						
RY7	_	_					
RY8	START	Positioning operation					
RY9	FWD	Continuous operation (positive direction)					
RYA	RVS	Continuous operation (negative direction)					
RYB	HOME	Return-to-home operation					
RYC	STOP	Stop operation					
RYD	C-ON	Motor excitation ON/OFF					
RYE		_					
RYF		_					

STEP 6 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:


- Is any alarm present in the driver or **NETC01-CC**?
- Are the address number, transmission rate and termination resistor set correctly?
- Is the "connection" parameter of the **NETCO1-CC** set correctly?
- Is the C-ERR LED lit? (RS-485 communication error)
- Is the L-ERR LED lit? (CC-Link communication error)
- Is the operation data set correctly?
- Is the motor excited? Or is the excitation setting correct?
- Are the driver parameters set correctly?
- Is the STOP input of the driver I/O turned ON?

For more detailed settings and functions, refer to network converter **NETCO1-CC** USER MANUAL and following pages.

1.2 Setting the switches

Note

When using the driver in combination with the network converter, set the switches before use.

Be sure to turn off the motor power before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the driver power is cycled.

Setting the connection device

Set the connection device of RS-485 communication using the function setting switch SW2-No.4. Turn this switch OFF when controlling via the network converter. Factory setting OFF (Network converter)

Address number (slave address)

Set the address number (slave address) using the address number setting switch (SW1. Make sure each address number (slave address) you set for each driver is unique. Factory setting 0

Address number (slave address)	0	1	2	3	4	5	6	7	8	9	10	11
SW1	0	1	2	3	4	5	6	7	8	9	Α	В
Connection mode		6 axes connection mode						12 ax	es conr	nection	mode	

Transmission rate

Turn Nos.1 to 3 of the function setting switch (SW2) ON to set the transmission rate to 625,000 bps. Factory setting All ON (625,000 bps)

Termination resistor

Use a termination resistor for the driver located farthest away (positioned at the end) from the network converter. Turn the terminal resistor setting switch (SW3) ON to set the terminal resistor for RS-485 communication (120 Ω). Factory setting OFF (termination resistor disabled)

SW3	Termination resistor (120 Ω)
OFF	Disabled
ON	Enabled

1.3 Remote register list

Remote register is common to 6-axes connection mode and 12-axes connection mode.

"Monitor", "read and write of parameters" and "maintenance command" for the driver or **NETC01-CC** are executed using remote register.

"n" is an address assigned to the master station by the CC-Link station number setting.

(Master to NETC01-CC)	RWr (NETC01-CC to master)				
Description	Address No.	Description			
Command code of monitor 0	RWrn0	Data of monitor 0 (lower 16 bit)			
Address number of monitor 0	RWrn1	Data of monitor 0 (upper 16 bit)			
Command code of monitor 1	RWrn2	Data of monitor 1 (lower 16 bit)			
Address number of monitor 1	RWrn3	Data of monitor 1 (upper 16 bit)			
Command code of monitor 2	RWrn4	Data of monitor 2 (lower 16 bit)			
Address number of monitor 2	RWrn5	Data of monitor 2 (upper 16 bit)			
Command code of monitor 3	RWrn6	Data of monitor 3 (lower 16 bit)			
Address number of monitor 3	RWrn7	Data of monitor 3 (upper 16 bit)			
Command code of monitor 4	RWrn8	Data of monitor 4 (lower 16 bit)			
Address number of monitor 4	RWrn9	Data of monitor 4 (upper 16 bit)			
Command code of monitor 5	RWrnA	Data of monitor 5 (lower 16 bit)			
Address number of monitor 5	RWrnB	Data of monitor 5 (upper 16 bit)			
Command code	RWrnC	Command code response			
Address number	RWrnD	Address number response			
Data (lower)	RWrnE	Data (lower)			
Data (upper)	RWrnF	Data (upper)			
	Command code of monitor 0 Address number of monitor 0 Command code of monitor 1 Address number of monitor 1 Command code of monitor 2 Address number of monitor 2 Command code of monitor 3 Address number of monitor 3 Command code of monitor 4 Address number of monitor 4 Command code of monitor 5 Address number of monitor 5 Command code Address number of monitor 5 Command code Address number of monitor 5 Data (lower)	DescriptionAddress No.Command code of monitor 0RWrn0Address number of monitor 0RWrn1Command code of monitor 1RWrn2Address number of monitor 1RWrn3Command code of monitor 2RWrn4Address number of monitor 2RWrn5Command code of monitor 3RWrn6Address number of monitor 3RWrn6Address number of monitor 4RWrn7Command code of monitor 4RWrn8Address number of monitor 5RWrn8Address number of monitor 5RWrn8Address number of monitor 5RWrn8Address number of monitor 5RWrnAAddress number of monitor 5RWrnDData (lower)RWrnE			

1.4 Assignment for remote I/O of 6 axes connection mode

Remote I/O assignments of the driver are as follows. "n" is an address assigned to the master station by the CC-Link station number setting. See the network converter **NETCO1-CC** <u>USER MANUAL</u> for 6-axes.

■ Assignment list of remote I/O

-			
Command RY (Master	to NETC01-CC)	Response RX (NETCO	1-CC to master)
Device No.	Description	Device No.	Description
RYn7 to RYn0	Address number "0"	RXn7 to RXn0	Address number "0"
RYnF to RYn8	remote I/O input	RXnF to RXn8	remote I/O output
RY (n+1) 7 to RY (n+1) 0	Address number "1"	RX (n+1) 7 to RX (n+1) 0	Address number "1"
RY (n+1) F to RY (n+1) 8	remote I/O input	RX (n+1) F to RX (n+1) 8	remote I/O output
RY (n+2) 7 to RY (n+2) 0	Address number "2"	RX (n+2) 7 to RX (n+2) 0	Address number "2"
RY (n+2) F to RY (n+2) 8	remote I/O input	RX (n+2) F to RX (n+2) 8	remote I/O output
RY (n+3) 7 to RY (n+3) 0	Address number "3"	RX (n+3) 7 to RX (n+3) 0	Address number "3"
RY (n+3) F to RY (n+3) 8	remote I/O input	RX (n+3) F to RX (n+3) 8	remote I/O output
RY (n+4) 7 to RY (n+4) 0	Address number "4"	RX (n+4) 7 to RX (n+4) 0	Address number "4"
RY (n+4) F to RY (n+4) 8	remote I/O input	RX (n+4) F to RX (n+4) 8	remote I/O output
RY (n+5) 7 to RY (n+5) 0	Address number "5"	RX (n+5) 7 to RX (n+5) 0	Address number "5"
RY (n+5) F to RY (n+5) 8	remote I/O input	RX (n+5) F to RX (n+5) 8	remote I/O output
RY (n+6) 7 to RY (n+6) 0	Control input of	RX (n+6) 7 to RX (n+6) 0	Status output of
RY (n+6) F to RY (n+6) 8	NETC01-CC *	RX (n+6) F to RX (n+6) 8	NETC01-CC *
RY (n+7) 7 to RY (n+7) 0	Control input of	RX (n+7) 7 to RX (n+7) 0	Status output of
RY (n+7) F to RY (n+7) 8	system area *	RX (n+7) F to RX (n+7) 8	system area *

* See the network converter **NETC01-CC** <u>USER MANUAL</u> for details.

■ Input/output of remote I/O

• Remote I/O input

			Driver		Driver		Driver
NETC01-CC			Address number 0	_	Address number 1	_	Address number 5
RYnF to RYn0	Address number 0 remote I/O input		Address number 0 remote I/O input				
RY (n+1) F to RY (n+1) 0	Address number 1 remote I/O input			L	Address number 1 remote I/O input		
RY (n+2) F to RY (n+2) 0	Address number 2 remote I/O input						
RY (n+3) F to RY (n+3) 0	Address number 3 remote I/O input						
RY (n+4) F to RY (n+4) 0	Address number 4 remote I/O input						
RY (n+5) F to RY (n+5) 0	Address number 5 remote I/O input	<u> </u> 					Address number 5 remote I/O input
RY (n+6) F to RY (n+6) 0	Control input of NETC01-CC						
RY (n+7) F to RY (n+7) 0	Control input of system area						

• Remote I/O output

NETC01-CC		Driver Address number 0	Driver Address number 1	Driver Address number 5
RXnF to RXn0	Address number 0 remote I/O output	Address number 0 remote I/O output		
RX (n+1) F to RX (n+1) 0	Address number 1 remote I/O output		Address number 1 remote I/O output	
RX (n+2) F to RX (n+2) 0	Address number 2 remote I/O output			
RX (n+3) F to RX (n+3) 0	Address number 3 remote I/O output			
RX (n+4) F to RX (n+4) 0	Address number 4 remote I/O output			
RX (n+5) F to RX (n+5) 0	Address number 5			Address number 5 remote I/O output
RX (n+6) F to RX (n+6) 0	Control output of NETC01-CC			
RX (n+7) F to RX (n+7) 0	Control output of system area			

Details of remote I/O assignment

	Comma	nd RY (Master	to NETC01-CC)	Respon	se RX (NETCO	1-CC to master)		
	Device No.	Signal name	Description	Device No.	Signal name	Description		
	RY (n) 0	MO		RX (n) 0	M0_R			
	RY (n) 1	M1		RX (n) 1	M1_R			
	RY (n) 2	M2	Select the operation	RX (n) 2	M2_R	Response to the		
	RY (n) 3	M3	data No.	RX (n) 3	M3_R	operation data No.		
	RY (n) 4	M4		RX (n) 4	M4_R			
	RY (n) 5	M5		RX (n) 5	M5_R			
	RY (n) 6	_	_	RX (n) 6	WNG	Warning		
	RY (n) 7		_	RX (n) 7	ALM	Alarm		
Address number	RY (n) 8	START	Positioning operation	RX (n) 8	START_R	Response to the positioning operation		
"O"	RY (n) 9	FWD	Continuous operation (positive direction)	RX (n) 9	STEPOUT	Misstep detection		
	RY (n) A	RVS	Continuous operation (negative direction)	RX (n) A	MOVE	Operation is in progress		
	RY (n) B	HOME	Return-to-home operation	RX (n) B	HOME-P	Return-to-home complete		
	RY (n) C	STOP	Stop operation	RX (n) C	-	-		
	RY (n) D	C-ON	Motor excitation ON/ OFF	RX (n) D	READY	Ready		
	RY (n) E	_	_	RX (n) E	-	-		
	RY (n) F			RX (n) F	AREA	Area		
Address number	RY (n+1) 0			RX(n+1)0				
"1"	to RY (n+1) F			to RX(n+1)F				
	RY (n+2) 0	-		RX(n+2)0				
Address number "2"	to			to				
2	RY (n+2) F	-		RX(n+2)F				
Address number	RY (n+3) 0			RX(n+3)0		Same as Address number "0"		
"3"	to RY (n+3) F	Same as A	ddress number "0"	to RX(n+3)F	Same as A			
	RY (n+4) 0	-		RX(n+4)0				
Address number "4"	to			to				
	RY (n+4) F	-		RX(n+4)F				
Address number	RY (n+5) 0			RX(n+5)0				
"5"	to RY (n+5) F			to RX(n+5)F				
	RY (n+6) 0	M-REQ0	Monitor request 0	RX (n+6) 0	M-DAT0	During execution of monitor 0		
	RY (n+6) 1	M-REQ1	Monitor request 1	RX (n+6) 1	M-DAT1	During execution of monitor 1		
	RY (n+6) 2	M-REQ2	Monitor request 2	RX (n+6) 2	M-DAT2	During execution of monitor 2		
	RY (n+6) 3	M-REQ3	Monitor request 3	RX (n+6) 3	M-DAT3	During execution of monitor 3		
NETC01-CC	RY (n+6) 4	M-REQ4	Monitor request 4	RX (n+6) 4	M-DAT4	During execution of monitor 4		
control input/ status output	RY (n+6) 5	M-REQ5	Monitor request 5	RX (n+6) 5	M-DAT5	During execution of monitor 5		
	RY (n+6) 6	-	-	RX (n+6) 6	WNG	Warning		
	RY (n+6) 7	ARM-RST	Reset alarm	RX (n+6) 7	ALM	Alarm		
	RY (n+6) 8			RX (n+6) 8	C-SUC	During execution of RS-485 communication		
	RY (n+6) 9	-	-	RX (n+6) 9				
	RY (n+6) A	1		RX (n+6) A	-	-		
	· · / ·		1	· · / ·	1	1		

	Comma	nd RY (Master	to NETC01-CC)	Respon	se RX (NETCO	I-CC to master)
	Device No.	Signal name	Description	Device No.	Signal name	Description
NETC01-CC	RY (n+6) C	D-REQ	Command execution request	RX (n+6) C	D-END	Command processing completion
control input/	RY (n+6) D			RX (n+6) D	R-ERR	Register error
status output	RY (n+6) E	_	-	RX (n+6) E	S-BSY	During system processing
	RY (n+6) F			RX (n+6) F	-	_
	RY (n+7) 0		RX (n+7) 0			
				to	-	Cannot be used
				RX (n+7) A		
System area control input/ status output	to	-	Cannot be used	RX (n+7) B	CRD	Remote station communication read
				RX (n+7) C		
				to	-	Cannot be used
	RY (n+7) F			RX (n+7) F		

1.5 Assignment for remote I/O of 12 axes connection mode

Remote I/O assignments of the driver are as follows. "n" is an address assigned to the master station by the CC-Link station number setting. See the network converter **NETCO1-CC** USER MANUAL for 12-axes.

Assignment list of remote I/O

Command RY (Master	to NETC01-CC)	Response RX (NETC01-CC to master)				
Device No.	Description	Device No.	Description			
RYn7 to RYn0	Address number "0" remote I/O input	RXn7 to RXn0	Address number "0" remote I/O output			
RYnF to RYn8	Address number "1" remote I/O input	RXnF to RXn8	Address number "1" remote I/O output			
RY (n+1) 7 to RY (n+1) 0	Address number "2" remote I/O input	RX (n+1) 7 to RX (n+1) 0	Address number "2" remote I/O output			
RY (n+1) F to RY (n+1) 8	Address number "3" remote I/O input	RX (n+1) F to RX (n+1) 8	Address number "3" remote I/O output			
RY (n+2) 7 to RY (n+2) 0	Address number "4" remote I/O input	RX (n+2) 7 to RX (n+2) 0	Address number "4" remote I/O output			
RY (n+2) F to RY (n+2) 8	Address number "5" remote I/O input	RX (n+2) F to RX (n+2) 8	Address number "5" remote I/O output			
RY (n+3) 7 to RY (n+3) 0	Address number "6" remote I/O input	RX (n+3) 7 to RX (n+3) 0	Address number "6" remote I/O output			
RY (n+3) F to RY (n+3) 8	Address number "7" remote I/O input	RX (n+3) F to RX (n+3) 8	Address number "7" remote I/O output			
RY (n+4) 7 to RY (n+4) 0	Address number "8" remote I/O input	RX (n+4) 7 to RX (n+4) 0	Address number "8" remote I/O output			
RY (n+4) F to RY (n+4) 8	Address number "9" remote I/O input	RX (n+4) F to RX (n+4) 8	Address number "9" remote I/O output			
RY (n+5) 7 to RY (n+5) 0	Address number "10" remote I/O input	RX (n+5) 7 to RX (n+5) 0	Address number "10 remote I/O output			
RY (n+5) F to RY (n+5) 8	Address number "11" remote I/O input	RX (n+5) F to RX (n+5) 8	Address number "11 remote I/O output			
RY (n+6) 7 to RY (n+6) 0	Control input of	RX (n+6) 7 to RX (n+6) 0	Status output of			
RY (n+6) F to RY (n+6) 8	NETC01-CC *	RX (n+6) F to RX (n+6) 8	NETC01-CC *			
RY (n+7) 7 to RY (n+7) 0	Control input of	RX (n+7) 7 to RX (n+7) 0	Status output of			
RY (n+7) F to RY (n+7) 8	system area *	RX (n+7) F to RX (n+7) 8	system area *			

* See the network converter **NETC01-CC** <u>USER MANUAL</u> for details.

■ Input/output of remote I/O

• Remote I/O input

			Driver	Driver		Driver
NETC01-CC		_	Address number 0	 Address number 1	1	Address number 11
RYn7 to RYn0	Address number 0 remote I/O input	4	Address number 0 remote I/O input			
RYnF to RYn8	Address number 1 remote I/O input			Address number 1 remote I/O input		
RY (n+1) 7 to RY (n+1) 0	Address number 2 remote I/O input					
RY (n+1) F to RY (n+1) 8	Address number 3 remote I/O input					
RY (n+2) 7 to RY (n+2) 0	Address number 4 remote I/O input					
RY (n+2) F to RY (n+2) 8	Address number 5 remote I/O input					
RY (n+3) 7 to RY (n+3) 0	Address number 6 remote I/O input					
RY (n+3) F to RY (n+3) 8	Address number 7 remote I/O input					
RY (n+4) 7 to RY (n+4) 0	Address number 8 remote I/O input					
RY (n+4) F to RY (n+4) 8	Address number 9 remote I/O input					
RY (n+5) 7 to RY (n+5) 0	Address number 10 remote I/O input					
RY (n+5) F to RY (n+5) 8	Address number 11	+				Address number 11 remote I/O input
RY (n+6) F to RY (n+6) 0	Control input of NETC01-CC					
RY (n+7) F to RY (n+7) 0	Control input of system area					

• Remote I/O output

NETC01-CC		Driver Address number 0	Driver Address number 1	Driver Address number 11
RXn7 to RXn0	Address number 0 remote I/O output	Address number 0 remote I/O output		
RXnF to RXn8	Address number 1		Address number 1 remote I/O output	
RX (n+1) 7 to RX (n+1) 0	Address number 2 remote I/O output			
RX (n+1) F to RX (n+1) 8	Address number 3 remote I/O output			
RX (n+2) 7 to RX (n+2) 0	Address number 4 remote I/O output			
RX (n+2) F to RX (n+2) 8	Address number 5 remote I/O output			
RX (n+3) 7 to RX (n+3) 0	Address number 6 remote I/O output			
RX (n+3) F to RX (n+3) 8	Address number 7 remote I/O output			
RX (n+4) 7 to RX (n+4) 0	Address number 8 remote I/O output			
RX (n+4) F to RX (n+4) 8	Address number 9 remote I/O output			
RX (n+5) 7 to RX (n+5) 0	Address number 10 remote I/O output			
RX (n+5) F to RX (n+5) 8	Address number 11			Address number 11 remote I/O output
RX (n+6) F to RX (n+6) 0	Control output of NETC01-CC			
RX (n+7) F to RX (n+7) 0	Control output of system area			

Details of remote I/O assignment

	Command RY (Master to NETC01-CC)			Response RX (NETC01-CC to master)		
		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·	,
	Device No.	Signal name	Description	Device No.	Signal name	Description
Address number "0"	RY (n) 0	START	Positioning operation	RX (n) 0	START_R	Response to the positioning operation
	RY (n) 1	FWD	Continuous operation (positive direction)	RX (n) 1	STEPOUT	Misstep detection
	RY (n) 2	RVS	Continuous operation (negative direction)	RX (n) 2	MOVE	Operation is in progress
	RY (n) 3	HOME	Return-to-home operation	RX (n) 3	HOME-P	Return-to-home complete
	RY (n) 4	STOP	Stop operation	RX (n) 4	ALM	Alarm
	RY (n) 5	C-ON	Motor excitation ON/ OFF	RX (n) 5	READY	Ready
	RY (n) 6	RY (n) 6	-	RX (n) 6	-	-
	RY (n) 7] –		RX (n) 7	AREA	Area
Address number "1"	RY (n) 8	START	Positioning operation	RX (n) 8	START_R	Response to the positioning operation
	RY (n) 9	FWD	Continuous operation (positive direction)	RX (n) 9	STEPOUT	Misstep detection
	RY (n) A	RVS	Continuous operation (negative direction)	RX (n) A	MOVE	Operation is in progress
	RY (n) B	HOME	Return-to-home operation	RX (n) B	HOME-P	Return-to-home complete
	RY (n) C	STOP	Stop operation	RX (n) C	ALM	Alarm
	RY (n) D	C-ON	Motor excitation ON/ OFF	RX (n) D	READY	Ready
	RY (n) E			RX (n) E	-	-
	RY (n) F	1 -	-	RX (n) F	AREA	Area
Address number "2"	RY (n+1) 0 to RY (n+1) 7	Same as Address number "0"		RX(n+1)0 to RX(n+1)7	Same as Address number "0"	
Address number "3"	RY (n+1) 8 to RY (n+1) F	Same as Address number "1"		RX(n+1)8 to RX(n+1)F	Same as Address number "1"	
Address number "4"	RY (n+2) 0 to	Same as Address number "0"		RX(n+2)0 to	Same as Address number "0"	
Address number	RY (n+2) 7 RY (n+2) 8	Same as Address number "1"		RX(n+2)7 RX(n+2)8	Same as Address number "1"	
"5"	to RY (n+2) F			to RX(n+2)F		
Address number "6"	RY (n+3) 0 to RY (n+3) 7	Same as Address number "0"		RX(n+3)0 to RX(n+3)7	Same as Address number "0"	
Address number "7"	RY (n+3) 8 to RY (n+3) F	Same as Address number "1"		RX(n+3)8 to RX(n+3)F	Same as Address number "1"	
Address number "8"	RY (n+4) 0 to RY (n+4) 7	Same as Address number "0"		RX(n+4)0 to RX(n+4)7	Same as Address number "0"	
Address number "9"	RY (n+4) 8 to RY (n+4) F	Same as Address number "1"		RX(n+4)8 to RX(n+4)F	Same as Address number "1"	
Address number "10"	RY (n+5) 0 to RY (n+5) 7	Same as Address number "0"		RX(n+5)0 to RX(n+5)7	Same as Address number "0"	
Address number "11"	RY (n+5) 8 to RY (n+5) F	Same as A	ddress number "1"	RX(n+5)8 to RX(n+5)F	Same as Address number "1"	

	Comma	nd RY (Master	to NETC01-CC)	Respon	se RX (NETCO	1-CC to master)	
	Device No.	Signal name	Description	Device No.	Signal name	Description	
	RY (n+6) 0	M-REQ0	Monitor request 0	RX (n+6) 0	M-DAT0	During execution of monitor 0	
	RY (n+6) 1	M-REQ1	Monitor request 1	RX (n+6) 1	M-DAT1	During execution of monitor 1	
	RY (n+6) 2	M-REQ2	Monitor request 2	RX (n+6) 2	M-DAT2	During execution of monitor 2	
	RY (n+6) 3	M-REQ3	Monitor request 3	RX (n+6) 3	M-DAT3	During execution of monitor 3	
	RY (n+6) 4	M-REQ4	Monitor request 4	RX (n+6) 4	M-DAT4	During execution of monitor 4	
	RY (n+6) 5	M-REQ5	Monitor request 5	RX (n+6) 5	M-DAT5	During execution of monitor 5	
NETC01-CC	RY (n+6) 6	-	-	RX (n+6) 6	WNG	Warning	
control input/	RY (n+6) 7	ARM-RST	Reset alarm	RX (n+6) 7	ALM	Alarm	
status output	RY (n+6) 8			RX (n+6) 8	C-SUC	During execution of RS-485 communication	
	RY (n+6) 9	1 –	-	RX (n+6) 9			
	RY (n+6) A			RX (n+6) A	1 –	-	
	RY (n+6) B			RX (n+6) B			
	RY (n+6) C	D-REQ	Command execution request	RX (n+6) C	D-END	Command processing completion	
	RY (n+6) D			RX (n+6) D	R-ERR	Register error	
	RY (n+6) E	_	-	RX (n+6) E	S-BSY	During system processing	
	RY (n+6) F			RX (n+6) F	-	-	
	RY (n+7) 0			RX (n+7) 0			
				to	-	Cannot be used	
Out to the second				RX (n+7) A			
System area control input/ status output	to	-	Cannot be used	RX (n+7) B	CRD	Remote station communication read	
				RX (n+7) C			
				to	-	Cannot be used	
	RY (n+7) F			RX (n+7) F			

2 Method of control via MECHATROLINK

communication

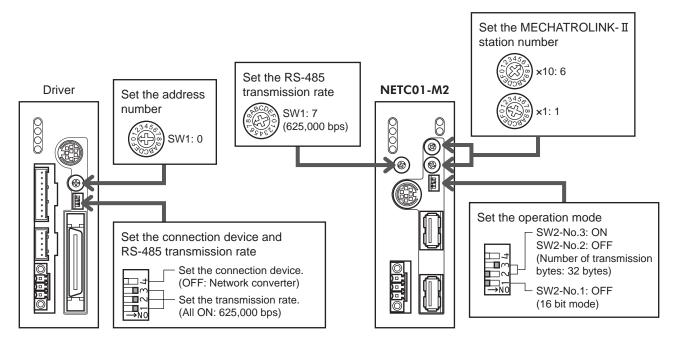
See the following explanation when using the **CRK** Series built-in controller type in combination with the network converter **NETC01-M2** or **NETC01-M3**, via MECHATROLINK communication. Refer to "3 Details of remote I/O" on p.153 and "4 Command code list" on p.155 for remote I/O and command code.

2.1 Guidance

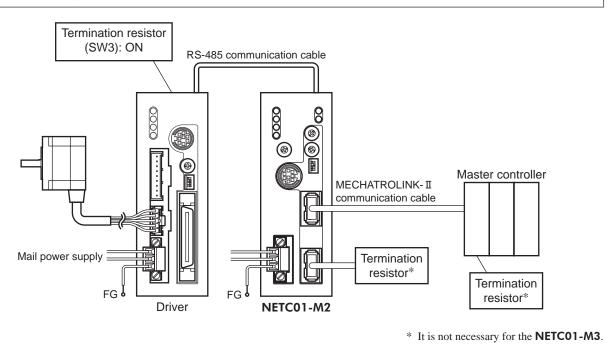
If you are new to the **CRK** Series built-in controller type, read this section to understand the operating methods along with the operation flow.

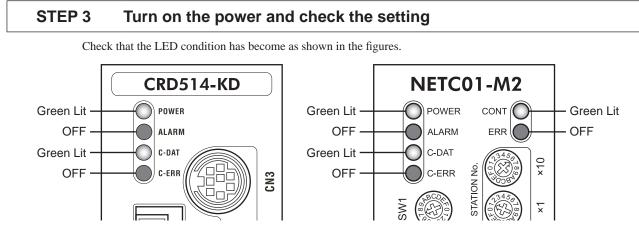
This section explains the operation method in combination with the NETC01-M2 as an example.

Before operating the motor, check the condition of the surrounding area to ensure safety.
 See the network converter NETC01-M2/NETC01-M3 USER MANUAL for how to set the parameter.


STEP 1 Set the transmission rate, station address and address number.

Using the parameter


- 1. Set the "communication (address number 0) " parameter of the **NETC01-M2** to " Enable" using the **OPX-2A** or **MEXE02**.
- 2. Cycle the NETC01-M2 power.
- Note "Communication" parameters will be enabled after the power is cycled.
 - When setting the parameters of the NETC01-M2, use the OPX-2A or MEXE02.


Using the switches

- Setting condition of driver
- Address number of the driver: 0
- RS-485 transmission rate: 625,000 bps
- SW4-No.2 of the function setting switch: OFF
- Setting condition of NETC01-M2
- MECHATROLINK- II station address: 61
- RS-485 transmission rate: 625,000 bps
- Remote I/O occupied size: 16 bit mode
- Number of transmission bytes: 32 bytes

- When C-ERR (red) of the driver or **NETC01-M2** is lit: Check the transmission rate or address number of RS-485 communication.
- When ERR (red) of the NETC01-M2 is lit: Check the MECHATROLINK- II communication error.

STEP 4 Set the driver parameters

Set the driver parameters using any of the **OPX-2A**, **MEXE02**, RS-485 communication or MECHATROLINK-II communication.

- 1. Set the "START input mode (1C00h)" parameter of the driver to "0: RS-485 communication." (Initial value: I/O)
- Set the "HOME/FWD/RVS input mode (1C0Ch)" parameter of the driver to "0: RS-485 communication." (Initial value: I/O)
- 3. Set the "Data No. input mode (1C0Dh)" parameter of the driver to "0: RS-485 communication." (Initial value: I/O)
- 4. Set the "STOP contact configuration (1C03h)" parameter of the driver to "0: make." (Initial value: brake)
- The parameters are written in the RAM when writing via RS-485 communication or MECHATROLINK- II communication. The data saved in the RAM will be erased once the driver power is turned off. When saving data to the non-volatile memory, execute "batch NV memory write" of the maintenance command. Refer to p.156.
 - The operation data and parameters set by the **OPX-2A** or **MEXE02** are saved to the non-volatile memory of the driver.
 - The non-volatile memory can be rewritten approx. 100,000 times.

STEP 5 Execute continuous operation

Control the I/O signal of the driver using the I/O command (DATA_RWA: 50h) of MECHATROLINK-II communication.

- 1. Select operation data No.01 by turning ON the M0 of the address number 0.
- 2. Perform continuous operation by turning ON the FWD of the address number 0.

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	-	M5	M4	M3	M2	M1	MO
-	-	C-ON	STOP	HOME	RVS	FWD	START

STEP 6 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present in the driver or **NETCO1-M2**?
- Are the address number, transmission rate and termination resistor set correctly?
- Is the "connection" parameter of the NETC01-M2 set correctly?
- Is the C-ERR LED lit? (RS-485 communication error)
- Is the ERR LED of the NETCO1-M2 lit? (MECHATROLINK-II/III communication error)
- Is the operation data set correctly?
- Is the motor excited? Or is the excitation setting correct?
- Are the driver parameters set correctly?
- Is the STOP input of the driver I/O turned ON?

For more detailed settings and functions, refer to network converter **NETC01-M2** <u>USER MANUAL</u> and following pages.

2.2 Setting the switches

When using the driver in combination with the network converter, set the switches before use.

Note Be sure to turn off the motor power before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the driver power is cycled.

Setting the connection device

Set the connection device of RS-485 communication using the function setting switch SW2-No.4. Turn this switch OFF when controlling via the network converter. Factory setting OFF (Network converter)

Address number (slave address)

Set the address number (slave address) using the address number setting switch (SW1. Make sure each address number (slave address) you set for each driver is unique.

Factory setting 0

Address number (slave address)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SW1	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Connection mode			8 axe	s conn	ection	mode					16 axe	es conr	nection	mode		

Transmission rate

Turn Nos.1 to 3 of the function setting switch (SW2) ON to set the transmission rate to 625,000 bps. Factory setting All ON (625,000 bps)

Termination resistor

Use a termination resistor for the driver located farthest away (positioned at the end) from the network converter. Turn the terminal resistor setting switch (SW3) ON to set the terminal resistor for RS-485 communication (120 Ω). Factory setting OFF (termination resistor disabled)

SW3	Termination resistor (120 Ω)
OFF	Disabled
ON	Enabled

2.3 I/O field map for the NETC01-M2

Update of remote I/O data (asynchronous) is executed by the "DATA_RWA" Command (50h). When the remote I/O occupied size is 16-bit mode and the number of transmission bytes is 32 bytes (initial value), I/O field map will be as follows. See the network converter **NETCO1-M2** <u>USER MANUAL</u> for other I/O field map.

Byte	Part	Туре	Command	Response	
1		-	DATA_RWA (50h)	DATA_RWA (50h)	
2	l la a dan ƙalal	-		ALARM	
3	Header field	_	OPTION	OTATUO	
4		-		STATUS	
5		-	Reserved	Connection status	
6		-	Reserved	Connection status	
7			Address number "0" remote	Address number "0" remote	
8			I/O input	I/O output	
9			Address number "1" remote	Address number "1" remote	
10			I/O input	I/O output	
11		Remote I/O	Address number "2" remote	Address number "2" remote	
12			I/O input	I/O output	
13			Address number "3" remote	Address number "3" remote	
14			I/O input	I/O output	
15			Address number "4" remote	Address number "4" remote	
16			I/O input		I/O output
17			Address number "5" remote	Address number "5" remote	
18	Data field		I/O input	I/O output	
19			Address number "6" remote	Address number "6" remote	
20			I/O input	I/O output	
21			Address number "7" remote	Address number "7" remote	
22			I/O input	I/O output	
23			Register address number	Register address number	
24				response	
25			Command code + TRIG	Command code response +	
26		Remote resistor		TRIG response + STATUS	
27					
28			DATA	DATA response	
29				DATATESPUISE	
30					
31		-	Reserved	Reserved	

2.4 I/O field map for the NETC01-M3

Update of remote I/O data (asynchronous) is executed by "DATA_RWA" Command (20h). When the remote I/O occupied size is 16-bit mode and the number of transmission bytes is 32 bytes (initial value), I/O field map will be as follows. See the network converter **NETCO1-M3** <u>USER MANUAL</u> for other I/O field map.

Byte	Туре	Command	Response		
0	-	DATA_RWA (20h)	DATA_RWA (20h)		
1	-	WDT	RWDT		
2	-				
3	-	CMD_CTRL	CMD_STAT		
4	-	Reserved	Connection status		
5	-				
6 7		Address number "0" remote I/O input	Address number "0" remote I/O output		
8		Address number "1" remote I/O input	Address number "1" remote I/O output		
10 11		Address number "2" remote I/O input	Address number "2" remote I/O output		
12 13	Remote I/O	Address number "3" remote I/O input	Address number "3" remote I/O output		
14 15		Address number "4" remote I/O input	Address number "4" remote I/O output		
16 17		Address number "5" remote I/O input	Address number "5" remote I/O output		
<u>18</u> 19		Address number "6" remote I/O input	Address number "6" remote I/O output		
20 21		Address number "7" remote I/O input	Address number "7" remote I/O output		
22 23		Register address number	Register address number response		
24 25		Command code + TRIG	Command code response + TRIG response + STATUS		
26	Remote resistor				
27					
28		DATA	DATA response		
29					
30	-	Poperied	Boostind		
31	-	Reserved	Reserved		

2.5 Communication format

Communication formats to the driver and NETC01-M2 (NETC01-M3) are as follows.

Remote I/O input

For details on remote I/O, refer to p.153.

• 8 axes connection mode [16 bit mode]

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	-	M5	M4	M3	M2	M1	MO
-	-	C-ON	STOP	HOME	RVS	FWD	START

• 16 axes connection mode [8 bit mode]

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	-	C-ON	STOP	HOME	RVS	FWD	START

Remote I/O output

• 8 axes connection mode [16 bit mode]

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ALM	WNG	M5_R	M4_R	M3_R	M2_R	M1_R	M0_R
AREA	-	READY	-	HOME-P	MOVE	STEPOUT	START_R

• 16 axes connection mode [8 bit mode]

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
AREA	-	READY	ALM	HOME-P	MOVE	STEPOUT	START_R

Remote register input

• Command [NETC01-M2 (NETC01-M3) to driver]

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
	Command code									
-	TRIG	Command code								
	DATA									

• Explanation of command

Name	Description	Setting range
Command code	The command sets the command code for "write and read of parameters," "monitor" and "maintenance."	-
TRIG	This is the trigger for handshake to execute the command code. When turning the TRIG from 0 to 1, the command code and DATA will be executed.	0: No motion 1: Execution
DATA	This is the data writing to the driver (little endian).	_

Remote register output

• Response [Driver to NETC01-M2 (NETC01-M3)]

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
		1		Comma	nd code		
STATUS	TRIG_R						
DATA_R							

• Explanation of command

Name	Description	Setting range
Command code	The response returns the command code of the command.	-
TRIG_R	This is the trigger for handshake indicating the completion of the command code. When the command code is completed, the TRIG_R will be turned from 0 to 1.	0: Not processing 1: Execution completion
STATUS	This indicates the result that executed the command code.	0: Normal operation 1: Error
DATA_R	This is the data reading from the driver (little endian).	-

3 Details of remote I/O

This is common to NETC01-CC, NETC01-M2 and NETC01-M3.

3.1 Input signals to the driver

Each input signal has the order of priority and it is detected by the following order. C-ON > STOP > FWD/RVS > HOME > START

Signal name	Function	Description
C-ON	Motor excitation ON	Motor excitation switching between excitation and non-excitation. 0: Motor non-excitation * 1: Motor excitation *
STOP	Stop operation	This signal is used to stop positioning operation, continuous operation and return-to-home operation. How to stop operation is based on the "STOP action" parameter (command code 0C02h) of the parameter command. 0: Possible to operate 1: Stop operation
HOME	Return-to-home operation	This signal is used to execute return-to-home operation. Operation is started at the ON edge of the HOME bit.
RVS	Continuous operation (negative direction)	This signal is used to execute continuous operation in the negative direction. However, when the FWD bit and RVS bit are turned ON simultaneously, continuous operation will be stopped. 0: Stop continuous operation 1: Execute continuous operation
FWD	Continuous operation (positive direction)	This signal is used to execute continuous operation in the positive direction. However, when the FWD bit and RVS bit are turned ON simultaneously, continuous operation will be stopped. 0: Stop continuous operation 1: Execute continuous operation
START	Positioning operation	This signal is used to execute positioning operation. Operation is started at the ON edge of the START bit.
M0 to M5	Select the operation data No.	Uses these six bits to select the operation data number. See p.42 for details on the combination.

* It is based on the setting value of the "C-ON logic configuration" parameter for the driver.

3.2 Output signals from the driver

Signal name	Function	Description
AREA	Inside area	This signal is output when the motor command position is inside the area. 0: Command position is outside the area 1: Command position is inside the area
READY	Ready	This signal is output when the driver is ready to operate. Start operation after checking the READY output has been turned ON. When the READY output is OFF, operation cannot be performed. 0: Not ready 1: Ready
HOME-P	Return-to-home complete/ Current position zero	This signal is output when return-to-home operation has completed.0: Return-to-home operation has not completed.1: Return-to-home operation has completed.
MOVE	Output during operation	This signal is output when the motor operates. 0: Motor stopped 1: Motor operating
STEPOUT	Step-out detection	This signal is output when step-out has been detected. 0: Step-out is not detected 1: Step-out is detecting
START_R	Response for positioning operation start signal	This signal is output in response to the START input. 0: START OFF 1: START ON

Signal name	Function	Description
ALM	Alarm	This signal is output when the protective function has been triggered and the alarm has been generated. 0: Alarm not present 1: Alarm present
WNG	Warning	This signal is output when a warning has been generated. Once the cause of the warning is removed, the WNG will turn OFF automatically. 0: Warning not present 1: Warning present
M0_R to M5_R	Response to the operation data No.	The operation data number currently selected is output.

Operation data No.

• Operation data number and input signal M0 to M5

Select an operation data based on a combination of ON/OFF status of the M0 to M5. See p.42 for details.

Operation data No.	M5	M4	M3	M2	M1	MO
Sequential operation	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
	•	•	•	•	•	
	•	•	•	•	•	•
	•	•	•	•	•	•
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

• Positioning operation

When selecting the operation data No. and turning the START ON, positioning operation will be started. When selecting the operation data No.0, sequential positioning operation is performed.

• Continuous operation

When selecting any of the operation data No.1 to 63 and turning the FWD or RVS to ON, continuous operation is started.

If the operation data No.0 is selected, continuous operation is not performed.

4 Command code list

This is common to NETC01-CC, NETC01-M2 and NETC01-M3.

4.1 Group function

The driver has a group function. Multiple slaves are made into a group and a operation command is sent to all slaves in the group at once.

Group composition

A group consists of one parent slave and child slaves.

Group address

To perform a group send, set a group address to the child slaves to be included in the group. The child slaves to which the group address has been set can receive a command sent to the parent slave. The operation command will be sent to the child slaves in the same group by sending it to the parent slave.

Parent slave

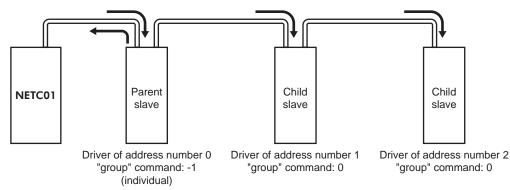
No special setting is required on the parent slave to perform a group send. The address of the parent slave becomes the group address.

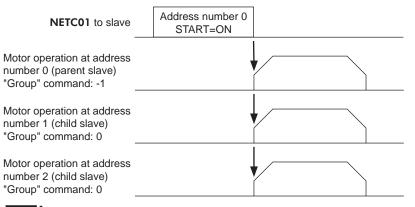
Child slave

Use a "group" (1018h) to set a group address to each child slave.

Note Only remote I/O input can execute the group function. Read from commands and parameters or write to commands and parameters cannot be executed.

Group setting


The group setting is not saved in the non-volatile memory even when the maintenance command "batch NV memory write" executes.


Com	nand code	Description	Sotting rongo	Initial value
Read	Write	Description	Setting range	
0F03h	1F03h	Group	Set the group. -1: Individual (No group setting) 0 to 15: Set the group address. (Address number of parent slave) *	-1

* Set in the 0 to 11 range when using the NETCO1-CC, and set in the 0 to 15 range when using the NETCO1-M2 or NETCO1-M3.

Example for setting of the group function

Set as follows when making a group by setting the driver of address number 0 to the parent slave and by setting the driver of address number 1 and 2 to the child slaves.

Note When inputting a command to the parent slave with remote I/O, the motors of the parent slave and child slaves will operate. The motors will not operate if the command is input to the child slaves.

4.2 Maintenance command

These commands are used to clear the alarm records and warning records. They are also used to execute the batch processing for the non-volatile memory.

Command code	Name	Description	Setting range
3E80h	Reset alarm	Resets the alarms that are present.	
3E81h	Clear alarm records	Clears alarm records.	
3E82h	Clear warning records	Clears warning records.	
3E84h	Batch NV memory read	Reads the parameters saved in the non-volatile memory, to the RAM. All operation data and parameters previously saved in the RAM are overwritten.	
3E85h	Batch NV memory write	Writes the parameters saved in the RAM to the non-volatile memory.	
3E86h	All data initialization	Resets the parameters saved in the RAM and non-volatile memory to the initial value.	
3E88h	P-PRESET execute	Update the command position to the value of the "preset position" parameter.	1: Execute
3E89h	Clear communication error code	Clears the communication error records.	
3E8Ah	Preset encoder counter *	Presets the encoder counter value as the value of the "encoder counter preset value" parameter.	
3E8Bh	Clear counter	Clears the command position and encoder counter value to 0. Internal deviations of the driver are also cleared, so any deviation error, if present, is reset.	
3E8Ch	Operation data initialization	Resets the operation data.	
3E8Dh	Application parameters initialization	Resets the application parameters .	
3E8Eh	System parameters initialization	Resets the system parameters .	

* This command is used when an encoder is connected.

Note The non-volatile memory can be rewritten approximately 100,000 times.

4.3 Monitor command

These commands are used to monitor the driver condition.

Command code	Name	Description				
2E00h	Present alarm	Monitors the present alarm code.				
2E01h	Alarm record 1					
2E02h	Alarm record 2	-				
2E03h	Alarm record 3					
2E04h	Alarm record 4					
2E05h	Alarm record 5	Monitore the alorm records 1 to 10				
2E06h	Alarm record 6	Monitors the alarm records 1 to 10.				
2E07h	Alarm record 7					
2E08h	Alarm record 8					
2E09h	Alarm record 9					
2E0Ah	Alarm record 10					
2E0Bh	Present warning	Monitors the present warning code.				
2E0Ch	Warning record 1					
2E0Dh	Warning record 2					
2E0Eh	Warning record 3					
2E0Fh	Warning record 4					
2E10h	Warning record 5	Monitors the warning reserves 4 to 40				
2E11h	Warning record 6	Monitors the warning records 1 to 10.				
2E12h	Warning record 7					
2E13h	Warning record 8					
2E14h	Warning record 9					
2E15h	Warning record 10					
2E16h	Present selected data No.	Monitors the operation data No. currently selected.				
2E17h	Present operation data No.	Monitors the operation data No. corresponding to the data used in the current positioning operation. This address is used in linked-motion operation and sequential positioning operation. While the motor is stopped, the last used operation data number is indicated.				
2E18h	Command position [step]	Monitors the command position.				
2E1Ah	Command speed [Hz]	Monitors the current command speed.				
2E1Bh	Encoder counter	Monitors the encoder counter.				
2E1Eh	Remaining dwell time	Monitors how much of the dwell time used in the linked motion operation 2 remains.				
2E1Fh	I/O status	Monitor the each I/O signal (CN2) of the driver. (See the following table.)				
2E22h	Communication error code record 1					
2E23h	Communication error code record 2					
2E24h	Communication error code record 3					
2E25h	Communication error code record 4					
2E26h	Communication error code record 5	Monitors the communication error records 1 to 10 that				
2E27h	Communication error code record 6	have occurred in the past.				
2E28h	Communication error code record 7					
2E29h	Communication error code record 8	7				
2E2Ah	Communication error code record 9	7				
2E2Bh	Communication error code record 10					
2E30h	Driver status	Monitors the driver status. (See the following table.)				

■ I/O status (2E1Fh)

byte	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0 (least significant bit)	-	-	M5	M4	M3	M2	M1	M0
1	_	RVS	FWD	HOME/ P-PRESET	STOP	AWO	ALM-RST	START
2	-	-	-	-	SLIT	HOMES	-LS	+LS
3 (most significant bit)	-	-	OUT4	OUT3	OUT2	OUT1	ALM	MOVE

Driver status (2E30h)

byte	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0 (least significant bit)	ENABLE	ALM	AREA	S-BSY	READY	HOME-P	0	MOVE
1	START_R	O.H.	HOMES	SLIT	-LS	+LS	STEPOUT	WNG
2	ZSG	TIM	M5_R	M4_R	M3_R	M2_R	M1_R	M0_R
3 (most significant bit)	ALMCD							

Signal name of driver status

Signal name	Description	Read range		
MOVE	Indicates the operating condition of the motor.	0: Motor stopped 1: Motor operating		
HOME-P	Indicates that the motor is at home position. It can be used as a home-seeking completion signal.	0: Motor not positioned at home 1: Motor positioned at home (home-seeking completed)		
READY	Indicates that the driver is ready.	0: Not ready 1: Ready		
S-BSY	Indicates the internal processing condition as a result of RS- 485 communication.	0: Internal processing not in progress 1: Internal processing in progress		
AREA	The motor output shaft is inside the specified range.	0: Outside area 1: Inside area		
ALM	An alarm is present.	0: Alarm not present 1: Alarm present		
ENABLE	Indicates the excitation condition of the motor.	0: Motor not excited 1: Motor excited		
WNG	A warning is present.	0: Warning not present 1: Warning present		
STEPOUT	The deviation is abnormal.	0: Deviation error not present 1: Deviation error present		
+LS	Indicates the condition of the I/O +LS input.			
-LS	Indicates the condition of the I/O -LS input.	0: OFF (photocoupler un-energized)		
SLIT	Indicates the condition of the I/O SLIT input.	1: ON (photocoupler energized)		
HOMES	Indicates the condition of the I/O HOMES input.			
O.H.	Indicates whether or not an overheat warning is present.	0: Overheat warning not present 1: Overheat warning present		
START_R	Indicates the status of START. *	0: START=OFF 1: START=ON		
TIM	Indicates the excitation condition of the motor. "1" is read when the motor is at its excitation home.	0: TIM not being detected 1: TIM being detected		
ZSG	Indicates the Z-phase condition of the encoder input.	0: ZSG not being detected 1: ZSG being detected		
M0_R to M5_R	Selected operation data number *	0 to 63: Operation data number		
ALMCD	Indicates the alarm code of the present alarm.	Alarm code		

* START and M0 to M5 can be turned ON/OFF via I/O or RS-485 communication. If these signals are controlled via I/O, the I/O-controlled ON/OFF status is returned. If the signals are controlled via RS-485 communication, the RS-485-communication-controlled ON/OFF status is returned. I/O control is selected as the default prior to shipment.

4.4 Operation data

Command code		D	0	
Read	Write	Description	Setting range	Initial value
0001h	1001h	Position No.1		
to	to	to	-8,388,608 to 8,388,607 step	0
003Fh	103Fh	Position No.63		
0101h	1101h	Operating speed No.1		
to	to	to	1 to 500,000 Hz	1000
013Fh	113Fh	Operating speed No.63		
0201h	1201h	Operation mode No.1	0: INC (Incremental)	
to	to	to	1: ABS (Absolute)	0
023Fh	123Fh	Operation mode No.63		
0301h	1301h	Operation function No.1	function No.1 0: Single-motion	
to	to	to	1: Linked-motion	0
033Fh	133Fh	Operation function No.63	2: Linked-motion 2	
0401h	1401h	Sequential positioning No.1	0: Disable	
to	to	to	1: Enable	0
043Fh	143Fh	Sequential positioning No.63		
0501h	1501h	Acceleration rate No.1		
to	to	to		
053Fh	153Fh	Acceleration rate No.63	0.001 to 1000.000 ms/kHz	30.000
0601h	1601h	Deceleration rate No.1	0.001 to 1000.000 ms/kHz	30.000
to	to	to		
063Fh	163Fh	Deceleration rate No.63		
0801h	1801h	Dwell time No.1		
to	to	to	0 to 50000 (1=0.001 s)	0
083Fh	183Fh	Dwell time No.63		

4.5 Application parameter

Command code		- Description	Sotting range	Initial value
Read	Write	Description	Setting range	
0C00h	1C00h	START input mode	0: RS-485 communication 1: I/O	1
0C01h	1C01h	I/O STOP input	0: Disable 1: Enable	1
0C02h	1C02h	STOP action	0: Immediate stop 1: Decelerate stop 2: Immediate stop & Current OFF 3: Decelerate stop & Current OFF	1
0C03h	1C03h	STOP contact configuration	0: Make (N.O.) 1: Break (N.C.)	1
0C04h	1C04h	C-ON logic configuration	0: 0=Not excited, 1=Excited 1: 0=Excited, 1=Not excited	0
0C06h	1C06h	OUT1 signal mode selection	5: AREA 11: R-OUT1	5
0C07h	1C07h	OUT2 signal mode selection	6: TIM 12: R-OUT2 7: READY 13: STEPOUT *	7
0C08h	1C08h	OUT3 signal mode selection	8: WNG 14: O.H. 9: HOME-P 15: R-OUT3	8
0C09h	1C09h	OUT4 signal mode selection	10: ZSG * 16: R-OUT4	9
0C0Ah	1C0Ah	HOME/P-PRESET input switching	0: HOME 1: P-PRESET	0
0C0Bh	1C0Bh	Motor excitation mode		
0C0Ch	1C0Ch	HOME/FWD/RVS input mode	0: RS-485 communication	1
0C0Dh	1C0Dh	Data No. input mode		
0C0Eh	1C0Eh	AWO contact configuration	0: Make (N.O.) 1: Break (N.C.)	0
0C10h	1C10h	Hardware overtravel detection	0: Disable 1: Enable	1

* This parameter is used when an encoder is connected.

Command code		- Description	Setting range	Initial value
Read	Write			
0C11h	1C11h	LS contact configuration	0: Make (N.O.)	
0C12h	1C12h	HOMES contact configuration	– 1: Break (N.C.)	0
0C13h	1C13h	SLIT contact configuration		_
0C14h	1C14h	Overtravel action	0: Immediate stop 1: Decelerate stop	0
0C15h	1C15h	Preset position		
0C16h	1C16h	Area 1		0
0C17h	1C17h	Area 2		0
0C1Ah	1C1Ah	Encoder counter preset value *		
0C20h	1C20h	Operating current	5 to 100%	100
0C21h	1C21h	Standstill current	5 to 50%	50
0C40h	1C40h	Common acceleration rate		20,000
0C41h	1C41h	Common deceleration rate	-0.001 to 1000.000 ms/kHz	30.000
0C42h	1C42h	Starting speed		100
0C46h	1C46h	Jog operating speed	- 1 to 500,000 Hz	1000
0C47h	1C47h	Jog acceleration/ deceleration rate	0.001 to 1000.000 ms/kHz	30.000
0C48h	1C48h	Jog starting speed	1 to 500,000 Hz	100
0C49h	1C49h	Acceleration/ deceleration type	0: Common 1: Separate	0
0C60h	1C60h	Home-seeking mode	0: 2 sensors 1: 3 sensors	1
0C62h	1C62h	Operating speed of home-seeking	1 to 500,000 Hz	1000
0C63h	1C63h	Acceleration/ deceleration rate of home-seeking	0.001 to 1000.000 ms/kHz	30.000
0C64h	1C64h	Starting speed of home-seeking	1 to 500,000 Hz	100
0C65h	1C65h	Position offset of home-seeking	-8,388,608 to +8,388,607 step	0
0C66h	1C66h	Starting direction of home-seeking	0: Negative direction 1: Positive direction	1
0C67h	1C67h	SLIT detection with home-seeking	0: Disable 1: Enable	
0C68h	1C68h	TIM signal detection with home- seeking	0: Disable 1: Enable (TIM) 2: Enable (ZSG) *	0
0C69h	1C69h	Backward steps in 2-sensor mode home-seeking	0 to 32767 step	200
0C80h	1C80h	Stepout detection band *	0.1 to 360.0 deg	72
0C91h	1C91h	Overvoltage warning	25.0 to 35.0 V	310
0C93h	1C93h	Overheat warning	40 to 85 ° C (104 to 185 ° F)	85
0CC0h	1CC0h	Software overtravel	0: Disable 1: Enable	1
0CC1h	1CC1h	Positive software limit	0.200.000 to 10.200.007 at 1	8,388,607
0CC2h	1CC2h	Negative software limit	8,388,608 to +8,388,607 steps	-8,388,608
0CC3h	1CC3h	Display mode of the data setter speed	0: Signed 1: Absolute	0
0CC4h	1CC4h	The data setter editing mode	0: Disable 1: Enable	1
0CC6h	1CC6h	Communication timeout action	0: Immediate stop 1: Decelerate stop	1
0CCAh	1CCAh	Stepout detection action *	0: No operation (alarm/warning not present) 1: Warning 2: Alarm	0

* This parameter is used when an encoder is connected.

4.6 System parameter

Note To make the new system parameter settings effective, execute "Batch NV memory write" and then cycle the power.

Command code		Description	Setting range	Initial value	
Read	Write	Description	Setting range		
0D0Ah	1D0Ah	Motor rotation direction	0: + direction=CCW 1: + direction=CW	1	
0D0Ch	1D0Ch	Stepout detection *	0: Disable 1: Enable	0	
0D0Dh	1D0Dh	Motor step angle	See table below.	0	
0D0Eh	1D0Eh	Encoder electronic gear A *	1 to 250,000	500	
0D0Fh	1D0Fh	Encoder electronic gear B *	1 to 250,000	500	

* This parameter is used when an encoder is connected.

• "Motor step angle" parameter: If the base step angle of the motor is 0.72°

Setting	Step angle	Number of divisions		Setting	Step angle	Number of divisions
0	0.72°	1		8	0.0288°	25
1	0.36°	2		9	0.018°	40
2	0.288°	2.5		10	0.0144°	50
3	0.18°	4		11	0.009°	80
4	0.144°	5		12	0.0072°	100
5	0.09°	8		13	0.00576°	125
6	0.072°	10		14	0.0036°	200
7	0.036°	20		15	0.00288°	250

• "Motor step angle" parameter: If the base step angle of the motor is 0.36°

Setting	Step angle	Number of divisions		Setting	Step angle	Number of divisions
0	0.36°	1		8	0.0144°	25
1	0.18°	2		9	0.009°	40
2	0.144°	2.5		10	0.0072°	50
3	0.09°	4		11	0.0045°	80
4	0.072°	5		12	0.0036°	100
5	0.045°	8		13	0.0028°	125
6	0.036°	10		14	0.0018°	200
7	0.018°	20		15	0.00144°	250

- Note
 Step angles are theoretical values.
 With the geared type, the value of "step angle/gear ratio" becomes the actual step angle.
 The base step angle is 0.36° for high-resolution type motors.

4.7 Operation commands

Command code		Description	Setting range	Initial value
Read	Write	Description	Setting range	
0F00h	1F00h	Remote output	Controls the ON-OFF status of the remote output (R-OUT1 to R-OUT4). See table below.	0
0F04h	1F04h	Select the operation data No.	Selects the data number to be operated. This is effective when the "data No. input mode (0C0Dh/1C0Dh)" parameter is set to "0: RS-485 communication" in 12-axes connection mode.	0

Setting range of remote output

Setting value	R-OUT4	R-OUT3	R-OUT2	R-OUT1
0	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	ON
2	OFF	OFF	ON	OFF
3	OFF	OFF	ON	ON
4	OFF	ON	OFF	OFF
5	OFF	ON	OFF	ON
6	OFF	ON	ON	OFF
7	OFF	ON	ON	ON
8	ON	OFF	OFF	OFF
9	ON	OFF	OFF	ON
10	ON	OFF	ON	OFF
11	ON	OFF	ON	ON
12	ON	ON	OFF	OFF
13	ON	ON	OFF	ON
14	ON	ON	ON	OFF
15	ON	ON	ON	ON

7 Inspection, troubleshooting and remedial actions

This part explains the periodical inspection methods as well as confirmation items and remedial actions when problems have happened.

Table of contents

1	Inspection164						
2	Alarms and warnings1						
	2.1	Alarms					
		Alarm reset					
		Alarm list	166				
	2.2	Warnings					
		■ Warning list					
3		ubleshooting and					
	rem	nedial actions					

1 Inspection

It is recommended that periodic inspections for the items listed below are conducted after each operation of the motor. If an abnormal condition is noted, discontinue any use and contact your nearest Oriental Motor sales office.

During inspection

- Are any of the motor mounting screws loose?
- Check for any unusual noises in the motor bearings (ball bearings) or other moving parts.
- Are there any scratches, signs of stress or loose driver connections in the motor cable?
- Are the motor output shaft and load shaft out of alignment?
- Are any of the driver DIN rail mounting parts loose?
- Are there any loose driver connectors?
- Is there attachment of dust, etc., on the driver?
- Are there any strange smells or appearances within the driver?

Note The driver uses semiconductor elements. Handle the driver with care since static electricity may damage semiconductor elements. Static electricity may damage the driver.

2 Alarms and warnings

The driver provides alarms that are designed to protect the driver from overheating, poor connection, error in operation, etc. (protective functions), as well as warnings that are output before the corresponding alarms generate (warning functions).

2.1 Alarms

When an alarm generates, the ALM output will turn OFF and the motor will stop. At the same time, the ALARM LED will start blinking. The present alarm can be checked by counting the number of times the ALARM LED blinks. Present alarms can be checked using the OPX-2A, MEXEO2 or RS-485 communication. You can also check the records of up to ten most recent alarms starting from the latest one, or clear the alarm records.

Example: Overvoltage alarm (number of blinks: 3)

Alarm reset

Perform one of the reset operations specified below. Before resetting an alarm, always remove the cause of the alarm and ensure safety. Refer to p.94 for the timing chart.

- Turn the ALM-RST input to ON and then OFF. (The alarm will be reset at the OFF edge of the input.)
- Perform an alarm reset using the OPX-2A, MEXE02 or RS-485 communication.
- · Cycle the power.

Note Some alarms cannot be reset with the ALM-RST input, OPX-2A, MEXE02 or RS-485 communication. Check the following table to identify which alarms meet this condition. To reset these alarms, you must cycle the power.

Alarm list

Alarm type	No. of ALARM LED blinks	Alarm code	Motor operation	Alarm reset *1	Cause	Remedial action
Overheat	2	21		Possible	The internal temperature of the driver exceeded 85 °C (185 °F).	Review the ventilation condition in the enclosure.
Overvoltage	3	22	The motor current is cut off.	Not possible	 The internal voltage exceeded the permissible value due to regeneration, etc. The power supply voltage exceeded the allowable value. 	 If this alarm generates during operation, reduce the load or increase the acceleration/deceleration rate. Check the power supply voltage.
Overflow	4	10		Possible *2	The deviation between the encoder counter value and command position reached the stepout detection band when the "stepout detection action" parameter was set to "alarm".	 Reduce the load, or increase the acceleration/ deceleration rate. Check the setting of "stepout detection band" parameter. Check the setting of "encoder electronic gear" parameter.
±LS both sides active		60			Both the +LS and -LS signals were detected when LS detection was enabled.	Check the sensor logic and setting of "LS contact configuration" parameter.
Reverse limit sensor connection		61			The LS opposite to the operating direction has detected during a return-to-home operation.	Check the ±LS wiring.
Home seeking error	7	62	The motor stops.	Possible	Return-to-home operation did not complete normally.	 An unanticipated load may have been applied during the return-to-home operation. Check the load. If the installation positions of ±LS and HOMES are close to one another, the return-to-home sequence may not end properly, depending on the starting direction of return-to-home operation. Review the sensor installation positions and the starting direction of return-to-home operation. Return-to-home operation. Return-to-home operation may have been performed in a condition where both +LS and -LS were detected. Check the sensor logic and the setting of "LS contact configuration" parameter.
No HOMES		63			The HOMES is not detected at a position between +LS and -LS during return-to-home operation in 3-sensor mode.	 Set a HOMES between +LS and -LS. Check the HOMES wiring.

*1 Reset alarm using the ALM-RST input/**OPX-2A/MEXE02**/RS-485 communication.

*2 The alarm cannot be reset by merely turning the ALM-RST input ON. First recover from the deviation error and reset the alarm by the ALM-RST input. See p.81 for how to recover from deviation error.

*3 This error is detected when a network converter is used in combination.

Alarm type	No. of ALARM LED blinks	Alarm code	Motor operation	Alarm reset *1	Cause	Remedial action								
TIM, Z, SLIT input error		64			None of the SLIT input, TIM output and ZSG output could be detected during return-to-home operation.	 Adjust the connection condition of the motor output shaft and load as well as the HOMES position so that at least one of the SLIT input, TIM output and ZSG output will turn ON while HOMES is ON. If the SLIT input, TIM output and ZSG output are not used with HOMES, set the "TIM signal detection with home-seeking" parameter and "SLIT detection with home-seeking" parameter to "disable." 								
Hardtware overtravel		66	The motor	The motor stops. Possible	Possible	A +LS or -LS signal was detected when hardware overtravel was enabled.	Reset alarm using the ALM- RST input, and then pull out from the LS sensor via continuous operation or return-to-home operation.							
Software overtravel	7	67				" Possible	Dosciblo	Possible	s. Possible	ops.	lops.	A software limit was reached when software overtravel was enabled.	Perform the operation within the range between the software limits. In single- motion operation, check to see if the position exceeds the softlimit. In linked-motion operation, check to see if the result of linked position exceeds the softlimit.	
Home seeking offset error		6A												A limit sensor signal was detected during offset movement as part of return-to-home operation.
Invalid operation data		70											 Five or more data may be linked. Data of different directions may be linked In a sequential positioning operation, "sequential positioning" was not set to "enable" for operation data No.01. 	 Keep the number of operation data to be linked to 4 or less. Link operation data having the same direction. In a sequential positioning operation, set "sequential positioning" to "enable" for operation data No.01.
RS-485 communication error		84	The motor current is cut off.	Not possible	The number of consecutive RS-485 communication errors reached the value set in the "communication error alarm" parameter.	See "10 Detection of								
RS-485 communication timeout		85	The motor		The time set in the applicable parameter has elapsed, and yet the communication could not be established with the master controller.	communication errors" on p.126.								
Network bus error *2		81	The motor stops. Possible		The bus of host network of the network converter turned off while the motor was operating.	Check the condition of the network converter.								
Network converter error *2		8E			The network converter generated an alarm.									
EEPROM error	9	41	The motor current is cut off.	Not possible	The stored data was damaged.	Initialize the parameters using the OPX-2A , MEXE02 or RS-485 communication.								

*1 Reset alarm using the ALM-RST input/**OPX-2A/MEXE02**/RS-485 communication.
*2 This error is detected when a network converter is used in combination.

2.2 Warnings

When a warning generates, the WNG output will turn ON. The motor will continue to operate. Once the cause of the warning is removed, the WNG output will turn OFF automatically. Present warnings can be checked using the **OPX-2A**, **MEXEO2** or RS-485 communication. You can also check the records of up to ten most recent warnings starting from the latest one, or clear the warning records.

Note You can also clear the warning records by turning off the driver power.

Warning list

Warning type	Warning code	Cause	Remedial action
Overflow	10	The deviation between the encoder counter value and command position reached the stepout detection band when the "stepout detection action" parameter was set to "warning".	 Reduce the load, or increase the acceleration/deceleration rate. Check the setting of "stepout detection band" parameter. Check the setting of "encoder electronic gear" parameter.
Overheat	21	The temperature inside the driver exceeded the value set in the "overheat warning" parameter.	Review the ventilation condition in the enclosure.
Overvoltage	 The internal voltage exceeded the value set in the "overvoltage warning" parameter due to regeneration, etc. The power supply voltage exceeded the value set in the "overvoltage warning" parameter. 		 If this alarm generates during operation, reduce the load or increase the acceleration/ deceleration rate. Check the power supply voltage.
RS-485 communication error	84	A RS-485 communication error was detected.	See "10 Detection of communication errors" on p.126.

3 Troubleshooting and remedial actions

During motor operation, the motor or driver may fail to function properly due to an improper speed setting or wiring. When the motor cannot be operated correctly, refer to the contents provided in this section and take appropriate action. If the problem persists, contact your nearest office.

Phenomenon	Possible cause	Remedial action
	The AWO input is turned ON (normally	• Turn the AWO input OFF and confirm that the motor will be excited.
• The motor is not excited.	open).	Check the setting of the "AWO contact configuration" parameter.
• The motor output shaft can be moved by hand.	Connection error in the motor leads or power supply cable.	Check the connections between the driver, motor and power supply.
	The "operating current" or "standstill current" parameter is set wrong. If the current is too low, the motor torque will also be too low and operation will be unstable.	Return the "operating current" or "standstill current" to its initial setting and check.
	The STOP input is turned OFF (normally closed).	 Turn the STOP input ON. Check the setting of the "STOP contact configuration" parameter.
The motor does not operate.	The position (distance) is not set in the operation data while positioning operation.	Check the operation data.
	The FWD input and RVS input are turned ON simultaneously in the continuous operation.	Check the status of FWD input and RVS input.
	Electromagnetic brake is holding (electromagnetic brake motor only).	Release the electromagnetic brake by turning the power on.
The motor rotates in the direction opposite to the specified direction.	The "motor rotation direction" parameter is set wrong.	Check the setting of the "motor rotation direction" parameter.
The gear output shaft rotates in the direction opposite to the	A gear that rotates in the direction opposite to the motor shaft is used.	• With TH geared motors, the gear rotates in the direction opposite to the motor when the gear ratio is 20 or 30.
motor.	to the motor shart is used.	 All harmonic geared types rotate in the direction opposite motor rotation.
	Connection error in the motor leads or power supply cable.	Check the connections between the driver, motor and power supply.
Motor operation is unstable.	The "operating current" or "standstill current" parameter is set wrong. If the current is too low, the motor torque will also be too low and operation will be unstable.	Return the "operating current" or "standstill current" to its initial setting and check.
	The centers of the motor output shaft and load shaft are not aligned.	Check the connection condition of the motor output shaft and load shaft.
Loss of synchronization during acceleration or running.	The load or load fluctuation is too high.	Check for large load fluctuations during operation. If adjusting the operating speed to low and high torque eliminates the problem, it is necessary to review the load conditions.
	The starting speed is too high.	Lower the starting speed and set it again to a speed at which stable starting is possible.
	The acceleration/deceleration rate is too short.	Make the acceleration/deceleration rate longer in order to reset it to a time at which stable starting is possible.
With the electromagnetic brake type, the electromagnetic brake does not hold the load.	DC power is supplied to the electromagnetic brake.	To hold the load with the electromagnetic brake while motor is stopped, turn OFF the power supply for electromagnetic brake.
Motor does not move the set amount.	Wrong step angle settings.	Check the "motor step angle" parameter.

Note I/O signals can be monitored using the **OPX-2A**, **MEXE02** or RS-485 communication. Use these accessories to check the wiring conditions of I/O signals.

8 Appendix

This part explains accessories (sold separately) that are used in combination with the products and method of control via GW protocol Version 1.

Table of contents

1	Acc	essories (sold separately) 172
		Data setter
		Data setting software172
		Extension cable172
		Connector lead wire
		■ RS-485 communication cable172
2	Met	hod of control via GW protocol
	Vers	sion 1 173
	2.1	Guidance173
	2.2	Communication specifications
	2.3	Setting the switches 177
	2.4	Communication mode 178
	2.5	Communication timing179
	2.6	Frame structures 179

Control method selection	182
■ Setting the communication protocol	
■ Selection from I/O control and RS-485	
communication control	
Example of communication setting.	182
Positioning operation	
Continuous operation	
Command list	186
Command types	189
Command details	190
Simultaneous send	206
Group send	206
Detection of communication errors	208
Communication errors	208
Alarms and warnings	208
Timing charts	209
	■ Setting the communication protocol

1 Accessories (sold separately)

Data setter

The data setter lets you set data and parameters for your **CRK** Series built-in controller with ease and also functions as a monitor.

Model: OPX-2A

Data setting software

The data setting software lets you set parameters for your **CRK** Series and monitor its operating condition using a PC. The software comes with a PC interface cable [5 m (16.4 ft.)]. The cable is connected to the USB port on the PC. Model: **MEXEO2**

Extension cable

This cable is used to extend the wiring distance between the driver and motor.

Model	Length [m (ft.)]	Number of cores	
CC05PK5	5 (16.4)	F	
CC10PK5	10 (32.8)	5	

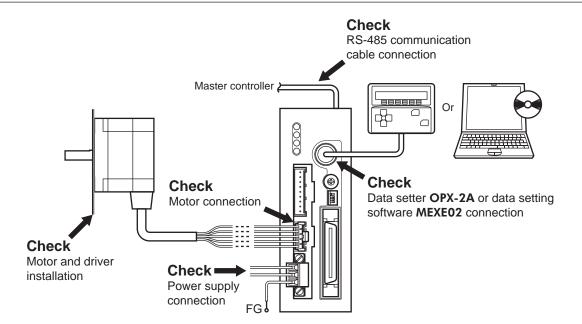
Connector lead wire

The lead wires come preassembled with a crimped connector for easy connection of a encoder and driver. Model: **LC09A-006** [0.6 m (2 ft.)]

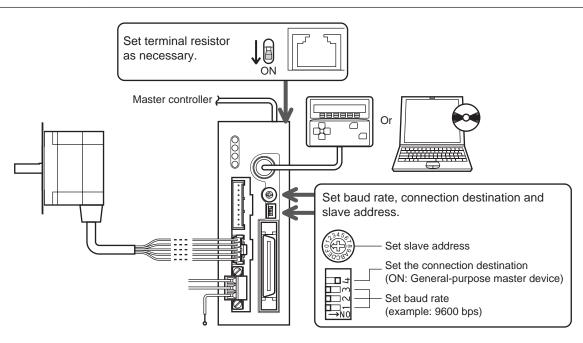
RS-485 communication cable

You can link drivers using this cable connected to the RS-485 communication connectors (CN6, CN7). Model: **CC001-RS4** [0.1 m (0.3 ft.)]

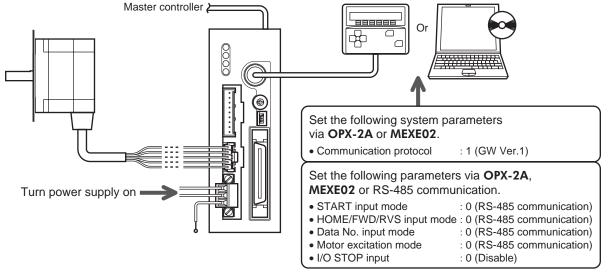
2 Method of control via GW protocol Version 1


GW protocol Version 1 is Oriental Motor's proprietary protocol at a fixed length of 9 bytes. Various functions such as motor operation, parameter read/write, monitoring and maintenance are available under this protocol.

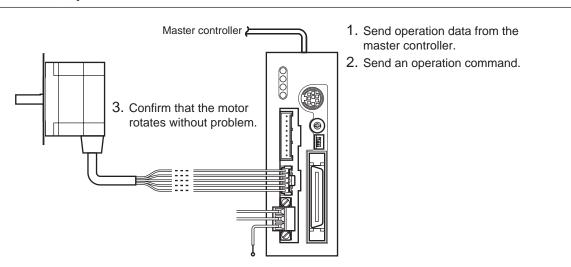
2.1 Guidance


If you are new to the **CRK** Series built-in controller, read this section to understand the operating methods along the operation flow.

Note Before operating the motor, check the condition of the surrounding area to ensure safety.


STEP 1 Check the installation and connection

STEP 2 Set the switches



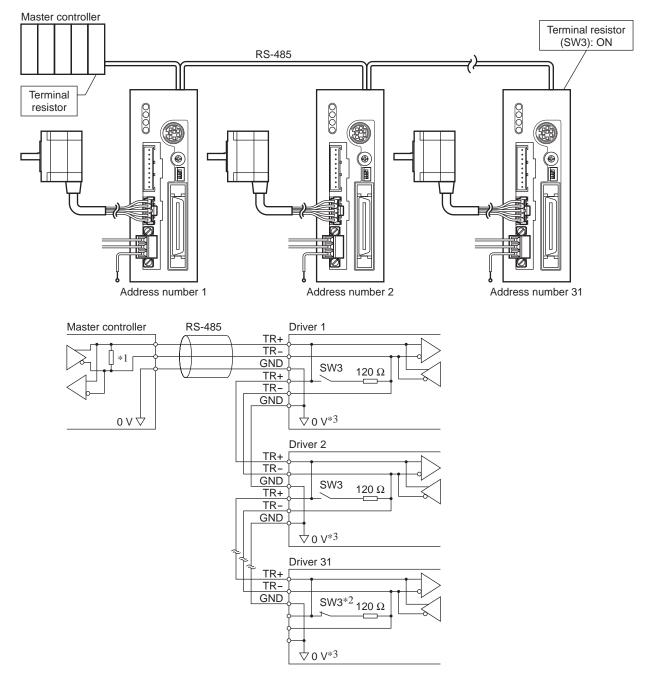
STEP 4 Cycle the power

System parameters will become effective only after the power is cycled. If you have changed any of the system parameters, be sure to cycle the power.

STEP 5 Operate the motor

STEP 6 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

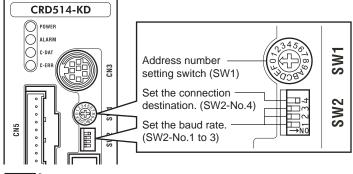

- Is any alarm present?
- Are the power supply, motor and RS-485 communication cable connected securely?
- Are the address number, baud rate and terminal resistor set correctly?
- Is the C-ERR LED lit?
- Is the C-DAT LED lit?

For more detailed settings and functions, refer to the following pages.

2.2 Communication specifications

Electrical characteristics	In conformance with EIA-485, straight cable Use a twisted pair cable (TIA/EIA-568B CAT5e or higher is recommended) and keep the total wiring distance including extension to 50 m (164 ft.) or less.	
Communication mode	Communication mode Half duplex, Asynchronous mode (8 bits, 1 stop bit, no parity)	
Baud rate Selectable from 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, 250000 bps, 312500 bps and 625000 bps.		
Protocol	9-byte fixed frame length, binary transfer	
Connection pattern	Up to 31 drivers can be connected to one master controller.	

Connection example



*1 Terminal resistor 120 Ω

*2 Turn the terminal resistor (SW3) to ON.

*3 The GND line is used in common with CN1 (not insulated).

2.3 Setting the switches

Note Be sure to turn off the driver power before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the driver power is cycled.

Address number

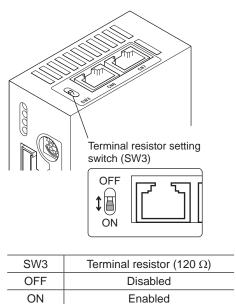
Set the address number using the address setting switch (SW1) and "communication axis number" parameter. If SW1 is set to "F," the address number set in the "communication axis number" parameter is selected. (initial value: 15). Make sure each address number you set for each driver is unique. Factory setting: 0 (address number 0)

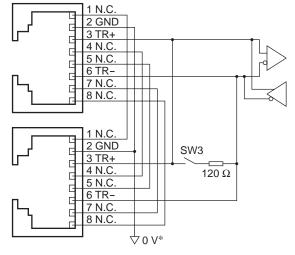
SW1	Address number		SW1	Address number
0	0		8	8
1	1		9	9
2	2		А	10
3	3		В	11
4	4		С	12
5	5		D	13
6	6	_	E	14
7	7	_	F	Setting value of "communication axis number" parameter *

* The default value of the "communication axis number" parameter is "15." Set the "communication axis number" parameter using the OPX-2A or MEXE02.

Setting the connection destination

Set the connection destination of RS-485 communication using position No.4 of the function setting switch (SW2). Set this position to the ON side when controlling using the GW protocol Version 1. Factory setting: OFF (network converter)


Baud rate


Set the baud rate using Nos. 1 to 3 of the function setting switch (SW2) to. The baud rate to be set should be the same as the baud rate of the master controller. Factory setting: All ON (625,000 bps)

Baud rate (bps)	SW2-No.3	SW2-No.2	SW2-No.1
9600	OFF	OFF	OFF
19200	OFF	OFF	ON
38400	OFF	ON	OFF
57600	OFF	ON	ON
115,200	ON	OFF	OFF
250,000	ON	OFF	ON
312,500	ON	ON	OFF
625,000	ON	ON	ON

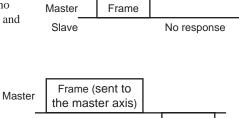
Terminal resistor

Use a terminal resistor for the driver located farthest away (positioned at the end) from the master controller. Turn the terminal resistor setting switch (SW3) ON to set the terminal resistor for RS-485 communication (120 Ω). Factory setting: OFF (terminal resistor disabled)

* The GND line is used in common with CN1 (not insulated).

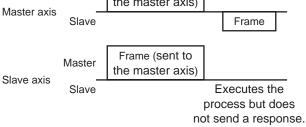
2.4 Communication mode

This products uses the communication mode where one master controller acts as master and this driver serves as the slave, and the slave returns one frame in response to each frame received from the master. Frames are sent in one of three methods.


Individual send

Send a frame to each slave.

Simultaneous send


Send a frame to all slaves simultaneously. In simultaneous send, no response is returned from the slaves. The operation specifications and commands that can be sent via simultaneous send are limited.

A frame is sent simultaneously to all of the slaves comprising one group. Each group consists of one

Group send

master axis and one or more slave axes, and only the master axis returns a response. The commands that can be sent via group send are limited.

2.5 Communication timing

	k	T1				4
	÷	T4 (sir	T4 (simultaneous send)		4	
	<u>к Т3</u>		Т3			
Master	Frame				Frame	
Slave			Frame			
Receive period (T1)		The period of the received frame is monitored. If no frame is received after an elapse of the time set by the "receive period" command, a communication timeout alarm will generate. Even when a frame is not sent to the applicable unit, once a BCC-matching frame is received the receive period counter will be cleared and counting will start fresh.				
Response int	erval (T2)	The interval after the master receives a frame until the slave starts sending. This interval can be set using the "response interval" command.				
Receive monitor period (T3) The time needed for the master or slave to send one entire frame from the to BCC is monitored. If no BCC is received after an elapse of the time set b "receive monitoring" command, the slave will discard the frame and wait for header.			d after an elapse of the time set by the			
Send interval	Send interval (T4)The interval after the slave receives a frame until the master sends the next fra This interval must be 0.5 ms or longer in the case of individual send or group send, or 5 ms or longer in the case of simultaneous send.			he case of individual send or group		

2.6 Frame structures

The frame structure used for sending data from the master to the slave is shown below.

	Header	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
r	The frame structure used for sending data from the slave to the master is shown below.								
ſ	Header	Action entry	Mode/NACK	Command	Data 1	Data 2	Data 3	Data 4	BCC

Header

Master: Specify the receiving slave.

Slave: Change the sender to "slave" and send a response.

bit	Function	Description	Behavior
7	"0" specification	System-reserved bit	-
6	Sender	Specify the sender. *1	0: Slave 1: Master
5	Send specification	Specify the send mode from the master. *2	0: Individual send 1: Simultaneous send
4			
3			
2	Address number	Specify the address number of the slave using five bits.	00h (address number 0) to 1Fh (address number 31)
1			
0			

*1 Send the frame after setting the master controller to "1: Master".

*2 Simultaneous send can be specified only for the master. If simultaneous send is specified, send the frame after setting the address number to "0".

Action entry

Master: Specify the operation to be performed by the slave. Slave: Sends directly the action entry data received from the master.

bit	Function	Description	Behavior
7	"0" specification	System-reserved bit *1	-
6	WRITE/READ	Write or read data. *2	0: WRITE 1: READ
5	STOP	Stop the motor. *3*4	0: No action 1: Stop
4	Not used	-	-
3	HOME	Perform return-to-home operation. *4*5	0: No action 1: Start operation
2	RVS	Perform continuous operation in the reverse direction. *4*6*7	0: Deceleration stop
1	FWD	Perform continuous operation in the forward direction. *4*6*7	1: Operation
0	START	Perform positioning operation. *4*5*7	0: No action 1: Start operation

*1 When "1" is specified, a reception failure will be recognized. Accordingly, the frame will be discarded and NACK will be returned.

*2 Specify whether it is a WRITE or READ command. Other operation command bits are executed regardless of the WRITE/READ specification.

- *3 The stopping method can be set using the "STOP action (13h)" command.
- *4 The operation command bits have priorities. Specifically, "1" is detected in the order of STOP > FWD/RVS > HOME > START.
- *5 Operation is started at the ON edge of this bit (when the bit changes from 0 to 1). Once the operation has started, return this bit to "0".
- *6 Operation continues while this bit remains "1". Returning it to "0" will cause the motor to decelerate to a stop.

*7 Select the operation data number using the "data number selection" command and specify it using the mode command.

Note Commands (WRITE/READ) and operation commands (STOP, HOME, RVS, FWD, START) can be sent simultaneously. Since the operation is started after writing, data setting and operation can be performed simultaneously.

Mode

Master: Specify the data number. If any out-of-range mode is specified, a reception failure will be recognized. Accordingly, the frame will be discarded and NACK will be returned.

Mode	Description
00h to 3Fh	If the command requires a data number, specify an applicable data number. If the command does not require any data number, specify "00h".

Slave: If the communication is performed successfully, the master mode will be returned directly.

Mode	Description
00h to 3Fh	The master mode will be returned directly (successful reception).
FFh	This indicates a reception failure (NACK).

If any of the following conditions are met, the frame will be discarded and NACK will be returned. The reason for NACK can be checked by the applicable communication error record.

- The system reservation bit of the operation specification is "1".
- An undefined mode is specified.
- An undefined command is specified.
- A command that cannot WRITE is specified.
- A command that cannot READ is specified.
- The value in the data area was outside the specified range.
- The command was specified in one of the following conditions:
 - · An EEPROM error alarm was present.
 - \cdot The **OPX-2A** is currently connected in a mode other than the monitor mode.
 - \cdot Downloading or initialization is currently in progress via the **MEXE02**.
 - · Internal processing was in progress.

Command

Master: Specify the command.

Slave: Sends directly the command received from the master.

The commands are classified into the following six types:

- Operation data.......WRITE/READ operation data. (These commands can also be set using the **OPX-2A** or **MEXE02**.)
- ParameterWRITE/READ parameter. (These commands can also be set using the OPX-2A or MEXE02.)
- Operation.....Specify operations.
- MonitorMonitor the current speed, position, I/O status, etc.
- MaintenanceUsed in maintenance processes.
- Special.....Set group send.

See p.190 for command details.

Data area

Specify the value to be set in the command. Specify data in the signed four-byte binary format.

The four-byte data is expressed in the little endian order.

Master: With a WRITE command, specify the data to be written.

Slave: With a WRITE command, the master data will be returned directly. With a READ command, the data that has been read will be returned. If the reception failed (NACK), the master data will be returned directly. Any numerical value included in the master data will be ignored.

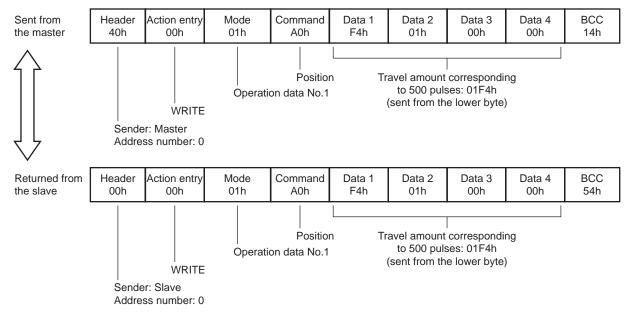
Example) When the "01234567h" is set in the data area

The data is sent from the lower byte, so the following values will be stored in the data area:

Data 1	Data 2	Data 3	Data 4
67h	45h	23h	01h

Note

If the value set in a WRITE command is outside the setting range for the applicable command, the frame will be discarded and NACK will be returned. If a function is assigned to any bit in the data area of the command [Example: I/O status (39h)], "0" will always be returned whenever a bit to which no function is assigned is read.


■ BCC

A horizontal parity used to detect errors in the frame data.

The CRC is a logical sum of all bytes from the header to data 4, calculated by the exclusive-OR gate.

Example of frame transmission/reception

An example of setting the position (travel amount) for operation data No. 1 to 500 pulses is given.

2.7 Control method selection

Setting the communication protocol

To implement controls using GW Protocol Version 1, set the "communication protocol" parameter to "1: GW Ver. 1" using the **OPX-2A** or **MEXE02**.

Note The "communication protocol" parameter cannot be set via RS-485 communication.

Selection from I/O control and RS-485 communication control

Prior to shipment, I/O control is set as the method to select the operation command input method or operation data number. To change this control method to RS-485 communication, change the applicable settings using the **OPX-2A**, **MEXEO2** or via RS-485 communication.

The table below lists the items whose control can be switched between I/O and RS-485 communication. You can use both methods simultaneously, such as controlling the operation via RS-485 communication and inputting a stop signal via I/O.

Item	Method of control via I/O	Method of control via RS-485 communication	This command is used to change the control method.	
Positioning operation	START input	START (bit 0) of action entry	START input mode	
Excitation control	AWO input	"Excitation control" command	Motor excitation mode	
Stop	STOP input	STOP (bit5) of action entry *	I/O STOP input	
Select data No.	M0 to M5 input	"Data number selection" command	Data number input mode	
Return-to-home operation	HOME input	HOME (bit3) of action entry		
Continuous operation (forward)	FWD input	FWD (bit1) of action entry	HOME/FWD/RVS input mode	
Continuous operation (reverse)	RVS input	RVS (bit2) of action entry		
Reset alarm	ALM-RST input	"Alarm reset" command	Nene (Deth are always affective)	
Position preset	P-PRESET input	"Position preset" command	None (Both are always effective)	

* The operation specification STOP is always effective. Even when the "I/O STOP input" parameter is set to "Enable", the motor will stop when the operation specification STOP is executed.

2.8 Example of communication setting

The data required for each operation is set using the **OPX-2A**, **MEXE02** or via RS-485 communication.

Positioning operation

See p.55 for details on the positioning operation.

Command	Name	Setting range	Initial value
0Eh	Dwell time	0 to 50000 (1=0.001 s)	0
0Fh	Sequential positioning	0: Disable 1: Enable	0
10h	Positioning mode	0: INC 1: ABS	0
11h	Operating mode	0: Single 1: Link 2: Link2	0
80h	Starting speed *1	1 to 500,000 (Hz)	100
82h	Acceleration rate *2	0.001 to 1000.000 (ms/kHz)	30.000
83h	Deceleration rate *2	0.001 10 1000.000 (115/KHZ)	30.000
88h	Operating speed	1 to 500,000 (Hz)	1000
A0h	Position	-8,388,608 to +8,388,607 (step)	0

*1 The starting speed is common to all operation data used in a positioning operation and continuous operation. Other commands can be set for each operation data.

*2 This command is effective when the "acceleration (deceleration) rate type" parameter is set to "separate". If this parameter is set to "common", the values of common acceleration rate and common deceleration rate become effective (initial value: common).

- Note The excitation condition of the motor at the power ON varies depending on the "C-ON logic configuration" parameter. The motor is not excited if the "C-ON logic configuration" parameter is set to "0," and excited if the parameter is set to "1."
 - The factory setting of the STOP input is normally closed. Accordingly, turn the I/O STOP input ON before commencing the operation if the "I/O STOP input" parameter is set to "enable". The operation cannot be performed if the STOP input remains OFF. For your information, the STOP input logic can be changed using the "STOP contact configuration" command.
 - The motor will operate at the starting speed if the operating speed is below the starting speed.
- Setting example

How to perform the following positioning operation is explained as an example.

- Address number: 0
- Position (distance): 1000 step
- Operating speed: 5000 Hz
- 1. Set the respective parameters as follows using the OPX-2A, MEXE02 or via RS-485 communication:

Parameter name	Setting
START input mode	0: RS-485 communication
I/O STOP input	0: Disable
Motor excitation mode	0: RS-485 communication
Data No. input mode	0: RS-485 communication

2. Send the following frame to turn ON the motor excitation.

Header	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
40h	00h	00h	22h	01h	00h	00h	00h	63h

3. Send the following frame to set the position (travel amount) for operation number No. 1 to 1000 steps.

ſ	Header	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
	40h	00h	01h	A0h	E8h	03h	00h	00h	0Ah

4. Send the following frame to set the operating speed for operation data No. 1 to 5000 Hz.

Header	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
40h	00h	01h	88h	88h	13h	00h	00h	52h

5. Send the following frame to select operation data No. 1 and change the START bit to 1 (operation start). Positioning operation will start at the ON edge of the bit (when the bit changes from 0 to 1).

Header	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
40h	01h	01h	00h	00h	00h	00h	00h	40h

Once the positioning operation has started, send the following frame to return the START bit to 0 (no operation).

Header	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
40h	00h	01h	00h	00h	00h	00h	00h	41h

Return-to-home operation

See p.64 for details on the return-to-home operation.

Command	Name	Setting range	Initial value
12h	Home-seeking mode	0: 2 sensors 1: 3 sensors	1
93h	Starting speed of home-seeking	1 to 500,000 (Hz)	100
94h	Acceleration/deceleration rate of home-seeking	0.001 to 1000.000 (ms/kHz)	30.000
95h	Operating speed of home-seeking	1 to 500,000 (Hz)	1000
A8h	Position offset of home-seeking	-8,388,608 to +8,388,607 (step)	0
A9h	Starting direction of home-seeking	0: - direction 1: + direction	1
AAh	SLIT detection with home-seeking	0: Disable 1: Enable	0
ABh	TIM signal detection with home- seeking	0: Disable 1: Enable (TIM) 2: Enable (ZSG) *	0
ACh	Backward steps in 2-sensor mode home-seeking	0 to 32767 (step)	200

* This signal is used when an encoder is connected.

- Note The excitation condition of the motor at the power ON varies depending on the "C-ON logic configuration" parameter. The motor is not excited if the "C-ON logic configuration" parameter is set to "0," and excited if the parameter is set to "1."
 - The factory setting of the STOP input is normally open. Accordingly, turn the I/O STOP input ON before commencing the operation if the "I/O STOP input" parameter is set to "enable". The operation cannot be performed if the STOP input remains OFF. For your information, the STOP input logic can be changed using the "STOP contact configuration" command.
 - The motor will operate at the starting speed if the operating speed is below the starting speed.

• Setting example

How to perform the following return-to-home operation is explained as an example.

- Address number: 0
- 1. Set the respective parameters as follows using the OPX-2A, MEXE02 or via RS-485 communication:

Parameter name	Setting
I/O STOP input	0: Disable
Motor excitation mode	0: RS-485 communication
HOME/FWD/RVS input mode	0: RS-485 communication
Data No. input mode	0: RS-485 communication

2. Send the following frame to turn ON the motor excitation.

Heade	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
40h	00h	00h	22h	01h	00h	00h	00h	63h

3. Send the following frame to change the HOME bit to 1 (operation start). Return-to-home operation will start at the ON edge of the bit (when the bit changes from 0 to 1).

Header	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
40h	08h	00h	00h	00h	00h	00h	00h	48h

4. Once the return-to-home operation has started, send the following frame to return the HOME bit to 0 (no operation).

Header	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
40h	00h	00h	00h	00h	00h	00h	00h	40h

Continuous operation

See p.69 for details on the continuous operation.

Command	Name	Setting range	Initial value	
80h	Starting speed *1	1 to 500,000 (Hz)	100	
82h	Acceleration rate *2	$0.001 \pm 1000.000 (ma/kHz)$	30.000	
83h	Deceleration rate *2	0.001 to 1000.000 (ms/kHz)		
88h	Operating speed	1 to 500,000 (Hz)	1000	

*1 The starting speed is common to all operation data used in a positioning operation and continuous operation. Other commands can be set for each operation data.

*2 This command is effective when the "acceleration (deceleration) rate type" parameter is set to "separate". If this parameter is set to "common", the values of common acceleration rate and common deceleration rate become effective. (initial value: common)

- Note The excitation condition of the motor at the power ON varies depending on the "C-ON logic configuration" parameter. The motor is not excited if the "C-ON logic configuration" parameter is set to "0," and excited if the parameter is set to "1."
 - The factory setting of the STOP input is normally open. Accordingly, turn the I/O STOP input ON before commencing the operation if the "I/O STOP input" parameter is set to "enable". The operation cannot be performed if the STOP input remains OFF. For your information, the STOP input logic can be changed using the "STOP contact configuration" command.
 - The motor will operate at the starting speed if the operating speed is below the starting speed.

• Setting example

How to perform the following continuous operation is explained as an example.

- Access number: 0
- Rotation direction: Forward
- Operating speed: 5000 Hz
- 1. Set the respective parameters as follows using the OPX-2A, MEXE02 or via RS-485 communication:

Parameter name	Setting
I/O STOP input	0: Disable
Motor excitation mode	0: RS-485 communication
HOME/FWD/RVS input mode	0: RS-485 communication
Data No. input mode	0: RS-485 communication

2. Send the following frame to turn ON the motor excitation.

Header	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
40h	00h	00h	22h	01h	00h	00h	00h	63h

3. Send the following frame to set the operating speed for operation number No. 1 to 5000 Hz.

Header	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
40h	00h	01h	88h	88h	13h	00h	00h	52h

4. Send the following frame to select operation data No. 1 and change the FWD bit to 1 (operation start). Continuous operation will start.

Header	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
40h	02h	01h	00h	00h	00h	00h	00h	43h

5. To stop the continuous operation, send the following frame to return the FWD bit to 0 (deceleration stop).

Header	Action entry	Mode	Command	Data 1	Data 2	Data 3	Data 4	BCC
40h	00h	01h	00h	00h	00h	00h	00h	41h

2.9 Command list

Command No.	Command name	WRITE/ READ	Mode	Data area	Initial value	Туре
00h	No action	R	0		_	Operation
0011	Data number selection	W	0 to 63	_	_	Operation
01h	Receive period			0: Not monitored 1 to 999: 0.01 to 9.99 sec (1=0.01 sec)	0	
02h	Response interval			0 to 1000(ms)	50	
03h	Receive monitoring			1 to 999: 0.01 to 9.99 sec (1=0.01 sec)	10	
04h	OUT1 signal mode selection				5	Parameter
05h	OUT2 signal mode selection			Refer to p.188.	7	
06h	OUT3 signal mode selection		0		8	
07h	OUT4 signal mode selection		-		9	
08h	HOME/P-PRESET input switching			0: HOME 1: P-PRESET	0	Special
0Bh	Group operation			0: Disable 1: Enable	1	
0Ch	Group			1: Individual send0 to 31: Specify a group.	-1	
0Dh	Communication timeout action			0: Immediate stop 1: Decelerate stop	1	Parameter
0Eh	Dwell time			0 to 50000 (1=0.001 s)		
0Fh	Sequential positioning			0: Disable 1: Enable		
10h	Positioning mode	W/R	1 to 63	0: INC (incremental) 1: ABS (absolute)	0	Operation data
11h	Operating mode			0: Single 1: Link 2: Link2		
12h	Home-seeking mode			0: 2 sensors 1: 3 sensors		
13h	STOP action			0: Immediate stop 1: Decelerate stop 2: Immediate stop & Current OFF 3: Decelerate stop & Current OFF	1	
14h	Overtravel action			0: Immediate stop 1: Decelerate stop		Parameter
1Ah	LS contact configuration				0	
1Bh	HOMES contact configuration			0: Make (N.O.)	0	
1Ch	SLIT contact configuration			1: Brake (N.C.)		
1Dh	STOP contact configuration		0		1	
1Eh	AWO contact configuration				0	
1Fh	C-ON logic configuration			0: 0=Not excited, 1=Excited 1: 0=Excited, 1=Not excited	0	
20h	Clear counter			_		
21h	Reset alarms					
22h	Excitation control	W		0: 0=Not excited, 1=Excited if the "C-ON logic configuration" parameter is 0 1: 0=Excited, 1=Not excited if the "C-ON logic configuration" parameter is 1	_	Operation
23h	Preset position					
2011						

 $\ast\,$ This command is used when an encoder is connected.

Command No.	Command name	WRITE/ READ	Mode	Data area	Initial value	Туре
25h	Clear alarm records					
26h	Clear warning records	W		1: Execute	_	Maintenance
27h	Clear communication error records					
32h	Remote output	W/R		0: OFF (photocoupler un-energized)1: ON (photocoupler energized)	0	Operation
35h	Remaining dwell time		0	0 to 50000 (1=0.001 s)		
36h	Display selection data number		Ū	00h to 3Fh (0 to 63)		
37h	Display operation data number					
39h	I/O status	R	R	0: OFF (photocoupler un-energized) 1: ON (photocoupler energized)	-	Monitor
3Ch	Driver status					
3Dh	Communication error record			-		
3Eh	Alarm record		0 to 10	-		
3Fh	Warning record					
40h	Operating current			5 to 100 (%)	100	
41h	Standstill current			5 to 50 (%)	50	
43h	Motor rotation direction	W/R		0: +direction=CCW 1: +direction=CW	1	Parameter
44h	Motor step angle			0 to 15	0	
48h	Batch NV memory write		0			
49h	Batch all data initialization	W		1: Execute	-	Maintenanc
4Ah	Batch NV memory read					
4Bh	Encoder electronic gear A *			1 to 250,000	500	
4Ch	Encoder electronic gear B *			1 to 250,000	500	Parameter
80h	Starting speed	W/R		1 to 500,000 (Hz)	100	
82h	Acceleration rate	W/N		0.001 to 1000.000 (ms/kHz)	30.000	Onention
83h	Deceleration rate		1 to 63	0.001 10 1000.000 (IIIs/KHZ)	30.000	Operation data
88h	Operating speed			1 to 500,000 (Hz)	1000	
8Bh	Command speed	R		-500,000 to 500,000 (Hz)	_	Monitor
8Dh	Acceleration (deceleration) rate type			0: Common 1: Separate	0	
8Eh	Common acceleration rate			1 to 1,000,000	30.000	
8Fh	Common deceleration rate			(1=0.001 ms/kHz)	00.000	
90h	Jog starting speed			1 to 500,000 (Hz)	100	
91h	Jog acceleration (deceleration) rate			0.001 to 1000.000 (ms/kHz)	30.000	
92h	Jog operating speed				1000	
93h	Starting speed of home- seeking		0	1 to 500,000 (Hz)	100	Parameter
94h	Acceleration (deceleration) rate of home-seeking	W/R		0.001 to 1000.000 (ms/kHz)	30.000	
95h	Operating speed of home- seeking			1 to 500,000 (Hz)	1000	
98h	HOME/FWD/RVS input mode					
99h	START input mode			0: RS-485 communication	1	
9Ah	I/O STOP input			1: I/O		
9Bh	Motor excitation mode					
9Ch	Data No. input mode					
A0h	Position		1 to 63	-8,388,608 to +8,388,607 (step)	0	Operation data

 $\ast\,$ This command is used when an encoder is connected.

Command No.	Command name	WRITE/ READ	Mode	Data area	Initial value	Туре
A1h	Command position	-		-2,147,483,648 to		
A2h	Encoder counter *	R		+2,147,483,647 (step)	-	Monitor
A3h	Encoder counter preset value *					
A4h	Preset position					
A5h	Area 1			-8,388,608 to +8,388,607 (step)	0	
A6h	Area 2					
A8h	Position offset of home- seeking					
A9h	Starting direction of home- seeking			0: Negative direction 1: Positive direction	1	
AAh	SLIT detection with home- seeking			0: Disable 1: Enable	0	
ABh	TIM signal detection with home-seeking			0: Disable 1: Enable (TIM) 2: Enable (ZSG) *	0	
ACh	Backward steps in 2-sensor mode home-seeking			0 to 32767 (step)	200	
B1h	Overvoltage warning		0	250 to 350 (1=0.1 V)	310	
B2h	Overheat warning	W/R		40 to 85 (°C) [104 to 185 °F]	85	Parameter
B7h	Software overtravel			0: Disable 1: Enable	1	
B8h	Positive software limit			0.200.000 to 10.200.007 atom	8,388,607	
B9h	Negative software limit			-8,388,608 to +8,388,607 step	-8,388,608	
BAh	Hardware overtravel detection			0: Disable 1: Enable	1	
BBh	Stepout detection band *			1 to 3600 (1=0.1 deg)	72	
BCh	Stepout detection action *			0: No action (alarm/warning not present) 1: Warning 2: Alarm	0	
BDh	Stepout detection *			0: Disable 1: Enable	0	
CAh	Display mode of the data setter speed			0: Signed 1: Absolute	0	
CBh	The data setter editing mode			0: Disable 1: Enable	1	

* This command is used when an encoder is connected.

Setting range of the OUT signal mode selection parameter

5: AREA	8: WNG	11: R-OUT1	14: O.H.
6: TIM	9: HOME-P	12: R-OUT2	15: R-OUT3
7: READY	10: ZSG *	13: STEPOUT *	16: R-OUT4

* This signal is used when an encoder is connected.

2.10 Command types

Note Data set via RS-485 communication is stored in the driver's RAM. The data saved in the RAM will be erased once the power is turned off. To retain the data in the RAM, write it to the NV memory. For details, refer to the "batch NV memory write" command (p.198).

Operation data

These commands are used to WRITE/READ operation data. They can also be set using the **OPX-2A** or **MEXE02**. If the value set in a WRITE command is outside the setting range for the applicable command, the frame will be discarded and NACK will be returned.

If data is written under any of the following conditions, the command execution will fail. Accordingly, the frame will be discarded and NACK will be returned. If data is read under any of these conditions, an incorrect value may be read. For these reasons, do not write or read data under these conditions.

- An EEPROM error alarm was present.
- The **OPX-2A** is currently connected in a mode other than the monitor mode.
- Downloading or initialization is currently in progress via the MEXEO2.
- Internal processing was in progress. (S-BSY is ON.)

Parameter

These commands are used to WRITE/READ parameter. They can also be set using the OPX-2A or MEXE02. If the value set in a WRITE command is outside the setting range for the applicable command, the frame will be discarded and NACK will be returned.

If data is written under any of the following conditions, the command execution will fail. Accordingly, the frame will be discarded and NACK will be returned. If data is read under any of these conditions, an incorrect value may be read. For these reasons, do not write or read data under these conditions.

- An EEPROM error alarm was present.
- The **OPX-2A** is currently connected in a mode other than the monitor mode.
- Downloading or initialization is currently in progress via the **MEXEO2**.
- Internal processing was in progress. (S-BSY is ON.)

Maintenance

These commands are used to clear alarm or warning records or perform batch processing of the NV memory. When a maintenance command is executed, the internal process in-progress bit (S-BSY) will turn ON.

If data is written under any of the following conditions, the command execution will fail. Accordingly, the frame will be discarded and NACK will be returned. (However, this does not apply to the "communication error record clear" command.)

- An EEPROM error alarm was present. (The "batch NV memory initialization" command can be executed in this condition.)
- The **OPX-2A** is currently connected in a mode other than the monitor mode.
- Downloading or initialization is currently in progress via the MEXEO2.
- Internal processing was in progress. (S-BSY is ON.)

Operation

These commands specify operations. The setting will be reflected immediately after the reception analysis.

Monitor

These commands are used to monitor the current speed, position, I/O status, etc. After the reception analysis, the applicable status will be returned.

Special

Set group send. The setting will be reflected immediately after the reception analysis.

2.11 Command details

No action (00h)

Description	Use this command if you don't want to process any command.
Action entry	READ (If WRITE is specified, the "Data number selection" command will be executed.)
Mode	00h
Data area	The data area values will be ignored. The same value as the data sent from the master will be returned.
Туре	Operation command

■ Data number selection (00h)

Description	Selects operation data No. for positioning operation or continuous operation.		
Action entry	WRITE (If READ is specified, the "No action" command will be executed.)		
Mode	00h to 3Fh (0 to 63) Specifies the operation data number. Since the operation data number is refreshed by the "data number selection" command, it will be retained until the next "data number selection" command is set.		
Data area	The data area values will be ignored.		
Туре	Operation command		

Receive period (01h)

Description	Set the receive period for RS-485 communication.			
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	0: Not monitored 1 to 999: 0.01: 9.99 sec. (1 = 0.01 sec.)	Initial value	0	

Note Set the receive period to "receive monitoring (T3) × 2 + response interval (T2) + send interval (T4)" or more. If this formula is not satisfied, a communication timeout error may occur during communication.

Response interval (02h)

Description	Sets the response period for RS-485 communication.		
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	0 to 1000 (ms) If 0 ms is set, sending will start immediately.	Initial value	50

Receive monitor period (03h)

Description	Sets the receive monitor period for RS-485 communication.		
Action entry	WRITE: The setting will become effective immediately after valid da READ	ta has been re	ceived.
Туре	Parameter command	Mode	00h
Data area	1 to 999: 0.01: 9.99 sec. (1 = 0.01 sec.)	Initial value	10

OUT1 to 4 signal mode selection (04h to 07h)

Description	Sets the function assigned to the OUT1 to OUT4 output.					
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ					
Туре	Parameter c	ommand			Mode	00h
Data area	5:AREA 6:TIM 7:READY	8:WNG 9:HOME-P 10:ZSG *	11:R-OUT1 12:R-OUT2 13:STEPOUT *	14:O.H. 15:R-OUT3 16:R-OUT4	Initial value	OUT1: 5 OUT2: 7 OUT3: 8 OUT4: 9

* These signals are used when an encoder is connected.

■ HOME/P-PRESET input mode (08h)

Description	Sets whether to use HOME or P-PRESET input.		
Action entry	WRITE: The setting will become effective immediately after valid da READ	ata has been re	ceived.
Туре	Parameter command	Mode	00h
Data area	0: HOME 1: P-PRESET	Initial value	0

■ Group operation (0Bh)

Description	Use this command for group send. This command sets whether to enable or disable operation specifications and operation commands sent to each unit.		
Action entry	WRITE/READ		
Туре	Special command	Mode	00h
Data area	0: Disable 1: Enable See table below.	Initial value	1

Cotting	Command to individual unit		Command to group	
Setting	Action entry	Operation command	Action entry	Operation command
0 (disable)	×	×	0	0
1 (enable)	0	0	0	0

Note

The specified group operation is not saved in the NV memory, and therefore the initial value will be restored once the power is cut off.

Group (0Ch)

Description	Specifies the group to be used in group send.		
Action entry	WRITE/READ		
Туре	Special command	Mode	00h
Data area	 -1: Individual send (Do not perform group send) 0 to 31: Specify a group. 	Initial value	-1

Note The specified group operation is not saved in the NV memory, and therefore the initial value will be restored once the power is cut off.

Communication timeout action (0Dh)

Description	Sets how to stop the motor when a communication timeout occurs.			
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	0: Immediate stop 1: Decelerate stop	Initial value	1	

Dwell time (0Eh)

Description	Set the dwell time to be used in linked-motion operation 2.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Operation data command	Mode	01h to 3Fh (1 to 63)
Data area	0 to 50000 (1=0.001 s)	Initial value	0

Sequential positioning (0Fh)

Description	Sets enable or disable sequential positioning operation.				
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ				
Туре	Operation data command	Mode	01h to 3Fh (1 to 63)		
Data area	0: Disable 1: Enable	Initial value	0		

Positioning mode (10h)

Description	Selects how to specify the position (travel amount) in positioning operation (absolute mode or incremental mode).			
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ			
Туре	Operation data command	Mode	01h to 3Fh (1 to 63)	
Data area	0: INC 1: ABS	Initial value	0	

Operating mode (11h)

Description	Sets perform positioning operation as single-motion or linked-motion operation.			
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ			
Туре	Operation data command	Mode	01h to 3Fh (1 to 63)	
Data area	0: Single 1: Link 2: Link2	Initial value	0	

■ Home-seeking mode (12h)

Description	Set the mode for return-to-home operation.		
Action entry	WRITE: Set this before the operation is started. The setting will be after valid data has been received. READ	come effective i	mmediately
Туре	Parameter command	Mode	00h
Data area	0: 2 sensors 1: 3 sensors	Initial value	1

■ STOP action (13h)

Description	Sets how the motor should stop when a STOP input is turned ON.			
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	0: Immediate stop 1: Decelerate stop 2: Immediate stop & Current OFF 3: Decelerate stop & Current OFF	Initial value	1	

■ Overtravel action (14h)

Description	Sets the motor action to take place upon the occurrence of overtravel.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	0: Immediate stop 1: Decelerate stop	Initial value	0

■ LS contact configuration (1Ah)

Description	Sets the ±LS input logics.		
Action entry	on entry WRITE: The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	0: Make (N.O.) 1: Brake (N.C.)	Initial value	0

■ HOMES contact configuration (1Bh)

Description	Sets the HOMES input logic.		
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	0: Make (N.O.) 1: Brake (N.C.)	Initial value	0

■ SLIT contact configuration (1Ch)

Description	Sets the SLIT input logic.		
Action entry	WRITE: The setting will become effective immediately after valid da READ	ita has been re	ceived.
Туре	Parameter command	Mode	00h
Data area	0: Make (N.O.) 1: Brake (N.C.)	Initial value	0

STOP contact configuration (1Dh)

Description	Sets the STOP input logic.		
Action entry	WRITE: The setting will become effective immediately after valid da READ	ata has been re	ceived.
Туре	Parameter command	Mode	00h
Data area	0: Make (N.O.) 1: Brake (N.C.)	Initial value	1

■ AWO contact configuration (1Eh)

Description	Sets the AWO input logic.		
Action entry	WRITE: The setting will become effective immediately after valid da READ	ta has been re	ceived.
Туре	Parameter command	Mode	00h
Data area	0: Make (N.O.) 1: Brake (N.C.)	Initial value	0

■ C-ON logic configuration (1Fh)

Description	Sets the "excitation control" command logic for RS-485 communication.			
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	0: 0=Not excited, 1=Excited 1: 0=Excited, 1=Not excited	Initial value	0	

■ Clear counter (20h)

Description	Clears the command position and encoder counter to 0. This command also clears the internal deviation of the driver. You can recover from a deviation error by executing the clear counter command.				
Action entry	WRITE				
Туре	Operation command	Mode	00h		
Data area	The data area values will be ignored.				

Note Perform a counter clear while the motor is stopped.

Reset alarms (21h)

Description	Resets the alarms that are present.		
Action entry	WRITE		
Туре	Operation command	Mode	00h
Data area	The data area values will be ignored.		

Excitation control (22h)

Description	Switches the motor excitation condition between excitation and non-excitation.					
Action entry	WRITE					
Туре	Operation command Mode 00h					
Data area	The excitation condition of the motor at the power ON varies depen configuration" parameter. See table below.	ding on the "C-	ON logic			

"C-ON logic configuration"	"Excitation control" command		
parameter	0	1	
0	Not excitation	Excitation	
1	Excitation	Not excitation	

Preset position (23h)

Description	Presets the command position as the value of the "preset position" parameter.				
Action entry	WRITE				
Туре	Operation command	Mode	00h		
Data area	The data area values will be ignored.				

Note Perform a preset position while the motor is stopped.

Preset encoder counter (24h)

Description	Presets the encoder counter value as the value of the "encoder cou	unter preset val	ue" parameter.
Action entry	WRITE		
Туре	Operation command	Mode	00h
Data area	The data area values will be ignored.		

NotePerform a preset encoder counter while the motor is stopped.This parameter is used when an encoder is connected.

Clear alarm records (25h)

Description	Clears alarm records.		
Action entry	WRITE		
Туре	Maintenance command	Mode	00h
Data area	1: Execute		

■ Clear warning records (26h)

Description	Clears warning records.		
Action entry	WRITE		
Туре	Maintenance command	Mode	00h
Data area	1: Execute		

Clear communication error records (27h)

Description	Clears the communication error records.				
Action entry	WRITE				
Туре	Maintenance command	Mode	00h		
Data area	1: Execute				

Remote output (32h)

Description	Sets ON/OFF of the R-OUT1 to R-OUT4 output. Data 1 in the data area is assigned as shown in the table below. See table below.								
Action entry	WRITE/RE	WRITE/READ							
Туре	Operation	Operation command Mode 00h							
Data area	0: OFF (photocoupler un-energized) 1: ON (photocoupler energized)					Initial value	e 0		
	bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0								
	0 0 0 0 R-OUT4 R-OUT3 R-OUT2 R-OUT1								-

Remaining dwell time (35h)

Description	Monitors how much of the dwell time used in the linked-motion operation 2 remains.				
Action entry	READ				
Туре	Monitor command	Mode	00h		
Data area	0 to 50000 (1=0.001 s)				

■ Display selection data number (36h)

Description	Monitors the operation data number currently selected.				
Action entry	READ				
Туре	Monitor command	Mode	00h		
Data area	00h to 3Fh (0 to 63)				

Display operation data number (37h)

Description	Monitors the operation data number used in the positioning operation currently in progress. This command can be used in a linked-motion operation and sequential positioning operation. While the motor is stopped, the last used operation data number is indicated.					
Action entry	READ					
Туре	Monitor command	Mode	00h			
Data area	00h to 3Fh (0 to 63) While the motor is stopped, the last executed data number will be	read.				

■ I/O status (39h)

Description	Monitors the each I/O signal (CN2) of the driver. Data 1 to 4 in the data area is assigned as shown in the table below.			
Action entry	READ			
Туре	Monitor command	Mode	00h	
Data area	0: OFF (photocoupler un-energized) 1: ON (photocoupler energized)			

Assignment table for data 1 to 4

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Data 1	0	0	M5	M4	М3	M2	M1	M0
Data 2	0	RVS	FWD	HOME	STOP	AWO	ALM-RST	START
Data 3	0	0	0	0	SLIT	HOMES	-LS	+LS
Data 4	0	0	OUT4	OUT3	OUT2	OUT1	ALM	MOVE

Driver status (3Ch)

Description	Monitors the driver status. Data 1 to 4 in the data area is assigned as shown in the table below.				
Action entry	READ				
Туре	Monitor command	Mode	00h		
Data area	See table next.	• •			

• Assignment table for data 1 to 4

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Data 1	ENABLE	ALM	AREA	S-BSY	READY	HOME-P	0	MOVE
Data 2	START_R	O.H.	HOMES	SLIT	-LS	+LS	STEPOUT	WNG
Data 3	ZSG	TIM	M5_R	M4_R	M3_R	M2_R	M1_R	M0_R
Data 4	ALMCD							

• Details of data being read

	0	
Signal	Data	Description
MOVE	1: Motor operating	The motor is operating.
HOME-P	1: Return-to-home complete	Return-to-home has completed. It can be used as a home-seeking completion signal.
READY	1: Ready	The motor can be operated.
S-BSY	1: Internal processing in progress	Internal processing is in progress via RS-485 communication.
AREA	1: Inside area	The motor output shaft is inside the specified range.
ALM	1: Alarm present	An alarm is present.
ENABLE	1: Motor excited	The motor excitation command is effective.
WNG	1: Warning present	A warning is present
STEPOUT	1: Deviation error present	The step deviation is abnormal.
+LS	1: +Limit sensor signal being detected	The I/O +LS signal is being input.
-LS	1: -Limit sensor signal being detected	The I/O -LS signal is being input.
SLIT	1: Slit sensor signal being detected	The I/O SLIT signal is being input.
HOMES	1: Mechanical home sensor signal being detected	The I/O HOMES signal is being input.
O.H.	1: Overheat warning present	An overheat warning is present
START_R	1: START=ON	Indicates the status of START. *
M0_R to M5_R	Operation data number (00h to 3Fh)	Selected data number *
TIM	1:TIM being detected	The motor is excited. "1" will be read if the motor is at its excitation home.
ZSG	1: ZSG being detected	The encoder input corresponds to Z-phase.
ALMCD	Alarm code	The alarm code corresponding to the alarm currently present.

* START and M0 to M5 can be turned ON/OFF via I/O or RS-485 communication. If these signals are controlled via I/ O, the I/O-controlled ON/OFF status is returned. If the signals are controlled via RS-485 communication, the RS-485communication-controlled ON/OFF status is returned. I/O control is selected as the default prior to shipment.

Communication error record (3Dh)

Description	You can use this command to check the communication errors that have occurred in the past.
Action entry	READ
Туре	Monitor command
Mode	0: Specify the communication error pertaining to the last received frame.1 to 10: Specify communication error records 1 to 10. Specify 1 for the latest record.
Data area	The communication error code is stored under data 1 in the data area.

■ Alarm record (3Eh)

Description	You can use this command to check the alarms that are present and alarms that have occurred in the past.
Action entry	READ
Туре	Monitor command
Mode	0: Specify the alarm currently present.1 to 10: Specify alarm records 1 to 10. Specify 1 for the latest record.
Data area	The alarm code is stored under data 1 in the data area.

■ Warning record (3Fh)

Description	You can use this command to check the warnings that are present and warnings that have occurred in the past.
Action entry	READ
Туре	Monitor command
Mode	0: Specify the warning currently present. 1 to 10: Specify warning records 1 to 10. Specify 1 for the latest record.
Data area	The warning code is stored under data 1 in the data area.

Operating current (40h)

Description	Sets the motor operating current based on the rated current being 100%.			
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	5 to 100 (%)	Initial value	100	

Note Decrease the operating current and standstill current when there is excess margin in the motor torque and you wish to reduce vibration during operation or suppress heat generation from the motor. However, be careful of an excessive decrease in current, since the motor torque and holding brake force will drop in rough proportion to the operating current.

Standstill current (41h)

Description	Sets the motor standstill current as a percentage of the rated current, based on the rated current being 100%.			
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	5 to 50 (%)	Initial value	50	

Note Decrease the operating current and standstill current when there is excess margin in the motor torque and you wish to reduce vibration during operation or suppress heat generation from the motor. However, be careful of an excessive decrease in current, since the motor torque and holding brake force will drop in rough proportion to the operating current.

The standstill current is the rated current (100%) multiplied by the standstill current ratio.

Motor rotation direction (43h)

Description	Sets the rotation direction of motor output shaft.		
Action entry	WRITE: This setting will become effective after the "batch NV mem executed and the power is cycled. READ	ory write" com	mand is
Туре	Parameter command	Mode	00h
Data area	0: +direction=CCW 1: +direction=CW	Initial value	1

Motor step angle (44h)

Description	Sets the motor step angle.		
Action entry	WRITE: This setting will become effective after the "batch NV mem executed and the power is cycled. READ	ory write" com	mand is
Туре	Parameter command	Mode	00h
Data area	See table below.	Initial value	0

• Motor step angle: If the base step angle of the motor is 0.72°
--

Setting	Step angle	Number of divisions		Setting	Step angle	Number of divisions
0	0.72°	1	-	8	0.0288°	25
1	0.36°	2		9	0.018°	40
2	0.288°	2.5		10	0.0144°	50
3	0.18°	4	-	11	0.009°	80
4	0.144°	5	-	12	0.0072°	100
5	0.09°	8	-	13	0.00576°	125
6	0.072°	10		14	0.0036°	200
7	0.036°	20		15	0.00288°	250

Motor step angle: If the base step angle of the motor is 0.36°

Setting	Step angle	Number of divisions	Setting	Step angle	Number of divisions
0	0.36°	1	8	0.0144°	25
1	0.18°	2	9	0.009°	40
2	0.144°	2.5	10	0.0072°	50
3	0.09°	4	11	0.0045°	80
4	0.072°	5	12	0.0036°	100
5	0.045°	8	13	0.0028°	125
6	0.036°	10	14	0.0018°	200
7	0.018°	20	15	0.00144°	250

- Note
 Step angles are theoretical values.
 With the geared type, the value of "step angle/gear ratio" becomes the actual step angle.
 The base step angle is 0.36° for high-resolution type motors.

Batch NV memory write (48h)

Description	Writes the operation data and parameters saved in the RAM, to the NV memory.			
Action entry	WRITE			
Туре	Maintenance command	Mode	00h	
Data area	1: Execute			

Note
Perform the batch NV memory write while the motor is stopped.
The NV memory can be rewritten 100,000 times.

Batch all data initialization (49h)

Description	Resets the operation data and parameters saved in the RAM and NV memory, to their defaults. Note that the following parameters are not initialized; Communication axis number, communication protocol, communication parity, communication stop bit and transmission waiting time				
Action entry	WRITE				
Туре	Maintenance command	Mode	00h		
Data area	1: Execute				

Note
Perform the batch NV memory initialization while the motor is stopped.
The NV memory can be rewritten 100,000 times.

Batch NV memory read (4Ah)

Description	Reads the operation data and parameters saved in the RAM, to the NV memory. All operation data and parameters currently saved in the RAM will be overwritten by the corresponding data and parameters read from the NV memory.			
Action entry	WRITE			
Туре	Maintenance command	Mode	00h	
Data area	1: Execute			

Note Perform the batch NV memory read while the motor is stopped.

■ Encoder electronic gear A (4Bh)

Description	Sets the encoder electronic gear A. This parameter is used in the misstep detection function. It does not affect the encoder counter value. See p.81 for details.			
Action entry	WRITE: This setting will become effective after the "batch NV memory write" command is executed and the power is cycled. READ			
Туре	Parameter command	Mode	00h	
Data area	1 to 250,000	Initial value	500	

Note This command is used when an encoder is connected.

■ Encoder electronic gear B (4Ch)

Description	Sets the encoder electronic gear B. This parameter is used in the misstep detection function. It does not affect the encoder counter value. See p.81 for details.				
Action entry	WRITE: This setting will become effective after the "batch NV memory write" command is executed and the power is cycled. READ				
Туре	Parameter command	Mode	00h		
Data area	1 to 250,000	Initial value	500		

Note This command is used when an encoder is connected.

■ Starting speed (80h)

Description	Sets the starting speed in positioning operation and continuous operation.			
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	1 to 500,000 (Hz)	Initial value	100	

■ Acceleration rate (82h)

Sets the acceleration rate in positioning operation and continuous operation. The acceleration rate can be set as follows using the "acceleration (deceleration) rate type parameter: Separate: The acceleration rate set under the applicable operation data number will be follows					
	Common: The setting of the "common acceleration rate" parameter will be followed.				
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ				
Туре	Operation data command	Mode	01h to 3Fh (1 to 63)		
Data area	0.001 to 1000.000 (ms/kHz)	Initial value	30.000		

Deceleration rate (83h)

Description	Sets the deceleration rate in positioning operation and continuous operation. The deceleration rate can be set as follows using the "acceleration (deceleration) rate type" parameter: Separate: The deceleration rate set under the applicable operation data number will be followed. Common: The setting of the "common deceleration rate" parameter will be followed.				
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ				
Туре	Operation data command	Mode	01h to 3Fh (1 to 63)		
Data area	0.001 to 1000.000 (ms/kHz)	Initial value	30.000		

Operating speed (88h)

Description	Sets the operating speed in positioning operation and continuous operation.			
Action entry	WRITE: In positioning operation, set this before the operat immediately after valid data has been received. In continuous operation, the setting will become et received. The speed will change while continuous READ	ffective immediately afte	er valid data has been	
Туре	Operation data command	Mode	01h to 3Fh (1 to 63)	
Data area	1 to 500,000 (Hz)	Initial value	1000	

■ Command speed (8Bh)

Description	Monitors the current command speed.		
Action entry	READ		
Туре	Monitor command	Mode	00h
Data area	-500,000 to 500,000 (Hz) A positive value indicates the forward direction, while a negative va direction.	lue indicates a	reverse

■ Acceleration (deceleration) rate type (8Dh)

Description	Sets whether to use the common acceleration/ deceleration rate or rate specified for the operation data.	the acceleratio	n/deceleration
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	0: Common 1: Separate	Initial value	0

■ Common acceleration rate (8Eh)

Description	Sets the common acceleration rate in positioning operation and continuous operation. The acceleration rate can be set as follows using the "acceleration (deceleration) rate type" parameter: Separate: The acceleration rate set under the applicable operation data number will be followed. Common: The setting of the "common acceleration rate" parameter will be followed.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	0.001 to 1000.000 (ms/kHz)	Initial value	30.000

■ Common deceleration rate (8Fh)

Description	Sets the common deceleration rate in positioning operation and con The deceleration rate can be set as follows using the "acceleration parameter:	(deceleration)	rate type"
	Separate: The deceleration rate set under the applicable operation data number will be followed. Common: The setting of the "common deceleration rate" parameter will be followed.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	0.001 to 1000.000 (ms/kHz)	Initial value	30.000

■ Jog starting speed (90h)

Description	Sets the starting speed for JOG operation.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	1 to 500,000 Hz	Initial value	100

■ Jog acceleration (deceleration) rate (91h)

Description	Sets the acceleration/deceleration rate for JOG operation.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	0.001 to 1000.000 (ms/kHz)	Initial value	30.000

■ Jog operating speed (92h)

Description	Sets the operating speed for JOG operation.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	1 to 500,000 Hz	Initial value	1000

■ Starting speed of home-seeking (93h)

Description	Sets the starting speed for return- to-home operation.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	1 to 500,000 Hz	Initial value	100

■ Acceleration (deceleration) rate of home-seeking (94h)

Description	Sets the acceleration/ deceleration rate for return-to-home operation.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	0.001 to 1000.000 (ms/kHz)	Initial value	30.000

Operating speed of home-seeking (95h)

Description	Sets the operating speed for return- to-home operation.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	1 to 500,000 Hz	Initial value	1000

■ HOME/FWD/RVS input mode (98h)

Description	Sets whether to input the HOME, FWD and RVS input signals via I/O or RS-485 communication.		
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	0: RS-485 communication 1: I/O	Initial value	1

■ START input mode (99h)

Description	Sets whether to input the START input signal via I/O or RS-485 communication.			
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	0: RS-485 communication 1: I/O	Initial value	1	

■ I/O STOP input (9Ah)

Description	Sets enable or disable STOP input of I/O.		
Action entry	WRITE: The setting will become effective immediately after valid da READ	ata has been re	ceived.
Туре	Parameter command	Mode	00h
Data area	0: Disable 1: Enable	Initial value	1

Motor excitation mode (9Bh)

Description	Sets whether to control the motor excitation via I/O or RS-485 communication.			
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	0: RS-485 communication 1: I/O	Initial value	1	

■ Data No. input mode (9Ch)

Description	Sets whether to input the M0 to M5 input signals via I/O or RS-485 communication.			
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	0: RS-485 communication 1: I/O	Initial value	1	

Position (A0h)

Description	Sets the position (distance) for positioning operation.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Operation data command	Mode	01h to 3Fh (1 to 63)
Data area	-8,388,608 to +8,388,607 (step)	Initial value	0

Command position (A1h)

Description	Monitors the command position of the driver.		
Action entry	READ		
Туре	Monitor command	Mode	00h
Data area	-2,147,483,648 to +2,147,483,647 (step)		

Encoder counter (A2h)

Description	Monitors the encoder counter value.		
Action entry	READ		
Туре	Monitor command	Mode	00h
Data area	-2,147,483,648 to +2,147,483,647 (step)		

Note This command is used when an encoder is connected.

■ Encoder counter preset value (A3h)

Description	Sets the encoder counter preset value.		
Action entry	WRITE: The setting will become effective immediately after valid da READ	ata has been re	ceived.
Туре	Parameter command	Mode	00h
Data area	-8,388,608 to +8,388,607 (step)	Initial value	0

Note This command is used when an encoder is connected.

Preset position (A4h)

Description	Sets the preset position.		
Action entry	WRITE: The setting will become effective immediately after valid da READ	ta has been re	ceived.
Туре	Parameter command	Mode	00h
Data area	-8,388,608 to +8,388,607 (step)	Initial value	0

Area 1 (A5h)

Description	Sets the range for AREA output. The AREA output will be ON when the motor is inside the area set by the Area 1 and Area 2. WRITE: The setting will become effective immediately after valid data has been received. READ		
Action entry			
Туре	Parameter command	Mode	00h
Data area	-8,388,608 to +8,388,607 (step)	Initial value	0

Area 2 (A6h)

Description	Sets the range for AREA output. The AREA output will be ON when the motor is inside the area set by the Area 1 and Area 2.		
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	-8,388,608 to +8,388,607 (step)	Initial value	0

Position offset of home-seeking (A8h)

Description	Sets the amount of offset from mechanical home.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	-8,388,608 to +8,388,607 (step)	Initial value	0

■ Starting direction of home-seeking (A9h)

Description	Sets the starting direction for home detection.		
Action entry	WRITE: Set this before the operation is started. The setting will be after valid data has been received. READ	come effective i	mmediately
Туре	Parameter command	Mode	00h
Data area	0: Negative direction 1: Positive direction	Initial value	1

■ SLIT detection with home-seeking (AAh)

Description	Sets whether or not to concurrently use the SLIT input for return-to-home operation.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	0: Disable 1: Enable	Initial value	0

■ TIM signal detection with home-seeking (ABh)

Description	Sets whether or not to concurrently use the TIM (ZSG) output for return-to-home operation.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	0: Disable 1: Enable (TIM) 2: Enable (ZSG) *	Initial value	0

* This signal is used when an encoder is connected.

Backward steps in 2-sensor mode home-seeking (ACh)

Description	Sets the travel amount after the motor pulls off of the LS sensor in 2-sensor return-to-home operation.		
Action entry	WRITE: Set this before the operation is started. The setting will be after valid data has been received. READ	come effective i	mmediately
Туре	Parameter command	Mode	00h
Data area	0 to 32767 (step)	Initial value	200

Overvoltage warning (B1h)

Description	Sets the voltage at which an overvoltage warning generates.		
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	250 to 350 (1=0.1 V)	Initial value	310

Overheat warning (B2h)

Description	Sets the temperature at which an overheat warning generates.		
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	40 to 85 (°C)	Initial value	85

■ Software overtravel (B7h)

Description	Sets whether to enable or disable software overtravel detection using soft limits.			
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	0: Disable 1: Enable	Initial value	1	

Positive software limit (B8h)

Description	Sets the value of the soft limit in + direction.		
Action entry	WRITE: Set this before the operation is started. The setting will becafter valid data has been received. READ	ome effective i	mmediately
Туре	Parameter command	Mode	00h
Data area	-8,388,608 to +8,388,607 (step)	Initial value	8,388,607

■ Negative software limit (B9h)

Description	Sets the value of the soft limit in – direction.		
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	-8,388,608 to +8,388,607 (step)	Initial value	-8,388,608

■ Hardware overtravel detection (BAh)

Description	Sets whether to enable or disable hardware overtravel detection using LS inputs.			
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	0: Disable 1: Enable	Initial value	1	

Stepout detection band (BBh)

Description	Sets the judgment condition for misstep detection using the deviation (angle) between the command position and encoder counter value. See p.81 for misstep detection.		
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command	Mode	00h
Data area	1 to 3600 (1=0.1 deg)	Initial value	72

Note
This command is used when an encoder is connected.
To use misstep detection, set the "stepout detection" parameter to "enable".

Stepout detection action (BCh)

Description	Sets the operation to be performed when the deviation between the command position and encoder counter value reaches the stepout detection band. See p.81 for misstep detection.			
Action entry	WRITE: Set this before the operation is started. The setting will become effective immediately after valid data has been received. READ			
Туре	Parameter command	Mode	00h	
Data area	0: No action (alarm/warning not present) 1: Warning 2: Alarm	Initial value	0	

Note • This command is used when an encoder is connected.

• To use misstep detection, set the "stepout detection" parameter to "enable".

Stepout detection (BDh)

Description	Sets whether to enable or disable the misstep detection function. See p.81 for misstep detection.			
Action entry	WRITE: This setting will become effective after the "batch NV memory write" command is executed and the power is cycled. READ			
Туре	Parameter command Mode 00h			
Data area	0: Disable 1: Enable	Initial value	0	

Note This command is used when an encoder is connected.

Display mode of the data setter speed (CAh)

Description	Sets the display method of monitored speed in the data setter		
Action entry	WRITE: The setting will become effective immediately after valid data has been received. READ		
Туре	Parameter command Mode 00h		00h
Data area	0: Signed 1: Absolute	Initial value	0

■ The data setter editing mode (CBh)

Description	Sets whether to enable editing by the data setter when the power is turned on.		
Action entry	WRITE/READ		
Туре	Parameter command	Mode	00h
Data area	0: Disable 1: Enable	Initial value	1

2.12 Simultaneous send

One frame can be sent to all slaves connected to the master. The slaves do not respond in the case of simultaneous send.

The operation specifications and commands that can be sent via simultaneous send are limited. The invalid operation specifications and commands are ignored.

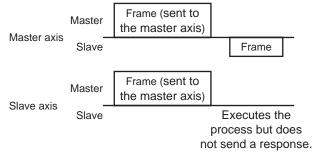
Operation specifications that can be executed via simultaneous send

Operation specifications	Description
STOP	Stop command
RVS	Continuous operation in reverse direction
FWD	Continuous operation in forward direction
START	Positioning operation

Commands that can be executed via simultaneous send

Command No.	Command execution		Description	
Command No.	READ	WRITE	Description	
00h			Data number selection	
20h			Clear counter	
21h			Reset alarms	
22h	Impossible	ssible Possible	Excitation control	
23h			Preset position	
24h			Preset encoder counter	
32h			Remote output	

2.13 Group send


A frame is sent simultaneously to all of the slaves comprising one group.

Group composition

Each group consists of one master axis and one or more slave axes, and only the master axis returns a response.

· Group axis number

To perform a group send, set a group axis number to the slave axes to be included in the group. The slave axes to which the group axis number has been set can receive a frame sent to the master axis. Accordingly, you can send a frame to all of the master and slave axes in the group by sending it to the master axis only.

Master axis

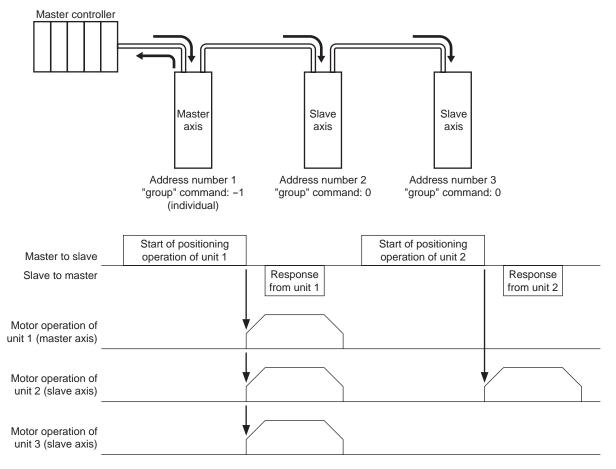
No special setting is required on the master axis to perform a group send. The axis number of the master axis becomes the group axis number. When a command is sent to the master axis from the master, the master axis executes the requested process and then returns a response.

Slave axis

Use a "group" command to set a group axis number to each slave axis.

The master axis is not always required, and a group may consist only of slave axes if no response is required. In this case, set an available axis number for the group. When a frame is sent from the master to this axis number, the frame is sent to all members of the group simultaneously.

Operation specifications that can be executed via group send


Operation specifications	Description
STOP	Stop command
HOME	Return-to-home operation
RVS	Continuous operation in reverse direction
FWD	Continuous operation in forward direction
START	Positioning operation

8 Appendix

Commands that can be executed via group send

Command No.	Command execution		Description	
Command No.	READ	WRITE	- Description	
00h			Data number selection	
20h			Clear counter	
21h	Impossible	mpossible Possible	Reset alarms	
22h			Excitation control	
23h			Preset position	
24h			Preset encoder counter	
32h			Remote output	

Example of group send

This operation assumes that the "group operation" parameter is set to "enable" (initial value). If this parameter is set to "disable", the slave axes will receive frames only via group send and thus the operation specifications and commands sent individually to a given unit will not be executed.

2.14 Detection of communication errors

This function detects abnormalities that may occur during RS-485 communication. The abnormalities that can be detected include communication errors, alarms and warnings.

Communication errors

If the frame is discarded due to a reception failure (NACK) or RS-485 communication error (84h), a communication error record will be saved in the RAM. You can check the communication errors using the "communication error record" command using the **MEXEO2** or via RS-485 communication.

Note The communication error record will be cleared once the driver power is turned off.

Type of communication error	Error code	Cause
RS-485 communication error	84h	One of the following errors was detected. A single error will generate a warning. If the error generates three times consecutively, an alarm will generate. • Framing error • Elapse of receive monitor period • Mismatched BCC • Invalid header
Command not yet defined	88h	 The command could not be executed for the following reasons: Insufficient operation specification (A system-reserved bit was set to 1.) Unknown mode (An undefined mode was specified.) Unknown command (An undefined command was specified.) WRITE failure (An invalid write command was specified.) READ failure (An invalid read command was specified.)
User interface 89h The command communication in progress 89h		 The command could not be executed because the user interface communication was in progress. The OPX-2A is currently connected in a mode other than the monitor mode. Downloading or initialization is currently in progress via the MEXE02.
Internal processing in progress	8Ah	The command could not be executed because the driver was processing the NV memory. • Internal processing was in progress. (S-BSY is ON.) • An EEPROM error alarm was present.
Outside setting range 8Ch		The command could not be executed because the data was outside the specified range.

Alarms and warnings

When an alarm generates, the ALM output will turn OFF and the motor will stop. At the same time, the ALARM LED will start blinking.

When a warning generates, the WNG output will turn ON. The motor will continue to operate. Once the cause of the warning is removed, the WNG output will turn OFF automatically.

Note You can also clear the warning records by turning off the driver power.

• RS-485 communication error (84h)

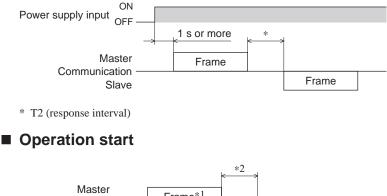
The table below shows the relationship between alarms and warnings when an RS-485 communication error occurs.

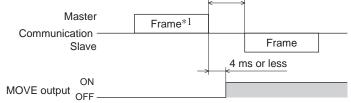
Type of error	Description		
Warning If a RS-485 communication error (84h) generates only once, a warning will generate. The warning will be reset automatically following a successful data reception.			
Alarm	An alarm generates when a RS-485 communication error (84h) has been detected consecutively by the number of times set in the "communication error alarm" parameter. While the alarm is present, RS-485 communication is cut off and the motor becomes unexcited.		

The causes of RS-485 communication error (84h) and remedial action taken by the slave are shown below.

Error Cause		Remedial action
Framing error	The stop bit is "0".	
Elapse of receive monitor period	Receive monitor period elapsed before the frame reception was completed.	The received frame will be destroyed and the slave wait for the next frame to
Mismatched BCC	The BCC did not match the calculated value.	be received.
Invalid header	An address number other than 0 was specified for simultaneous send.	

Note Even when a RS-485 communication error (84h) occurs, the slave does not send a reply. Accordingly, the master should perform an appropriate action such as resending the command. Before resending the command from the master, wait for at least T2 (response time)+T3 (receive monitoring). If the command is resent before the receive monitoring period elapses, the next frame may not be received properly.

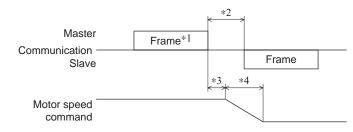

• RS-485 communication timeout (85h)


If communication is not established with the master device after an elapse of the time set by the "receive period" parameter, a RS-485 communication timeout alarm will generate.

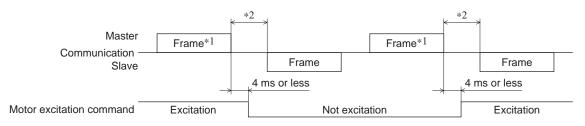
The motor stopping method can be set using the "communication timeout action" parameter.

2.15 Timing charts

Communication start

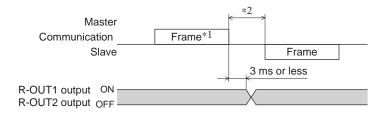


*1 Frame containing an operation specification (HOME, RVS, FWD or START)


*2 T2 (response interval)

Operation stop, speed change

- *1 Frame containing the operation specification STOP or "data number selection" command
- *2 T2 (response interval)
- *3 The specific time varies depending on the command speed.
- *4 The deceleration method to be applied at the time of stopping varies according to the value set by the "STOP action" command.


Excitation control

*1 Frame containing the "excitation control" command

*2 T2 (response interval)

Remote output

*1 Frame containing the "remote output" command

*2 T2 (response interval)

- Unauthorized reproduction or copying of all or part of this Operating Manual is prohibited. If a new copy is required to replace an original manual that has been damaged or lost, please contact your nearest Oriental Motor branch or sales office.
- Oriental Motor shall not be liable whatsoever for any problems relating to industrial property rights arising from use of any information, circuit, equipment or device provided or referenced in this manual.
- Characteristics, specifications and dimensions are subject to change without notice.
- While we make every effort to offer accurate information in the manual, we welcome your input. Should you find unclear descriptions, errors or omissions, please contact the nearest office.
- Orientalmotor and GLEX are registered trademark or trademark of Oriental Motor Co., Ltd., in Japan and other countries. Modbus is a registered trademark of the Schneider Automation Inc. CC-Link is a registered trademark of the CC-Link Partner Association. MECHATROLINK is a registered trademark of the MECHATROLINK Members Association. Other product names and company names mentioned in this manual may be registered trademarks or trademarks of their respective

companies and are hereby acknowledged. The third-party products mentioned in this manual are recommended products, and references to their names shall not be construed as any form of performance guarantee. Oriental Motor is not liable whatsoever for the performance of these third-party products.

© Copyright ORIENTAL MOTOR CO., LTD. 2010

• Please contact your nearest Oriental Motor office for further information.

ORIENTAL MOTOR (EUROPA) GmbH ORIENTAL MOTOR U.S.A. CORP. Technical Support Tel:(800)468-3982 Headquarters and Düsseldorf Office 8:30 A.M. to 5:00 P.M., P.S.T. (M-F) Tel:0211-52067-00 Fax:0211-52067-099 7:30 A.M. to 5:00 P.M., C.S.T. (M-F) Munich Office E-mail: techsupport@orientalmotor.com Tel:089-3181225-00 Fax:089-3181225-25 www.orientalmotor.com Hamburg Office Tel:040-76910443 Fax:040-76910445 ORIENTAL MOTOR (UK) LTD. Tel:01256-347090 Fax:01256-347099 **ORIENTAL MOTOR (FRANCE) SARL** Tel:01 47 86 97 50 Fax:01 47 82 45 16 ORIENTAL MOTOR ITALIA s.r.l. KOREA Tel:02-93906346 Fax:02-93906348

SHANGHAI ORIENTAL MOTOR CO., LTD. Tel:400-820-6516 Fax:021-6278-0269 TAIWAN ORIENTAL MOTOR CO., LTD. Tel:(02)8228-0707 Fax:(02)8228-0708 SINGAPORE ORIENTAL MOTOR PTE LTD Tel:+65-6745-7344 Fax:+65-6745-9405 ORIENTAL MOTOR (MALAYSIA) SDN. BHD. Tel:(03)22875778 Fax:(03)22875528 ORIENTAL MOTOR (THAILAND) CO., LTD. Tel:+66-2-251-1871 Fax:+66-2-251-1872 INA ORIENTAL MOTOR CO., LTD. Tel:080-777-2042 Fax:02-2026-5495 ORIENTAL MOTOR CO., LTD. Headquarters Tokyo, Japan Tel:03-6744-0361 Fax:03-5826-2576