Oriental motor

Brushless Motor and Driver Package

BLE Series

FLEX RS-485 communication type

USER MANUAL

Thank you for purchasing an Oriental Motor product.

This Operating Manual describes product handling procedures and safety precautions.

- Please read it thoroughly to ensure safe operation.
- Always keep the manual where it is readily available.

1 Entry

1	Operating Manuals for the BLE Series 6			
2	Intro	oduction	7	
3	Safe	Safety precautions8		
4	Precautions for use10			
5	System configuration12			
6	Preparation1			
	6.1	Checking the product	13	
	6.2	How to identify the product model	13	
	6.3	Combination tables	14	
	6.4	6.4 Names and functions of parts		

2 Installation and connection

1	Insta	Ilation20
	1.1	Installation location 20
	1.2	Installation overview 20
	1.3	Installing the combination type • parallel shaft gearhead
	1.4	Installing the round shaft type23
	1.5	Installing the combination type • hollow shaft flat gearhead
	1.6	Installing a load to the combination type • parallel gearhead or round shaft type25
	1.7	Installing a load to the combination type • hollow shaft flat gearhead
	1.8	Permissible radial load and permissible axial load
	1.9	Installing the driver29
	1.10	Installing the external potentiometer (supplied)
	1.11	Installing the regeneration unit (sold separately)30
2	Conr	nection
	2.1	Connection example
	2.1 2.2	Connection example
		•
	2.2	Connecting the power supply
	2.2 2.3	Connecting the power supply
	2.2 2.3 2.4	Connecting the power supply
	2.2 2.3 2.4 2.5	Connecting the power supply32Grounding32Connecting the motor and driver33Connecting the 24 VDC power supply34
	2.2 2.3 2.4 2.5 2.6	Connecting the power supply
	2.2 2.3 2.4 2.5 2.6 2.7	Connecting the power supply32Grounding32Connecting the motor and driver33Connecting the 24 VDC power supply34Selecting the input signal power supply34Connecting the I/O signals34
	2.2 2.3 2.4 2.5 2.6 2.7 2.8	Connecting the power supply32Grounding32Connecting the motor and driver33Connecting the 24 VDC power supply34Selecting the input signal power supply34Connecting the I/O signals34Connecting an external speed setter37
	2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Connecting the power supply32Grounding32Connecting the motor and driver33Connecting the 24 VDC power supply34Selecting the input signal power supply34Connecting the I/O signals34Connecting an external speed setter37Connecting the data setter38Connecting the RS-485 communication
	2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Connecting the power supply32Grounding32Connecting the motor and driver33Connecting the 24 VDC power supply34Selecting the input signal power supply34Connecting the I/O signals34Connecting an external speed setter37Connecting the data setter38Connecting the RS-485 communication38

Ехр	lanation of I/O signals44
3.1	Assignment of direct I/O 44
	Assignment to the input terminals44
	Changing the logic level setting of input
	signals45
	Assignment to the output terminals46
3.2	Assignment of network I/O 47
	Assignment of input signals47
	Assignment to the output terminals49
3.3	Input signals50
3.4	Output signals52
3.5	General signals (R0 to R15)53

3

3 Method of control via I/O

1	Guid	lance	. 56
2	Оре	ration data and parameter	. 58
	2.1	Operation data	58
	2.2	Parameter	59
		Parameter list	59
		Function parameter	60
		I/O function parameter	61
		■ I/O function parameter (RS-485)	62
		Analog adjust parameter	63
		Alarm/warning parameter	63
		Utilities parameter	63
		Operation parameter	64
		Communication parameter	65
3	Meth	od of control via I/O	. 66
	3.1	Operation data	66
	3.2	Setting the rotation speed	66
		Analog setting	66
		Digital setting	68
	3.3	Setting the acceleration time and deceleration time	68
		When setting the rotation speed with analog setting	68
		When setting the rotation speed with digital setting	68
	3.4	Setting the torque limiting	69
	3.5	Running/stopping the motor	70
		Operation	70
		Stop	70
		Rotation direction	70
	3.6	Example of operation pattern	71
	3.7	Multi-motor control	71
		Using an external potentiometer	71
		Using external DC voltage	72
		How to adjust the speed difference	72
	3.8	Multi-speed operation	73

4 Method of control via Modbus RTU (RS-485 communication)

1	Guid	ance	76	
2	Com	Communication specifications		
3	Setting the switches			
4		ng the RS-485 communication		
5		munication mode and		
Ŭ		munication timing		
	5.1	Communication mode		
	5.2	Communication timing		
6	Mess	sage		
•	6.1	Query		
	6.2	Response		
7	Fund	ction code		
•	7.1	Reading from a holding register(s)		
	7.2	Writing to a holding register		
	7.3	Diagnosis		
	7.4	Writing to multiple holding registers		
8	Regi	ster address list		
	8.1	Operation commands		
	8.2	Maintenance commands		
	8.3	Monitor commands		
	8.4	Parameter R/W commands		
		Operation data	98	
		User parameters	99	
9	Grou	ıp send	104	
10	Dete	ection of communication errors.	106	
	10.1	Communication errors	106	
	10.2	Alarms and warnings	106	
11	Timi	ing charts	107	

5 Method of control via industrial network

1.1	Guidance	110
1.2	Setting the switches	113
1.3	Remote register list	114
1.4	Assignment for remote I/O of 6 axes connection mode	114
	Assignment list of remote I/O	114
	Input/output of remote I/O	115
	Details of remote I/O assignment	116
1.5	Assignment for remote I/O of 12 axes	
	connection mode	117
	Assignment list of remote I/O	117

		Input/output of remote I/O	118	
		Details of remote I/O assignment	120	
2	2 Method of control via MECHATROLINK			
	com	munication	122	
	2.1	Guidance	122	
	2.2	Setting the switches	125	
	2.3	I/O field map for the NETC01-M2	126	
	2.4	I/O field map for the NETC01-M3		
	2.5	Communication format	128	
		Remote I/O input	128	
		Remote I/O output	128	
		Remote register input	128	
		Remote register output	129	
3	Deta	ails of remote I/O	130	
	3.1	Input signals to the driver	130	
	~ ~		404	
	3.2	Output signals from the driver		
4	•	Output signals from the driver		
4	•	nmand code list	132	
4	Con		 132 132	
4	Con 4.1	mmand code list Group function	 132 132 133	
4	Con 4.1 4.2	mand code list Group function Maintenance command Monitor command	 132 132 133 134	
4	Con 4.1 4.2 4.3	mmand code list Group function Maintenance command Monitor command Operation data	 132 132 133 134 135	
4	Con 4.1 4.2 4.3 4.4	mand code list Group function Maintenance command Monitor command	 132 132 133 134 135 135	
4	Con 4.1 4.2 4.3 4.4	mand code list Group function Maintenance command Monitor command Operation data User parameters	132 133 133 134 135 135 135	
4	Con 4.1 4.2 4.3 4.4	mand code list Group function Maintenance command Monitor command Operation data User parameters Function parameter	132 133 133 134 135 135 135 136 136	
4	Con 4.1 4.2 4.3 4.4	mmand code list Group function Maintenance command Monitor command Operation data User parameters Function parameter I/O function parameter	132 133 133 134 135 135 135 136 136 137	
4	Con 4.1 4.2 4.3 4.4	mmand code list Group function Maintenance command Monitor command Operation data User parameters Function parameter I/O function parameter (RS-485)	132 133 133 134 135 135 135 136 136 137 138	
4	Con 4.1 4.2 4.3 4.4	mmand code list Group function Maintenance command Monitor command Operation data User parameters Function parameter I/O function parameter (RS-485) Analog adjust parameter	132 133 133 134 135 135 135 136 136 136 137 138 138	
4	Con 4.1 4.2 4.3 4.4	mmand code list Group function Maintenance command Monitor command Operation data User parameters Function parameter I/O function parameter I/O function parameter (RS-485) Analog adjust parameter Alarm/warning parameter	132 133 133 134 135 135 135 136 136 137 138 138 138 138	

6 Inspection, troubleshooting and remedial actions

1	Maintenance and inspection142		
	1.1	Inspection	
	1.2	Warranty 142	
	1.3	Disposal142	
2	Aları	ms, warnings and	
	com	munication errors143	
	2.1	Alarms 143	
		Alarm reset143	
		Alarm records143	
		Alarm list144	
	2.2	Warnings 145	
		Warning list145	
		 Warning records145 	
	2.3	Communication errors 146	
		Communication error list146	
		Communication error records146	
3	Trou	bleshooting and remedial actions 147	

7 Reference

1	Specifications		150
	1.1	Specifications	150
	1.2	General specifications	152
	1.3	Dimension	152
2	Reg	ulations and standards	153
	2.1	UL Standards and CSA Standards	153
	2.2	CE Marking	153
	2.3	RoHS Directive	155
	2.4	Republic of Korea, Radio Waves Act	155
	2.5	Conformity to the EMC	156

8 Appendix

1	Accessories	(sold separately)	
		(**************************************	

2 Related products (sold separately) 161

1 Entry

This part explains the composition of the operating manuals, the product overview, specifications and safety standards as well as the name and function of each part and others.

Table of contents

1		erating Manuals for the Series6			
2	Intro	oduction7			
3	Safe	ety precautions8			
4	Precautions for use10				
5	System configuration12				
6	Preparation13				
	6.1	Checking the product 13			
	6.2	How to identify the product model13			
	6.3	Combination tables14			
	6.4	6.4 Names and functions of parts 15			

1 Operating Manuals for the BLE Series

Operating manuals for the **BLE** Series FLEX RS-485 communication type are listed below. After reading the following manuals, keep them in a convenient place so that you can reference them at any time.

Applicable product	Type of operating manual	Model	Description of operating manual	
BLE Series FLEX RS-485 communication type	USER MANUAL (this manual)	HM-5140	This manual explains the function, installation and connection of the motor and driver as well as operating method.	
Data setter OPX-2A	OPERATING MANUAL	HP-5056	This manual explains the functions and installation/connection method as well as data setting method and others for the accessory OPX-2A (sold separately).	
Support software MEXE02	OPERATING MANUAL	HM-60131	This manual explains how to set data using the support software MEXE02 .	
	CC-Link Ver.1.1 compatible NETC01-CC USER MANUAL	HM-60089		
	CC-Link Ver.2 compatible NETC02-CC USER MANUAL	HM-60305		
Network converter	MECHATROLINK- II compatible NETC01-M2 USER MANUAL	HM-60091	This manual explains the functions, installation/connection method as wel as the operating method and others for the network converter.	
	MECHATROLINK-III compatible NETC01-M3 USER MANUAL	HM-60093		
	EtherCAT compatible NETC01-ECT USER MANUAL	HM-60301		

2 Introduction

Before use

Only qualified personnel of electrical and mechanical engineering should work with the product.

Use the product correctly after thoroughly reading the section p.8 "3 Safety precautions." In addition, be sure to observe the contents described in warning, caution, and note in this manual.

The product described in this manual has been designed and manufactured to be incorporated in general industrial equipment. Do not use for any other purpose. Oriental Motor Co., Ltd. is not responsible for any damage caused through failure to observe this warning.

Product overview

This is a motor and driver package product consisting of a compact, high-torque brushless motor and driver compatible with I/O control and RS-485 communication.

The operation data and parameters can be set using an accessory data setter **OPX-2A** (sold separately) or support software **MEXE02**, or via RS-485 communication.

Accessories

The operation data and parameters can be set using an accessory data setter **OPX-2A** (sold separately) or support software **MEXE02**, or via RS-485 communication. Provide the **OPX-2A** or **MEXE02** as necessary.

Related products

The **BLE** Series FLEX RS-485 communication type can be used via various network when connecting to a network converter.

Network converter	Supported network	
NETC01-CC CC-Link communication (Ver.1.1 compati		
NETC02-CC	-CC CC-Link communication (Ver.2 compatible)	
NETC01-M2 MECHATROLINK- I communication		
NETC01-M3	MECHATROLINK-III communication	
NETC01-ECT	EtherCAT communication	

Notation rules

The following term is used in explanation of this manual.

Term	Description	
Master controller	This is a generic name for a programmable controller, master module and so on.	

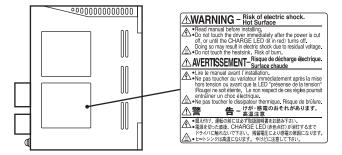
3 Safety precautions

The precautions described below are intended to prevent danger or injury to the user and other personnel through safe, correct use of the product. Use the product only after carefully reading and fully understanding these instructions.

	Handling the product without observing the instructions that accompany a "WARNING" symbol may result in serious injury or death.
	Handling the product without observing the instructions that accompany a "CAUTION" symbol may result in injury or property damage.
Note	The items under this heading contain important handling instructions that the user should observe to ensure the safe use of the product.
memo	The items under this heading contain related information and contents to gain a further understanding of the text in this manual.

- Do not use the product in a place exposed to explosive, flammable or corrosive gases or water splashes or near combustible materials. Doing so may result in fire, electric shock or injury.
- Only qualified and educated personnel should be allowed to perform installation, connection, operation and inspection/troubleshooting of the product. Handling by unqualified personnel may result in fire, electric shock, injury or equipment damage.
- Do not move, install, connect or inspect the product while the power is supplied. Perform these operations after turning off the power. Failure to observe these instructions may result in electric shock.
- The terminals on the driver's front panel marked with <u>A</u> symbol indicate the presence of high voltage. Do not touch these terminals while the power is on to avoid the risk of fire or electric shock.
- Do not use a non-electromagnetic brake type motor in a vertical application. If the driver's protection function is activated, the motor will stop and the moving part of the equipment will drop, thereby causing injury or equipment damage.
- Do not use the brake mechanism of the electromagnetic brake motor as a safety brake. It is intended to hold the moving parts and motor position. Doing so may result in injury or damage to equipment.
- If the driver protective function has been activated, remove the cause and reset the protective function. Continuing to operate the equipment without removing the cause of problem will lead to a motor or driver malfunction, resulting in injury or equipment damage.
- Use a specified motor (gearhead) and driver combination. Failure to do so may result in fire, electric shock or equipment damage.
- The motor and driver are Class I equipment.
- When installing the motor and driver, connect their Protective Earth Terminals. Failure to do so may result in electric shock.
- Install the motor and driver in an enclosure. Failure to do so may result in electric shock or injury.
- Securely connect the cables in accordance with the connection examples. Failure to do so may result in fire or electric shock.
- Do not forcibly bend, pull or pinch the cables. Doing so may result in fire or electric shock.
- Do not machine or modify the motor cable or connection cable. Doing so may result in electric shock or fire.
- Be sure to observe the specified cable sizes. Use of unspecified cable sizes may result in fire.
- Observe the specified screw tightening torque when connecting terminals to the terminal block. Failure to do so may result in electric shock or equipment damage.
- Always keep the power supply voltage of the driver within the specified range. Failure to do so may result in fire or electric shock.
- When using the electromagnetic brake motor, do not turn the MB-FREE input ON while a load is held in vertical direction. Otherwise, the holding power of the motor and electromagnetic brake will be lost, causing personal injury or damage to equipment.
- When using the electromagnetic brake motor in vertical drive (gravitational operation), be sure to operate after checking the load condition. If a load in excess of the rated torque is applied or the small torque limiting value is set using a **OPX-2A**, **MEXEO2** or RS-485 communication, the load may fall. This may result in injury or damage to equipment.
- Always turn off the power before performing maintenance/inspection. Failure to do so may result in electric shock.
- Do not touch the motor or driver when measuring insulation resistance or performing a dielectric strength test. Accidental contact may result in electric shock.
- Do not touch the connection terminals on the driver immediately (until the CHARGE LED turns off) after the power is turned off. Residual voltage may cause electric shock.
- Regularly check the openings in the driver for accumulated dust. Accumulated dust may cause fire.
- Do not disassemble or modify the motor (gearhead) and driver. Doing so may result in electric shock, injury or equipment damage. Should you require inspection or repair of internal parts, please contact the Oriental Motor branch or sales office from which you purchased the product.

- Do not use the product in conditions exceeding the motor (gearhead) or driver specifications. Doing so may result in electric shock, fire, injury or equipment damage.
- Do not insert an object into the openings in the driver. Doing so may result in fire, electric shock or injury.
- Do not touch the motor (gearhead) or driver while operating or immediately after stopping. The surface of the motor (gearhead) or driver may be hot and cause a skin burn(s).
- Do not carry the product by holding the motor (gearhead) output shaft or any of the cables. Doing so may result in injury.
- Do not place around the motor and driver any object blocking the air flow. Doing so may result in equipment damage.
- Do not touch the motor output shaft (end of shaft or pinion) with bare hands. Doing so may result in injury.
- When assembling the motor (pinion shaft) with the gearhead, exercise caution not to pinch your fingers or other parts of your body between the motor and gearhead. Injury may result.
- Securely install the motor (gearhead) and driver to their respective mounting plates. Inappropriate installation may cause the motor/driver to detach and fall, resulting in injury or equipment damage.
- Provide a cover on the rotating part (output shaft) of the motor (gearhead). Failure to do so may result in injury.
- When installing the motor (gearhead) in the equipment, exercise caution not to pinch your fingers or other parts of your body between the equipment and motor or gearhead. Injury may result.
- Securely install the load on the motor output shaft. Inappropriate installation may result in injury.
- Be sure to ground the motor and driver to prevent them from being damaged by static electricity. Failure to do so may result in fire or damage to equipment.
- Use a 24 VDC power supply with reinforced insulation on its primary and secondary sides. Failure to do so may result in electric shock.
- Provide an emergency stop device or emergency stop circuit external to the equipment so that the entire equipment will operate safely in the event of a system failure or malfunction. Failure to do so may result in injury.
- Immediately when trouble has occurred, stop running and turn off the driver power. Failure to do so may result in fire, electric shock or injury.
- Do not touch the rotating part (output shaft) during operation. Doing so may result in injury.
- The motor surface temperature may exceed 70 °C (158 °F) even under normal operating conditions. If the operator is allowed to approach a running motor, attach a warning label as shown to the right in a conspicuous position. Failure to do so may result in skin burn(s).



Warning label

• Use an insulated screwdriver to adjust the switches in the driver. Failure to do so may result in electric shock.

Warning information

A warning label with handling instructions is attached on the driver. Be sure to observe the instructions on the label when handling the driver.

4 Precautions for use

This chapter explains the restrictions and other items you should take heed of when using the **BLE** Series FLEX RS-485 communication type.

• Connect protective devices to the power line

Connect a circuit breaker or earth leakage breaker to the driver's power line to protect the primary circuit. If an earth leakage breaker is to be installed, use one incorporating high-frequency noise elimination measures. Refer to "Preventing leakage current" below for the selection of protective devices.

• Use an electromagnetic brake type for an application involving vertical travel

When the motor is used in an application involving vertical travel, use an electromagnetic brake type to hold the load in position.

• Do not use a solid-state relay (SSR) to turn on/off the power

A circuit that turns on/off the power via a solid-state relay (SSR) may damage the motor and driver.

 Do not conduct the insulation resistance measurement or dielectric strength test with the motor and driver connected.

Conducting the insulation resistance measurement or dielectric strength test with the motor and driver connected may result in damage to the product.

• Grease measures

On rare occasions, grease may ooze out from the gearhead. If there is concern over possible environmental damage resulting from the leakage of grease, check for grease stains during regular inspections. Alternatively, install an oil pan or other device to prevent leakage from causing further damage. Grease leakage may lead to problems in the user's equipment or products.

Apply grease to the hollow output shaft of a hollow shaft flat gearhead

When using a hollow shaft flat gearhead, apply grease (molybdenum disulfide grease, etc.) on the surface of the load shaft and inner walls of the hollow output shaft to prevent seizure.

Preventing leakage current

Stray capacitance exists between the driver's current-carrying line and other current-carrying lines, the earth and the motor, respectively. A high-frequency current may leak out through such capacitance, having a detrimental effect on the surrounding equipment. The actual leakage current depends on the driver's switching frequency, the length of wiring between the driver and motor, and so on.

When connecting an earth leakage breaker, use one of the following products offering resistance against high frequency current:

Mitsubishi Electric Corporation: NV series

Noise elimination measures

Provide noise elimination measures to prevent a motor or driver malfunction caused by external noise. For more effective elimination of noise, use a shielded I/O signal cable or attach ferrite cores if a non-shielded cable is used. Refer to "2.5 Conformity to the EMC" on p.156 for the noise elimination measures.

• Note on connecting a power supply whose positive terminal is grounded

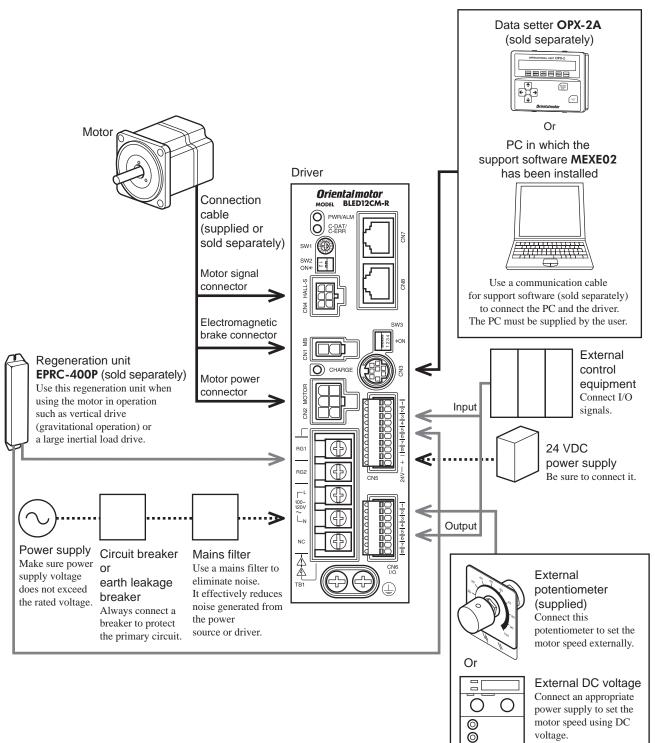
The data edit connector (CN3), I/O signal connectors (CN5/CN6) and RS-485 communication connectors (CN7/CN8) are not insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the these equipment and driver to short, damaging both.

• The driver uses semiconductor elements, so be extremely careful when handling them Electrostatic discharge can damage the driver.

Be sure to ground the motor and driver to prevent them from being damaged by electric shock or static electricity.

- Use a connection cable (supplied or sold separately) when extending the wiring distance between the motor and driver
- When using the motor in operation such as vertical drive (gravitational operation) or a large inertial load drive, use an accessory regeneration unit **EPRC-400P** (sold separately).

The driver may be damaged if the regeneration energy generated during vertical drive (gravitational operation) or sudden starting/stopping of a large inertial load exceeds the allowable limit that can be absorbed by the driver. The accessory regeneration unit **EPRC-400P** is designed to discharge the regenerated energy, thereby protecting the driver.


• Saving data to the non-volatile memory

Do not turn off the 24 VDC power supply while writing the data to the non-volatile memory, and also do not turn off within 5 seconds after the completion of writing the data. Doing so may abort writing the data and cause a EEPROM error alarm to generate.

The non-volatile memory can be rewritten approximately 100,000 times.

5 System configuration

An example of system configuration using the **BLE** Series FLEX RS-485 communication type is shown below. Illustration shows the electromagnetic brake type.

6 Preparation

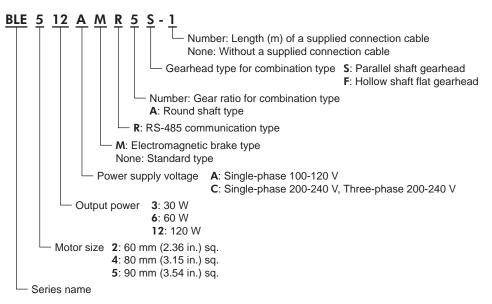
This chapter explains the items you should check, as well as the name and function of each part.

6.1 Checking the product

Verify that the items listed below are included. Report any missing or damaged items to the branch or sales office from which you purchased the product.

Verify the model number of the purchased product against the number shown on the package label. Check the model number of the motor and driver against the number shown on the nameplate. Model names for motor and driver combinations are shown on p.14.

- Motor...... 1 unit (with a gearhead, only for combination type)
- Driver 1 unit
- Connection cable...... 1 piece (Only models with a supplied connection cable)
- CN5 connector (10 pins)......1 piece
- CN6 connector (8 pins)...... 1 piece
- External potentiometer...... 1 piece
- Signal cable for external potentiometer 1 piece [1 m (3.3 ft.)]
- Instructions and Precautions for Safe Use 1 copy


Accessories for combination type • parallel shaft gearhead

- Hexagonal socket head screw set...... 1 set (Hexagonal socket head screw, flat washer, spring washer and nut, pieces each)
- Parallel key.....1 piece

Accessories for combination type • hollow shaft flat gearhead

- Hexagonal socket head screw set........... 1 set (Hexagonal socket head screw, flat washer, spring washer and nut, 4 pieces each)
- Safety cover 1 piece
- Safety cover mounting screw......2 pieces
- Parallel key..... 1 piece

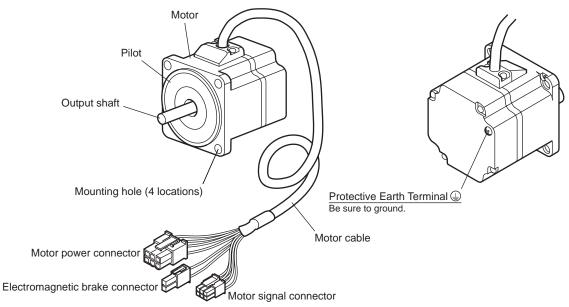
6.2 How to identify the product model

6.3 Combination tables

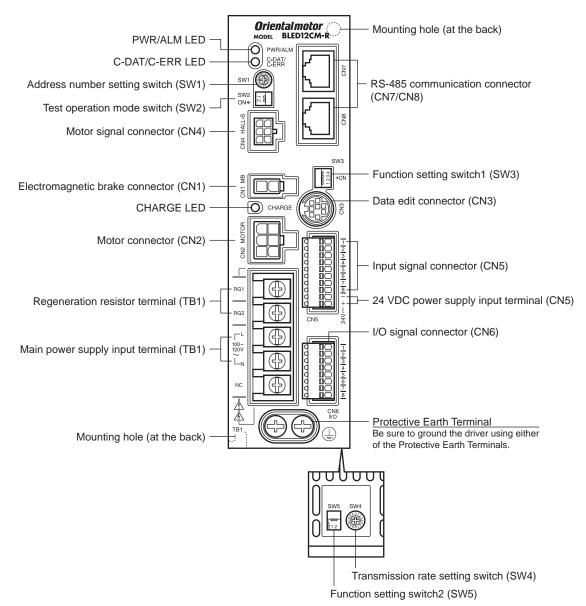
- \Box in the model names indicates a number representing the gear ratio.
- Indicates a number representing the length of a connection cable.
- The combination types come with the motor and gearhead pre-assembled.

Standard type

Motor type	Model	Motor model	Gearhead model	Driver model
	BLE23AR□S-■		GFS2GD	BLED3AM-R
	BLE23CR□S-■	BLEM23-GFS	GF32GL	BLED3CM-R
Combination type •	BLE46AR□S-■	BLEM46-GFS		BLED6AM-R
parallel shaft gearhead	BLE46CR□S-■	BLEM40-GF5	GFS4G□ -	BLED6CM-R
	BLE512AR□S-■	BLEM512-GFS	GFS5GD	BLED12AM-R
	BLE512CR□S-■	BLEMS12-GFS	Grade	BLED12CM-R
	BLE23AR□F-■	BLEM23-GFS	GFS2G□FR -	BLED3AM-R
	BLE23CR□F-■	DLE/W23-GF3	GF32GLIFK	BLED3CM-R
Combination type • hollow shaft flat	BLE46AR□F-■	BLEM46-GFS	GFS4G□FR	BLED6AM-R
gearhead	BLE46CR□F-■	BLEM40-GF5	Gr54GLIFK -	BLED6CM-R
9	BLE512AR□F-■	BLEM512-GFS	GFS5G□FR	BLED12AM-R
	BLE512CR□F-■	DLEMOTZ-GF3	GF35GUFK	BLED12CM-R
	BLE23ARA-	BLEM23-A		BLED3AM-R
	BLE23CRA-■	DLE/WIZ3-A		BLED3CM-R
Dound chaft turns	BLE46ARA-■			BLED6AM-R
Round shaft type	BLE46CRA-■	BLEM46-A	-	BLED6CM-R
	BLE512ARA-■	BLEM512-A		BLED12AM-R
	BLE512CRA-	DLEMOIZ-A		BLED12CM-R


Electromagnetic brake type

•				
Motor type	Model	Motor model	Gearhead model	Driver model
	BLE23AMR□S-■			BLED3AM-R
	BLE23CMR□S-■	BLEM23M2-GFS	GFS2G□	BLED3CM-R
Combination type •	BLE46AMR□S-■			BLED6AM-R
parallel shaft gearhead	BLE46CMR□S-■	BLEM46M2-GFS	GFS4G□ -	BLED6CM-R
	BLE512AMR□S-■			BLED12AM-R
	BLE512CMR□S-■	BLEM512M2-GFS	GFS5G□ -	BLED12CM-R
	BLE23AMR□F-■	BLEM23M2-GFS	GFS2G□FR	BLED3AM-R
	BLE23CMR□F-■	BLEM23M2-GF3	GF32GLIFK	BLED3CM-R
Combination type • hollow shaft flat	BLE46AMR□F-■	BLEM46M2-GFS	GFS4G□FR	BLED6AM-R
gearhead	BLE46CMR□F-■	BLEM40M2-GF3		BLED6CM-R
<u>.</u>	BLE512AMR□F-■	BLEM512M2-GFS	GFS5G□FR	BLED12AM-R
	BLE512CMR□F-■	DLEMSTZMZ-GF3	GF35GUFK	BLED12CM-R
	BLE23AMRA-	BLEM23M2-A		BLED3AM-R
	BLE23CMRA-	DLE/MZ3/MZ-A		BLED3CM-R
Pound chaft two	BLE46AMRA-	BLEM46M2-A		BLED6AM-R
Round shaft type	BLE46CMRA-	DLLIVI40IVIZ-A		BLED6CM-R
	BLE512AMRA-D	BLEM512M2-A		BLED12AM-R
	BLE512CMRA-	DLEMUSTZMZ-A		BLED12CM-R


6.4 Names and functions of parts

Motor

Illustration shows the electromagnetic brake type.

Driver

Name	Description	
	PWR (Green): This LED is lit while the 24 VDC power is input.	
PWR/ALM LED	ALM (Red): This LED will blink when an alarm generates. It is possible to check the generated alarm by counting the number of times the LED blinks.	p.143
C-DAT/C-ERR LED	C-DAT (Green): This LED will blink or illuminate steadily when the driver is communicating with the master station properly via RS-485 communication.	
C-DAI/C-ERR LED	C-ERR (Red): This LED will illuminate when the RS-485 communication error occurs with the master station.	
CHARGE LED (Red)	This LED is lit while the main power is input. After the main power has been turned off, the LED will turn off once the residual voltage in the driver drops to a safe level.	-
Address number setting switch (SW1)	Use this switch when controlling the system via RS-485 communication. Using this switch in combination with the SW5-No.1 of the function setting switch2, the address number of RS-485 communication can be set. Factory setting: 0	p.81 p.113 p.125

Name	Description	Ref.
Test operation mode switch (SW2)	SW2-No.1: This switch is used to check the connection between the motor and driver before establishing a communication. When having connected properly, setting the SW2-No.1 to the ON side causes the motor to rotate at low speed in the forward direction. Factory setting: OFF	
	SW2-No.2: Not used. (Keep this switch OFF.)	
	• SW3-No.1: Not used. (Keep this switch OFF.)	-
	• SW3-No.2: Not used. (Keep this switch OFF.)	
Function setting switch1 (SW3)	SW3-No.3: This switch is used to select the power supply for I/O signals (use the built-in power supply or external power supply). To control the operation using relays and switches, set the SW3-No.3 to the ON side to select the built-in power supply. Factory setting: OFF	
	• SW3-No.4: Use this switch when controlling the system via RS-485 communication. The termination resistor (120 Ω) of RS-485 communication can be set. Factory setting: OFF	
Transmission rate setting switch (SW4)	Use this switch when controlling the system via RS-485 communication. The transmission rate of RS-485 communication can be set. Factory setting: 7	p.81 p.113
	Use this switch when controlling the system via RS-485 communication.	p.125
Function setting switch2 (SW5)	• SW5-No.1: Using this switch in combination with the address number setting switch (SW1), the address number of RS-485 communication can be set. Factory setting: OFF	
	• SW5-No.2: The protocol of RS-485 communication can be set. Factory setting: OFF	
Electromagnetic brake connector (CN1)	Connects the electromagnetic brake connector. (Electromagnetic brake type only)	p.33
Motor connector (CN2)	Connects the motor power connector.	
Data edit connector (CN3) Connects a PC in which the MEXE02 has been installed, or the OPX-2A .		p.38
Notor signal connector (CN4)	Connects the motor signal connector.	p.33
nput signal connector (CN5)	Connects the input signals.	p.34
24 VCD power input terminals (CN5)	Connects the control power supply of the driver. +: +24 VDC power supply input -: Power supply GND [This is shared with the common wire of input signals (0 V)]	
/O signal connector (CN6)	Connects the external potentiometer (supplied) or external DC power supply.Connects the output signals.	p.34
RS-485 communication connectors (CN7/CN8)	Connects the RS-485 communication cable.	p.38
Regeneration resistor terminal (TB1)	Connects an accessory regeneration unit EPRC-400P (sold separately).	p.39
	Connects to the main power supply.	
Main nower supply input terminal	Single-phase 100-120 VAC L, N: Connects a single-phase 100-120 VAC power supply NC: Not used.	
Main power supply input terminal (TB1)	Single-phase 200-240 VAC L1, L2: Connects a single-phase 200-240 VAC power supply L3: Not used.	p.32
	Three-phase 200-240 VAC L1, L2, L3: Connects a three-phase 200-240 VAC power supply	
Protective Earth Terminal	Ground this terminal using a grounding wire of AWG18 to 14 (0.75 to 2.0 mm ²).	
Mounting holes (two locations at the back)	These mounting holes are used to install the driver with screws (M4).	p.29

2 Installation and connection

This part explains the installation method of the product, the mounting method of a load and the connection method as well as I/O signals.

Table of contents

1	Insta	allation20
	1.1	Installation location20
	1.2	Installation overview20
	1.3	Installing the combination type •
		parallel shaft gearhead22
	1.4	Installing the round shaft type23
	1.5	Installing the combination type •
		hollow shaft flat gearhead23
	1.6	Installing a load to the combination type •
		parallel gearhead or round shaft type 25
	1.7	Installing a load to the combination type •
	4.0	hollow shaft flat gearhead
	1.8	Permissible radial load and permissible axial load
	1.9	
		Installing the driver
	1.10	Installing the external potentiometer (supplied)
	1 11	Installing the regeneration unit
	1.11	(sold separately)
2	Con	
Ζ		nection
	2.1	Connection example
	2.2	Connecting the power supply
	2.3	Grounding
	2.4	Connecting the motor and driver
	2.5	Connecting the 24 VDC power
		supply

	2.6		~ (
		supply	. 34
	2.7	Connecting the I/O signals	. 34
	2.8	Connecting an external speed setter	. 37
	2.9	Connecting the data setter	. 38
	2.10	Connecting the RS-485 communication	۱
		cable	. 38
	2.11	Test operation	. 39
	2.12	Connecting the regeneration unit	. 39
	2.13	Connection diagram (example)	. 41
3	Expl	anation of I/O signals	.44
	3.1		
		Assignment to the input terminals	44
		Changing the logic level setting of input	
		signals	
	~ ~	Assignment to the output terminals	
	3.2	Assignment of network I/O	
		 Assignment of input signals Assignment to the output terminals 	
	0.0	Assignment to the output terminals	
	3.3	Input signals	
	3.4	Output signals	
	3.5	General signals (R0 to R15)	. 53

1 Installation

This chapter explains the installation location and installation methods of the motor and driver, as well as how to install a load and external potentiometer.

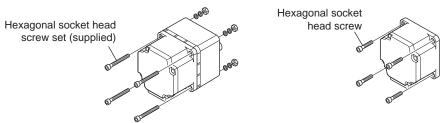
1.1 Installation location

The motor and driver are designed and manufactured for use as a component to be installed inside equipment. Install them in a well-ventilated location that provides easy access for inspection. The location must also satisfy the following conditions:

- Inside an enclosure that is installed indoors (provide vent holes)
- Ambient temperature: 0 to +50 °C (+32 to +122 °F) (non-freezing)
- Ambient humidity: 85% or less (non-condensing)
- Area not exposed to direct sun
- · Area free of excessive amount of dust, iron particles or the like
- Area free of excessive salt
- Area that is free of explosive atmosphere or toxic gas (such as sulfuric gas) or liquid
- Area not subject to splashing water (rain, water droplets), oil (oil droplets) or other liquids
- Area not subject to continuous vibration or excessive shocks
- Area free of excessive electromagnetic noise (from welders, power machinery, etc.)
- · Area free of radioactive materials, magnetic fields or vacuum
- Altitude Up to 1000 m (3300 ft.) above sea level

1.2 Installation overview

This section explains an overview of how to install the motor and driver. Refer to each applicable section for details.

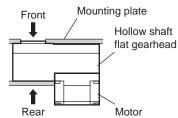

Installing the combination type • parallel shaft gearhead and round shaft type

Secure the motor using the hexagonal socket head screws through the four mounting holes. Tighten the nuts until no gaps remain between the motor and mounting plate.

The combination type • parallel shaft gearheads come with a set of hexagonal socket head screws. Round shaft types do not come with hexagonal socket head screws. Hexagonal socket head screws must be provided by the user if round shaft types are used.

For machining dimension of the mounting plate or installing/removing method of the gearhead, see p.22 for the combination type • parallel shaft gearhead and p.23 for the round shaft type.

- Combination type parallel shaft gearhead
- Round shaft type


Hexagonal socket head screw set (supplied with the combination type • parallel shaft gearhead)

Model	Nominal thread size	Tightening torque	Maximum applicable plate thickness *
BLE23	M4	1.8 N⋅m (15.9 lb-in)	5 mm (0.20 in.)
BLE46	M6	6.4 N⋅m (56 lb-in)	8 mm (0.31 in.)
BLE512	M8	15.5 N·m (137 lb-in)	12 mm (0.47 in.)

* When the supplied hexagonal socket head screw set is used.

Installing the combination type • hollow shaft flat gearhead

A combination type • hollow shaft flat gearhead can be installed by using either its front or rear side as the mounting surface. Install the supplied hexagonal socket head screw set in the four mounting holes you drilled and tighten the nuts until no gaps remain between the motor and mounting plate. Also, attach the supplied safety cover to the hollow output shaft on the end opposite from the one where the load shaft is installed. Refer to p.23 for the installation method and how to install/remove the gearhead.

Hexagonal socket head	screw set (supplied)	

Model	Nominal thread size	Tightening torque	Maximum applicable plate thickness *
BLE23	M5	3.8 N⋅m (33 lb-in)	5 mm (0.20 in.)
BLE46	M6	6.4 N⋅m (56 lb-in)	8 mm (0.31 in.)
BLE512	M8	15.5 N⋅m (137 lb-in)	12 mm (0.47 in.)

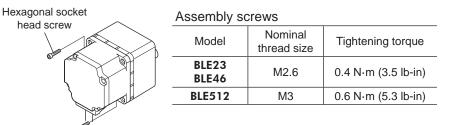
* When the supplied hexagonal socket head screw set is used.

Installing the driver

The driver can be installed in two different ways. Refer to p.29 for the specific installation methods.

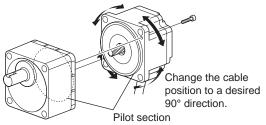
- Use screws (M4: not supplied) to secure the driver through the mounting holes (two locations) provided at the back of the driver.
- Secure the driver on a DIN rail using the accessory DIN-rail mounting plate (sold separately).

1.3 Installing the combination type • parallel shaft gearhead


			*	2	
Model	ØA	ØВ	С	ØD	Ø B Q
BLE23	70 (2.76)	24 (0.94)	10 (0.39)	4.5 (0.177)	
BLE46	94 (3.70)	34 (1.34)	13 (0.51)	6.5 (0.256)	
BLE512	104 (4.09)	40 (1.57)	18 (0.71)	8.5 (0.335)	ØA
	e external dimen a minimum dia	× × × × × × ×			

Mounting hole dimensions [unit: mm (in.)]

Removing/Installing the gearhead


To replace the gearhead or change the cable outlet direction, remove the screws assembling the gearhead. The gearhead can be removed and the motor cable position changed to a desired 90° direction.

1. Remove the hexagonal socket head screws (2 pieces) assembling the motor and gearhead and detach the motor from the gearhead.

2. Using the pilot sections of the motor and gearhead as guides, install the gearhead to the motor and tighten the hexagonal socket head screws.

At this time, the motor cable position can be changed to a desired 90° direction. When installing the gearhead, slowly rotate it clockwise/counterclockwise to prevent the pinion of the motor output shaft from contacting the side panel or gear of the gearhead. Also confirm that no gaps remain between the motor flange surface and the end face of the gearhead's pilot section.

- Note · Do not forcibly assemble the motor and gearhead. Also, do not let metal objects or other foreign matters enter the gearhead. The pinion of the motor output shaft or gear may be damaged, resulting in noise or shorter service life.
 - . Do not allow dust to attach to the pilot sections of the motor and gearhead. Also, assemble the motor and gearhead carefully by not pinching the O-ring at the motor's pilot section. If the O-ring is crushed or severed, grease may leak from the gearhead.
 - The hexagonal socket head screws assembling the motor and gearhead are used to attach the motor and gearhead temporarily. When installing the product, be sure to use the supplied hexagonal socket head screws (4 pieces).

1.4 Installing the round shaft type

Mounting plate size

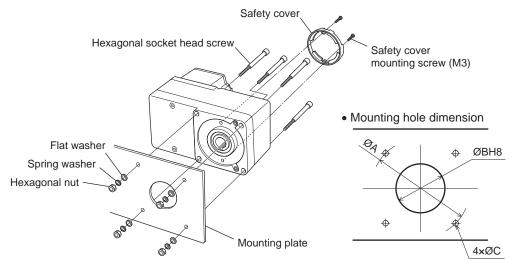
Install the motor to a mounting plate of the following size or larger, so that the motor case temperature will not exceed 90 $^{\circ}$ C (194 $^{\circ}$ F).

Model	Size of mounting plate	Thickness	Material
BLE23	115×115 mm (4.53×4.53 in.) *		
BLE46	135×135 mm (5.31×5.31 in.)	5 mm (0.20 in.)	Aluminum alloy
BLE512	165×165 mm (6.50×6.50 in.)		

* Electromagnetic brake type: 135×135 mm (5.31×5.31 in.)

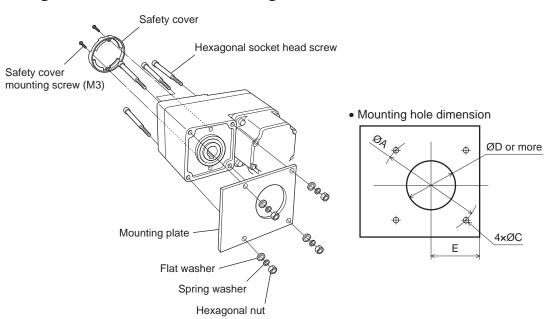
Mounting hole dimensions [unit: mm (in.)]

Model	ØA	В	ØCH7	ØD	
BLE23	70 (2.76)	49.5 (1.949)	54 ^{+0.030} (2.1260 ^{+0.0012})	4.5 (0.177)	
BLE46	94 (3.70)	66.47 (2.616)	73 ^{+0.030} (2.8740 ^{+0.0012})	6.5 (0.256)	
BLE512	104 (4.09)	73.54 (2.895)	83 ^{+0.035} (3.2677 ^{+0.0014})	8.5 (0.335)	


ØC indicates the pilot diameter on the flange.

Note Fit the boss on the gearhead mounting surface into a pilot receiving hole.

1.5 Installing the combination type • hollow shaft flat gearhead


Using the front side as the mounting surface

When the gearhead is installed by using its front side as the mounting surface, use the boss of the output shaft to align the center.

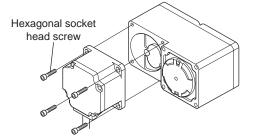
Mounting hole dimensions [unit: mm (in.)]

Model	ØA	ØBH8	ØC
BLE23	70 (2.76)	34 ^{+0.039} (1.34 ^{+0.0015})	5.5 (0.22)
BLE46	94 (3.70)	38 ^{+0.039} (1.50 ^{+0.0015})	6.5 (0.26)
BLE512	104 (4.09)	50 ^{+0.039} (1.97 ^{+0.0015})	8.5 (0.33)

Using the rear side as the mounting surface

Mounting hole dimensions [unit: mm (in.)]

Model	ØA	ØC	ØD	E
BLE23	70 (2.76)	5.5 (0.22)	25 (0.98)	29 (1.14)
BLE46	94 (3.70)	6.5 (0.26)	30 (1.18)	39 (1.54)
BLE512	104 (4.09)	8.5 (0.33)	35 (1.38)	44 (1.73)

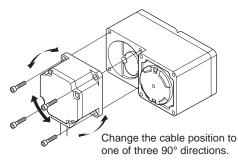

Note

When installing the gearhead by using its rear side as the mounting surface, prevent contact between the mounting plate and motor by keeping dimension E below the specified value.

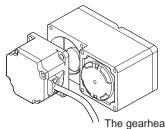
Removing/Installing the gearhead

To replace the gearhead or change the cable outlet direction, remove the screws assembling the gearhead. The gearhead can be removed and the motor cable position changed to one of three 90° directions. Note that the motor cable cannot be positioned in the direction where the cable faces the gearhead output shaft.

1. Remove the hexagonal socket head screws (4 pieces) attaching the gearhead and motor and detach the motor from the gearhead.



Accombly	aarawa
Assembly	sciews


Model	Nominal thread size	Tightening torque
BLE23	M4	1.8 N·m (15.9 lb-in)
BLE46	M6	6.4 N⋅m (56 lb-in)
BLE512	M8	15.5 N·m (137 lb-in)

2. Using the pilot sections of the motor and gearhead as guides, install the motor to the gearhead and tighten the hexagonal socket head screws.

At this time, the motor cable position can be changed to one of three 90° directions. Install the motor carefully to prevent the pinion of the motor output shaft from contacting the casing or gear of the gearhead. Also confirm that no gaps remain between the motor flange surface and the end face of the gearhead's pilot section.

- **Note** Do not forcibly assemble the motor and gearhead. Also, do not let metal objects or other foreign matters enter the gearhead. The pinion of the motor output shaft or gear may be damaged, resulting in noise or shorter service life.
 - Do not allow dust to attach to the pilot sections of the motor and gearhead. Also, assemble the motor carefully by not pinching the O-ring at the motor's pilot section. If the O-ring is pinched, the coupling strength will drop and grease may leak from the gearhead.
 - The motor cable position cannot be changed to the direction where the cable faces the gearhead output shaft, because the gearhead case will obstruct the cable.

The gearhead case will obstruct the cable.

1.6 Installing a load to the combination type • parallel gearhead or round shaft type

When installing a load on the motor (gearhead), align the center of the motor output shaft (gearhead output shaft) with the center of the load shaft.

- When coupling the motor (gearhead) with a load, pay attention to centering, belt tension, parallelism of pulleys, etc. Also, firmly secure the tightening screws of the coupling or pulleys.
- When installing a load, do not damage the motor output shaft (gearhead output shaft) or bearing. Forcing in the load by driving it with a hammer, etc., may break the bearing. Do not apply any excessive force to the output shaft.
- Do not modify or machine the motor (gearhead) output shaft. The bearing may be damaged or motor (gearhead) may break.

Output shaft shape

• Combination type • parallel shaft gearhead

A key slot is provided on the output shaft of each combination type • parallel shaft gearhead. Form a key slot on the load side and secure the load using the supplied parallel key.

Round shaft type

A flat section is provided on the motor output shaft of each round shaft type. Apply a double-point screw, etc., at the flat section to firmly secure the load and prevent it from spinning.

How to install a load

• Using a coupling

Align the centerline of the motor (gearhead) output shaft with the centerline of the load shaft.

• Using a belt

Adjust the motor (gearhead) output shaft to lie parallel with the load shaft and form right angles between the output shaft/load shaft and the line connecting the centers of both pulleys.

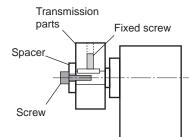
Using a gear

Gearhead

model name

GFS4G GFS5G

Adjust the motor (gearhead) output shaft to lie parallel with the gear shaft and allow the output shaft to mesh correctly with the centers of the gear teeth.


• When using the output axis tip screw hole of a gearhead

Output shaft tip screw hole

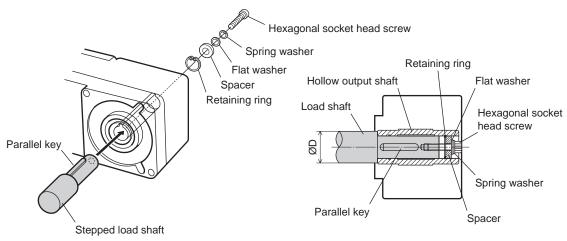
M5, Effective depth 10 mm (0.39 in.)

M6, Effective depth 12 mm (0.47 in.)

Use a screw hole provided at the tip of the output shaft as an auxiliary means for preventing the transfer mechanism from disengaging. (GFS2G type have no output shaft tip screw hole.)

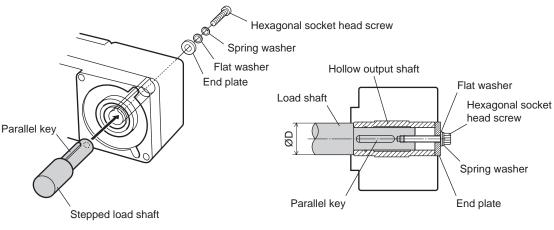
1.7 Installing a load to the combination type • hollow shaft flat gearhead

If the motor is subject to a strong impact upon instantaneous stop or receives a large overhung load, use a stepped load shaft.


 Apply grease (molybdenum disulfide grease, etc.) on the surface of the load shaft and inner walls of the hollow output shaft to prevent seizure.

- When installing a load, do not damage the hollow output shaft or bearing of the gearhead. Forcing in the load by driving it with a hammer, etc. may break the bearing. Do not apply any excessive force to the hollow output shaft.
- Do not modify or machine the hollow output shaft of the gearhead. Doing so may damage the bearings and destroy the gearhead.

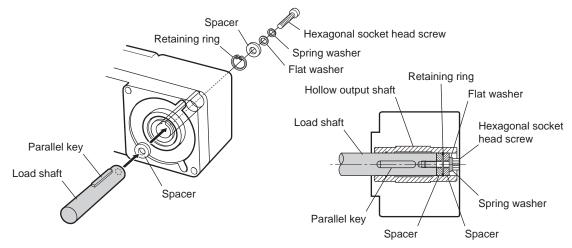
Stepped load shaft


• Mounting method using retaining ring

Secure the retaining ring to the load shaft by tightening the hexagonal socket head screw over a spacer, flat washer and spring washer.

• Mounting method using end plate

Secure the end plate to the load shaft by tightening the hexagonal socket head screw over a flat washer and spring washer.


The safety cover (supplied) cannot be attached due to contact between the safety cover and hexagonal socket head screw. Take safety measures against rotating part.

• Recommended load shaft installation dimensions [Unit: mm (in.)]

Model	Inner diameter of hollow shaft (H8)	Recommended diameter of load shaft (h7)	Nominal diameter of retaining ring	Applicable screw	Spacer thickness	Outer diameter of stepped shaft (ØD)
BLE23	Ø12 ^{+0.027} (Ø0.4724 ^{+0.0011})	Ø12- ⁰ .018 (Ø0.4724- ⁰ .0007)	Ø12 (Ø0.47)	M4	3 (0.12)	20 (0.79)
BLE46	Ø15 ^{+0.027} (Ø0.5906 ^{+0.0011})	Ø15- ⁰ .018 (Ø0.5906- ⁰ .0007)	Ø15 (Ø0.59)	M5	4 (0.16)	25 (0.98)
BLE512	Ø20 ^{+0.033} (Ø0.7874 ^{+0.0013})	Ø20- ⁰ .021 (Ø0.7874- ⁰ .0008)	Ø20 (Ø0.79)	M6	5 (0.20)	30 (1.18)

Non-stepped load shaft

Install a spacer on the load shaft side and secure the retaining ring to the load shaft by tightening the hexagonal socket head screw over a spacer, flat washer and spring washer.

Model	Inner diameter of hollow shaft (H8)	Recommended diameter of load shaft (h7)	Nominal diameter of retaining ring	Applicable screw	Spacer thickness
BLE23	Ø12 ^{+0.027} (Ø0.4724 ^{+0.0011})	Ø12- ⁰ .018 (Ø0.4724- ⁰ .0007)	Ø12 (Ø0.47)	M4	3 (0.12)
BLE46	Ø15 ^{+0.027} (Ø0.5906 ^{+0.0011})	Ø15- ⁰ .018 (Ø0.5906- ⁰ .0007)	Ø15 (Ø0.59)	M5	4 (0.16)
BLE512	Ø20 ^{+0.033} (Ø0.7874 ^{+0.0013})	Ø20- ⁰ .021 (Ø0.7874- ⁰ .0008)	Ø20 (Ø0.79)	M6	5 (0.20)

1.8 Permissible radial load and permissible axial load

Make sure the radial load and axial load received by the motor (gearhead) output shaft will not exceed the allowable values shown in the table below.

Note If the radial load or axial load exceeds the specified allowable value, repeated load applications may cause the bearing or output shaft of the motor (gearhead) to undergo a fatigue failure.

■ Combination type • parallel shaft gearhead

Mo	odel	Distance from tip of gea permissible radi	Permissible axial	
	Gear ratio	10 mm (0.39 in.)	20 mm (0.79 in.)	load [N (lb.)]
	5	100 (22) [90 (20)]	150 (33) [110 (24)]	
BLE23	10 to 20	150 (33) [130 (29)]	200 (45) [170 (38)]	40 (9)
	30 to 200	200 (45) [180 (40)]	300 (67) [230 (51)]]
	5	200 (45) [180 (40)]	250 (56) [220 (49)]	
BLE46	10 to 20	300 (67) [270 (60)]	350 (78) [330 (74)]	100 (22)
	30 to 200	450 (101) [420 (94)]	550 (123) [500 (112)]]
	5	300 (67) [230 (51)]	400 (90) [300 (67)]	
BLE512	10 to 20	400 (90) [370 (83)]	500 (112) [430 (96)]	150 (33)
	30 to 200	500 (112) [450 (101)]	650 (146) [550 (123)]]

* The values assume a rated speed of 3000 r/min or below. The values in [] are based on a rated speed of 4000 r/min.

■ Combination type • hollow shaft flat gearhead

Model		Distance from gearheat permissible radi	Permissible axial		
	Gear ratio	10 mm (0.39 in.)	20 mm (0.79 in.)	load [N (lb.)]	
BLE23	5, 10	450 (101) [410 (92)]	370 (83) [330 (74)]	200 (45)	
DLEZJ	15 to 200	500 (112) [460 (103)]	400 (90) [370 (83)]	200 (45)	
BLE46	5, 10	800 (180) [730 (164)]	660 (148) [600 (135)]	400 (00)	
BLE40	15 to 200	1200 (270) [1100 (240)]	1000 (220) [910 (200)]	400 (90)	
	5, 10	900 (200) [820 (184)]	770 (173) [700 (157)]		
BLE512	15, 20	1300 (290) [1200 (270)]	1110 (240) [1020 (220)]	500 (112)	
	30 to 200	1500 (330) [1400 (310)]	1280 (280) [1200 (270)]		

* The values assume a rated speed of 3000 r/min or below. The values in [] are based on a rated speed of 4000 r/min.

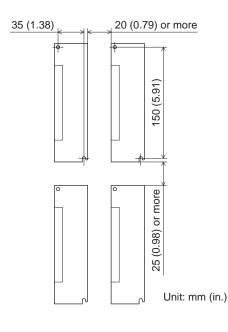
Round shaft type

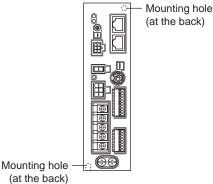
Model	Distance from tip of n permissible rad	Permissible axial load		
	10 mm (0.39 in.)	20 mm (0.79 in.)	[N (lb.)]	
BLE23	80 (18)	100 (22)	Not to exceed one-half the motor's dead weight *	
BLE46	110 (24)	130 (29)		
BLE512	150 (33)	170 (38)		

* Minimize the axial load. If a thrust load must be applied, do not let it exceed one-half the motor's mass.

1.9 Installing the driver

Note

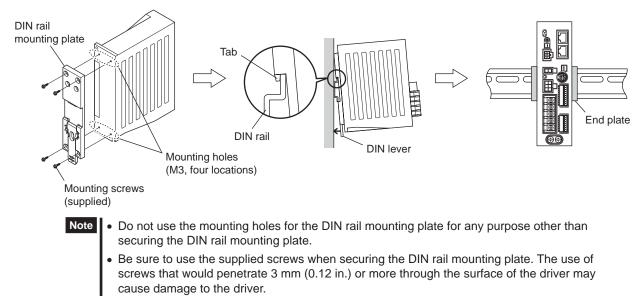

The driver is designed so that heat is dissipated via air convection and conduction through the enclosure. Install the driver to a flat metal plate offering excellent vibration resistance. When two or more drivers are to be installed side by side, provide


20 mm (0.79 in.) and 25 mm (0.98 in.) clearances in the horizontal and vertical directions, respectively.

- Install the driver in an enclosure whose degree of protection is IP54 minimum if the driver is used in an environment of pollution degree 3.
- Be sure to install the driver vertically (in vertical position) shown in the figure. Do not block the radiation openings.
- Do not install any equipment that generates a large amount of heat or noise near the driver.
- If the ambient temperature of the driver exceeds the upper limit of the operating ambient temperature, revise the ventilation condition or forcibly cool the area around the driver using a fan in order to keep within the operating ambient temperature.

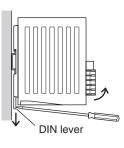
Installing with screws

Install the driver vertically (in vertical position) and secure the driver through the mounting holes using two screws (M4: not supplied).

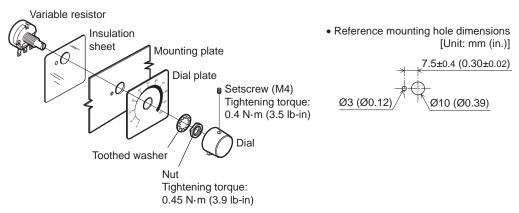


Mounting to DIN rail

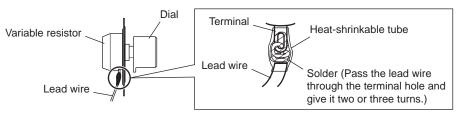
When mounting the driver to a DIN rail, use a separately sold DIN rail mounting plate (model number: **PADPO3**) and attach it to a 35 mm (1.38 in.) wide DIN rail.


- 1. Attach the DIN rail mounting plate to the back of the driver using the screws supplied with the plate. Tightening torque: 0.3 to 0.4 N·m (2.6 to 3.5 lb-in)
- 2. Pull the DIN lever down, engage the upper tab of the DIN rail mounting plate over the DIN rail, and push the DIN lever until it locks in place.
- 3. Fix the driver with the end plate (not suupplied).

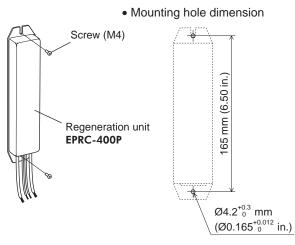
Removing from DIN rail


Pull the DIN lever down until it locks using a flat tip screwdriver, and lift the bottom of the driver to remove it from the rail.

Use force of about 10 to 20 N (2.2 to 4.5 lb.) to pull the DIN lever to lock it. Excessive force may damage the DIN lever.


1.10 Installing the external potentiometer (supplied)

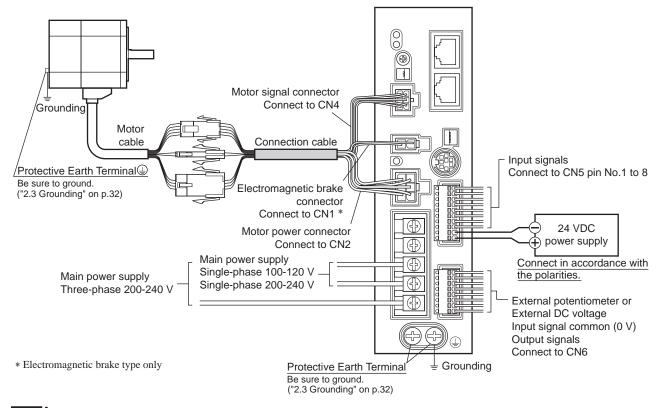
Install the external potentiometer as shown below.


Soldering the variable resister terminal and the lead wires

Cover a heat-shrinkable tube over the soldered part to insulate. Soldering condition: 235 °C (455 °F), less than 5 sec.

1.11 Installing the regeneration unit (sold separately)

Install the regeneration unit **EPRC-400P** in a location where heat dissipation capacity equivalent to a level achieved with a heat sink [made of aluminum alloy, $350 \times 350 \times 3 \text{ mm} (13.78 \times 13.78 \times 0.12 \text{ in.})$] is ensured. Secure it on a smooth metal plate offering high heat conductivity, using two screws (M4, not supplied).



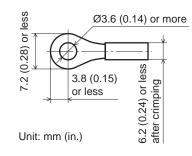
2 Connection

This chapter explains how to connect the driver and motor, I/O signals, and power supply, as well as the grounding method.

2.1 Connection example

The following figure is a connection example when an electromagnetic brake motor is used.

- Note Have the connector plugged in securely. Insecure connections may cause malfunction or damage to the motor or driver.
 - When connecting the 24 VDC power supply, check the indication of the driver case and pay attention to the polarity of the power supply. Reverse-polarity connection may cause damage to the driver.
 - When unplugging the connector, do so while pressing the latches on the connector.
 - When cycle the power or plugging/unplugging the connector, turn off the power and wait for the CHARGE LED to turn off before doing so. Residual voltage may cause electric shock.
 - Do not wire the power supply cable of the driver in the same cable duct with other power lines or motor cables. Doing so may cause malfunction due to noise.
 - When installing the motor to a moving part, use an accessory flexible cable (sold separately) offering excellent flexibility. For the flexible motor cable, refer to p.160.


2.2 Connecting the power supply

Connect the power cable to the main power supply input terminals (TB1) on the driver. The product does not come with a power cable. It must be supplied by the user.

Power supply input	Connecting method
Single-phase 100-120 V	Connect the live side to terminal L, and the neutral side to terminal N.
Single-phase 200-240 V	Connect the live side to terminal L1, and the neutral side to terminal L2.
Three-phase 200-240 V	Connect the R, S and T phase lines to the L1, L2 and L3 terminals, respectively.

Power connection terminal and cable

- Applicable crimp terminal: Round crimp terminal with insulation cover
- Thread size of terminal: M3.5
- Tightening torque: 1.0 N·m (8.8 lb-in)
- Applicable lead wire: AWG18 to 14 (0.75 to 2.0 mm²)
- Conductive material: Use only copper wire.

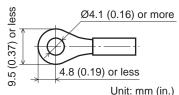
Circuit breaker

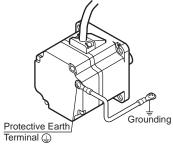
Be sure to connect a circuit breaker to the power line of the driver to protect the primary circuit.

- Rated current of protective device: Single-phase input 10 A, three-phase input 5 A
- Circuit breaker: Mitsubishi Electric Corporation NF30

2.3 Grounding

Be sure to ground using the Protective Earth Terminal ④ of the motor and the Protective Earth Terminal ④ of the driver.

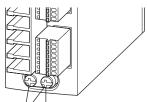

Note Be sure to ground the motor and driver. Failure to do so may result in electric shock or damage to the product. Static electricity may cause damage to the product if the Protective Earth Terminals are not grounded.


Motor

Connect the Protective Earth Terminal () on the motor to the ground near the motor. Minimize the wiring length of the ground cable.

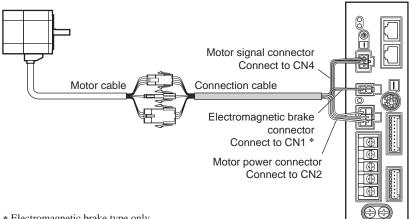
Ground terminal and cable

- Applicable crimp terminal: Round crimp terminal with insulation cover
- Thread size of terminal: M4
- Tightening torque: 0.8 to 1.0 N·m (7.0 to 8.8 lb-in)
- Applicable lead wire: AWG18 to 14 (0.75 to 2.0 mm²)


Driver

Either of the two Protective Earth Terminals can be used for grounding the driver. The terminal that is not grounded can be used as a spare terminal. Use the spare terminal according to your specific need, such as connecting it to the motor in order to ground the motor. Do not share the Protective Earth Terminal with a welder or any other power equipment. When grounding the Protective Earth Terminal, secure the grounding point near the driver.

- Applicable crimp terminal: Round crimp terminal with insulation cover
- Thread size of terminal: M4
- Tightening torque: 1.2 N·m (10.6 lb-in)
- Applicable lead wire: AWG18 to 14 (0.75 to 2.0 mm²)

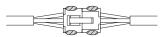

Precautions about static electricity

Static electricity may cause the driver to malfunction or suffer damaged. Be sure to ground the motor and driver to prevent them from being damaged by static electricity.

2.4 Connecting the motor and driver

Connect the motor power connector to the CN2, and the motor signal connector to the CN4 on the driver. When using an electromagnetic brake type motor, also connect the electromagnetic brake connector to the CN1. When extending the connection distance between the motor and driver, use the connection cable (supplied or sold separately).

* Electromagnetic brake type only


Note

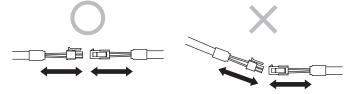
Have the connector plugged in securely. Insecure connector connection may cause malfunction or damage to the motor or driver.

Notes about connector connection

Note

When inserting connectors or pulling out connectors, be sure to do with holding the connector bodies. Doing with holding the cables may cause a connection failure.

Position to hold the connector


• When inserting the connector

Hold the connector bodies, and insert in straight securely. Inserting the connector in an inclined state may result in damage to terminals or a connection failure.

When pulling out the connector

Pull out the connector in straight while releasing the lock part of the connector.

Pulling out the connector with holding the cable (lead wire) may result in damage to the connector.

· Pin assignment of motor power connector

Pin No.	Color	Lead size
1	Blue	AWG18
2	-	-
3	-	Drain (AWG24 or equivalent)
4	Purple	AWG18
5	Gray	AWGIO
6	-	-

3	6	2
2	5	
1	4	۲Ľ

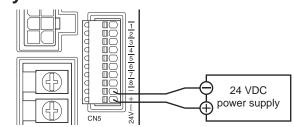
Housing: 5557-06R-210 (Molex) Terminal: 5556T (Molex)

· Pin assignment of motor signal connector

Pin No.	Color	Lead size	36
1	-	-	25
2	Green		
3	Yellow	AWG26	Housing: 43025-0600 (Molex) or 794617-6 (TE Conne Terminal: 43030-0004 (Molex)
4	Brown		
5	Red		
6	Orange		

• Pin assignment of electromagnetic brake connector

Color	Lead size	
Black	AWG24	
White	AVVG24	
	1	
1 2		
	Black	

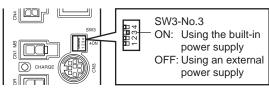

Housing: 5557-02R-210 (Molex) Terminal: 5556T (Molex)

794617-6 (TE Connectivity)

2.5 Connecting the 24 VDC power supply

The 24 VDC power supply is for the control circuit of the driver.

Be sure to connect a power supply which voltage is 24 VDC -15% to +20% and current is 1 A or more, to the CN5.



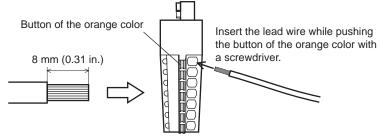
- Note • When connecting the 24 VDC power supply, check the indication of the driver case and pay attention to the polarity of the power supply. Reverse-polarity connection may cause damage to the driver.
 - When cycling the 24 VDC power, turn off the power and wait for the PWR/ALM LED to turn off.

Selecting the input signal power supply 2.6

Select the input signal power supply (built-in power supply or external power supply) to be used.

The driver comes with a built-in power supply. To control the operation using relays and switches, set the SW3-No.3 of the function setting switch1 to the ON side to select the built-in power supply.

Factory setting: OFF (an external power supply is used)



Note The built-in power supply cannot be used with the source logic. If the source logic is used, do not turn the external voltage selector switch to the ON side.

Connecting the I/O signals 2.7

Connect the input signals to the CN5, and connect the analog external speed setting input signals and output signals to the CN6.

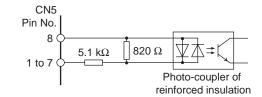
- Applicable lead wire: AWG26 to 20 (0.14 to 0.5 mm²)
- Length of the insulation cover which can be peeled: 8 mm (0.31 in.)

CN5 pin assignment

	•		
Pin No	Name	Description *	
1	IN0	Input terminal 0 [FWD]	
2	IN1	Input terminal 1 [REV]	-
3	IN2	Input terminal 2 [STOP-MODE]	
4	IN3	Input terminal 3 [M0]	
5	IN4	Input terminal 4 [ALARM-RESET]	
6	IN5	Input terminal 5 [MB-FREE]	
7	IN6	Input terminal 6 [TH]	
8	IN-COM0	Input signal common	₫ <u>ш⊖</u> ++
-	_	Power supply GND/ Input signal common (0 V)	
+	_	24 VDC power supply	-

The signal in brackets [] is a function that is assigned at the time of shipment. The assignments can be changed using the OPX-2A or MEXEO2, or via RS-485 communication.

CN6 pin assignment


Pin No	Name	Description *2	
1	VH		
2	VM	Analog external speed setting input	₫ Щ⊖— 1
3	VL *1		
4	IN-COM1	Input signal common (0 V)	
5	OUT0+	Output terminal 0 (+) [SPEED-OUT]	
6	OUT0-	Output terminal 0 (-) [SPEED-OUT]	
7	OUT1+	Output terminal 1 (+) [ALARM-OUT1]	
8	OUT1-	Output terminal 1 (-) [ALARM-OUT1]	

*1 The VL input is connected to IN-COM1 inside the driver.

*2 The signal in brackets [] is a function that is assigned at the time of shipment. The assignments can be changed using the **OPX-2A** or **MEXE02**, or via RS-485 communication.

Input signal circuit

All input signals of the driver are photocoupler inputs. When an external power supply is used: 24 VDC -15 to +20%, 100 mA or more

Output signal circuit

All output signals of the driver are photocoupler/open-collector outputs. The ON voltage of the output circuit is 1.6 VDC maximum. When driving each element using the output signal circuit, give consideration to this ON voltage.

4.5 to 30 VDC, 40 mA or less (For the SPEED-OUT output, supply at least 5 mA of current.)

CN6

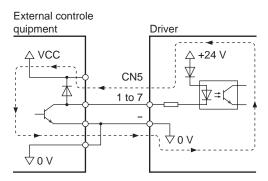
Pin No. 5, 7 Inductive load

Flywheel

diode

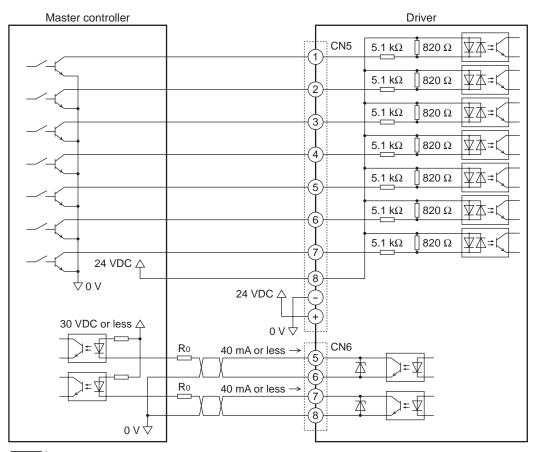
CN6

Pin No.


- Note
- For output signals, be sure to connect a current-limiting resistor so that the current does not exceed 40 mA.

When using a programmable controller, check the resistance value inside the controller and connect a currentlimiting resistor as necessary.

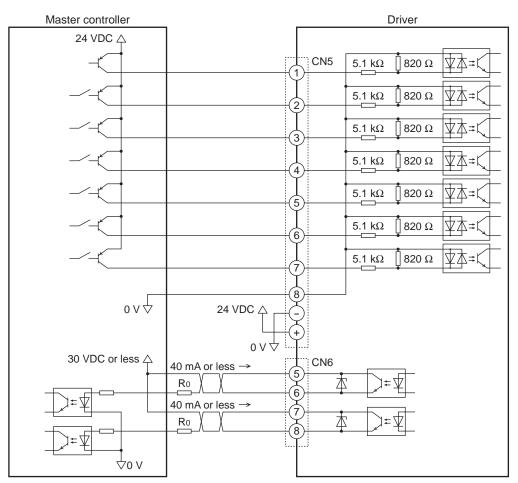
• When connecting a relay (inductive load), etc., to detect alarm outputs, use a relay with built-in flywheel diode, or provide a fly-back voltage control measure based on diode, etc., for the inductive load.


Using a controller with a built-in clamp diode

If a controller with a built-in clamp diode is used, a leakage path may form and cause the motor to operate even when the controller power is off, as long as the driver power is on. Since the power capacity of the controller is different from that of the driver, the motor may operate when the controller and driver powers are turned on or off simultaneously. When powering down, turn off the driver power first, followed by the controller power. When powering up, turn on the controller power first, followed by the driver power.

■ Connection example with I/O signal circuit

• Sink logic circuit


Note

• Keep the output signal to 30 VDC or less.

• For output signals, be sure to connect a current-limiting resistor R0 so that the current does not exceed 40 mA.

When using a programmable controller, check the resistance value inside the controller and connect a currentlimiting resistor R₀ as necessary.

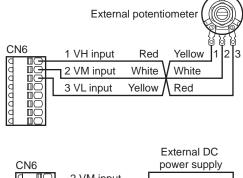
• Source logic circuit

Note •

• Keep the output signal to 30 VDC or less.

 For output signals, be sure to connect a current-limiting resistor R₀ so that the current does not exceed 40 mA.

When using a programmable controller, check the resistance value inside the controller and connect a currentlimiting resistor R₀ as necessary.


2.8 Connecting an external speed setter

The rotation speed can be set using an external potentiometer (supplied) or external DC voltage. Refer to p.66 for setting method.

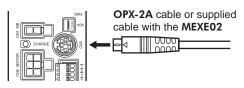
• Using an external potentiometer

Connect the supplied external potentiometer to the pin Nos.1 to 3 of CN6 of the driver. Use the supplied signal wire for this connection.

Connect the shield wire of the signal wire to the VL input terminal. Make sure the shield wire does not contact other terminals.

• Using an external DC voltage

For the external voltage, use a DC power supply (0 to 10 VDC) with reinforced insulation on both the primary side and secondary side, and connect it to the pin Nos. 2 and 3 of CN6 of the driver. The input impedance between the VM input and VL input is approximately $30 \text{ k}\Omega$. The VL input is connected to IN-COM1 inside the driver.

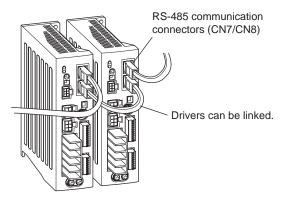

External DC power supply

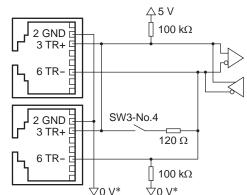
Note

Be sure to set the external DC voltage to 10 VDC or less. When connecting the external DC power supply, make sure the polarities are correct. If the polarities are reversed, the driver may be damaged.

2.9 Connecting the data setter

Connect **OPX-2A** cable or supplied cable with the **MEXEO2** to CN3 on the driver.


CAUTION The data edit connector (CN3), I/O signal connectors (CN5/CN6) and RS-485 communication connectors (CN7/CN8) are not insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the these equipment and driver to short, damaging both.


2.10 Connecting the RS-485 communication cable

Connect this cable when controlling the product via RS-485 communication. Connect the RS-485 communication cable to the CN7 or CN8 on the driver.

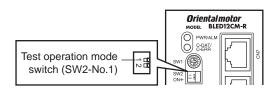
The vacant connector can be used to connect a different driver. A driver link cable is available as an accessory (sold separately). See p.160. A commercial LAN cable can be also used to link drivers.

Internal circuit

^{*} The GND line is used in common with 24 VDC power supply input terminal (CN5).

1

8


CN7/CN8 pin assignment

Pin No	Name	Description	-
1	N.C.	Not used	-
2	GND	GND	
3	TR+	RS-485 communication signal (+)	. 년 월
4	N.C.	Not used	·
5	N.C.		۲ _۲
6	TR-	RS-485 communication signal (-)	
7	N.C.	Netwood	-
8	N.C.	Not used	

2.11 Test operation

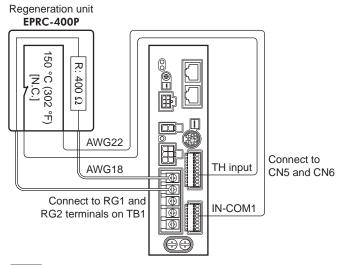
Once a main power supply and 24 VDC power supply are connected, the connection status can be checked by driving the motor tentatively without setting the data.

- 1. Turn on the main power supply and 24 VDC power supply after completing the wiring.
- 2. Turn the test operation mode switch (SW2-No.1) ON.
- Check that the motor rotates at low speed (100 r/min) in the forward direction.
 If the motor did not rotate or malfunction could be seen, check the wiring after turning off the power.

(If the rotation direction has been changed by the **OPX-2A** or **MEXE02**, or via RS-485 communication, the motor rotates according to the setting.)

- 4. Turn the test operation mode switch OFF. The motor stops.
- Note If the FWD input or REV input is turned ON while the motor rotates in test operation, the motor will stop. (A warning or alarm signal is not output.) To reset this condition, turn all of test operation mode switch, FWD input and REV input OFF. The motor will be able to operate after turning all of them OFF.

2.12 Connecting the regeneration unit


If vertical drive (gravitational operation) such as elevator applications is performed or if sudden start-stop operation of a large inertial load is repeated frequently, connect the regeneration unit **EPRC-400P**. Install the regeneration unit in a location where heat dissipation capacity equivalent to a level achieved with a heat sink [made of aluminum alloy, $350 \times 350 \times 3$ mm ($13.78 \times 13.78 \times 0.12$ in.)] is ensured.

Connecting method

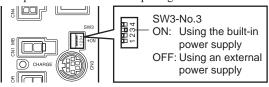
The wiring of the regeneration unit to the driver I/O terminals varies depending on the connecting methods. Refer to p.41, 42, 43 for connecting method.

Connect the regeneration unit before turning on the main power and 24 VDC power. The regeneration unit does not perform its control function if connected after the main power and 24 VDC power has been turned on.

- Regenerative current flows through the two thick lead wires (AWG18: 0.75 mm²) of the regeneration unit. Connect them to the RG1 and RG2 terminals of the TB1. The applicable crimp terminal is the same as the one used to connect the power supply. Refer to p.32.
- The two thin lead wires (AWG22: 0.3 mm²) of the regeneration unit are thermostat outputs. Connect them to CN5 and CN6. Refer to p.34 for connecting method.

- **Note** If the current consumption of the regeneration unit exceeds the allowable level, the thermostat will be triggered and a regeneration unit overheat alarm will generate. If a regeneration unit overheat alarm generates, turn off the power and check the content of the error.
 - If an external power supply is used for the power supply of input signals, turn on the external power supply before turning on the driver main power supply.

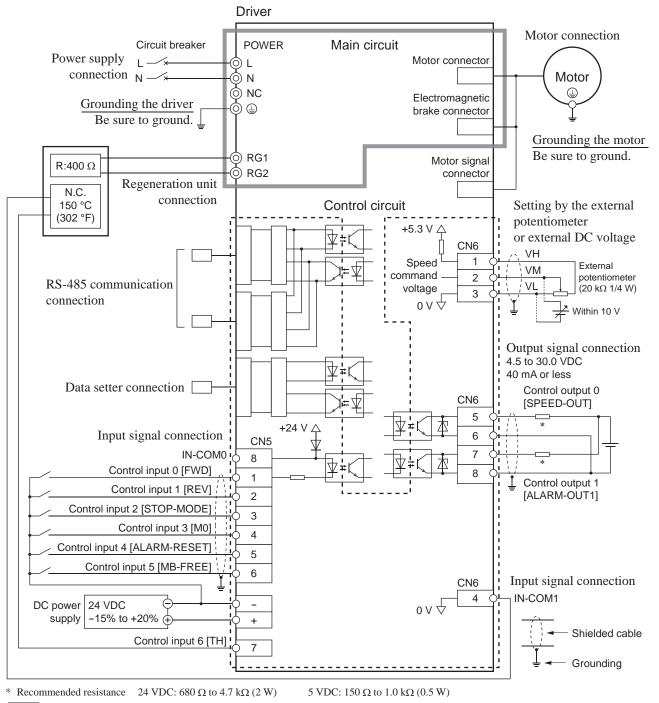
Regeneration unit specifications


Model	EPRC-400P
Continuous regenerative power	100 W
Resistance	400 Ω
Operating temperature of thermostat	Operation: Opens at 150±7 °C (302±45 °F) Reset: Closes at 145±12 °C (293±54 °F) (normally closed)
Electrical rating of thermostat	120 VAC 4 A, 30 VDC 4 A (minimum current: 5 mA)

2.13 Connection diagram (example)

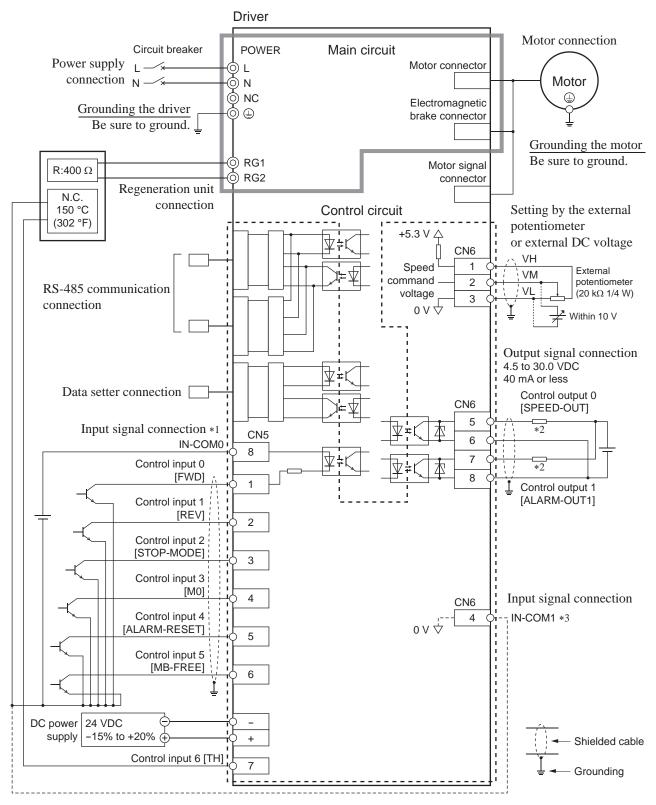
Each connection diagram (example) is for the electromagnetic brake type. In the case of the standard type, there are no connection for the electromagnetic brake and no connection/input for the MB-FREE input signal.

To use the built-in power supply, set the SW3-No.3 of the function setting switch switch1 to the ON side.


The factory setting is OFF (an external power supply is used). To use an external power supply, the factory setting need not be changed.

Sink logic

Using the built-in power supply

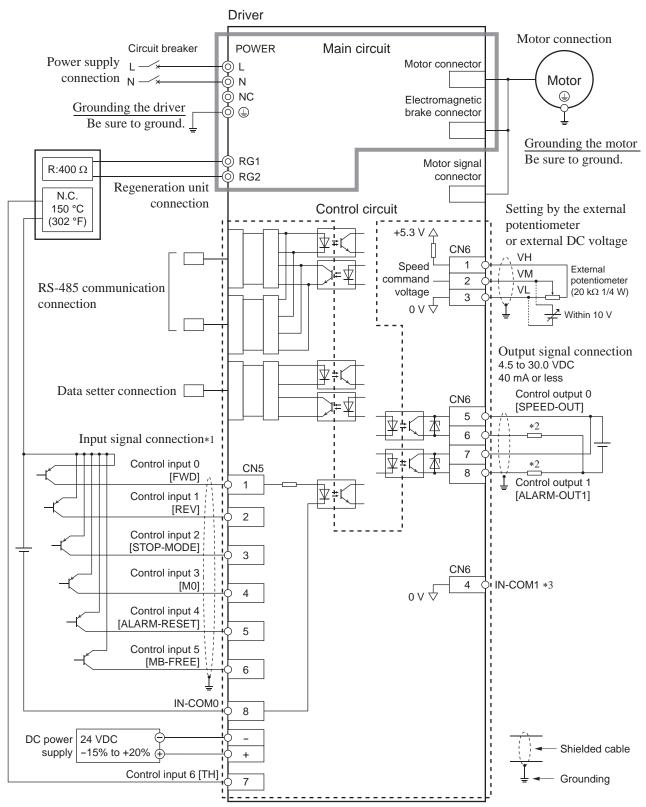

This is a connection example that the power supply is single-phase 100-120 VAC, the rotation speed is set using an external potentiometer or external DC voltage, and the motor is operated with relays, switches and other contact switches. For the SPEED-OUT output, supply at least 5 mA of current.

NoteBe sure to ground the motor and driver. Failure to do so may result in electric shock or damage to the product.Static electricity may cause damage to the product if the Protective Earth Terminals are not grounded.

Using an external power supply

This is a connection example that the power supply is single-phase 100-120 VAC, the rotation speed is set using an external potentiometer or external DC voltage, and the motor is operated with sequence connection of transistor type. For the SPEED-OUT output, supply at least 5 mA of current.

*1 Turn on the external power supply before turning on the driver main power supply.


*2 Recommended resistance $24 \text{ VDC: } 680 \Omega \text{ to } 4.7 \text{ k}\Omega (2 \text{ W}) = 5 \text{ VDC: } 150 \Omega \text{ to } 1.0 \text{ k}\Omega (0.5 \text{ W})$

*3 When connecting one of the lead wires of the thermostat output to the IN-COM1, connect it in common with a GND of the external power supply.

NoteBe sure to ground the motor and driver. Failure to do so may result in electric shock or damage to the product.Static electricity may cause damage to the product if the Protective Earth Terminals are not grounded.

Source logic

This is a connection example that the power supply is single-phase 100-120 VAC, the rotation speed is set using an external potentiometer or external DC voltage, and the motor is operated with sequence connection of transistor type. For the SPEED-OUT output, supply at least 5 mA of current.

*1 Turn on the external power supply before turning on the driver main power supply.

*2 Recommended resistance 24 VDC: 680Ω to $4.7 k\Omega (2 W)$ 5 VDC: 150Ω to $1.0 k\Omega (0.5 W)$

*3 When connecting one of the lead wires of the thermostat output to the IN-COM1, connect it in common with a GND of the external power supply.

NoteBe sure to ground the motor and driver. Failure to do so may result in electric shock or damage to the product.Static electricity may cause damage to the product if the Protective Earth Terminals are not grounded.

3 Explanation of I/O signals

In this manual, I/O signals are described as follows.

- Direct I/O: I/O signals accessed via input signal connector (CN5) and I/O signal connector (CN6)
- Network I/O: I/O signals accessed via RS-485 communication

Set the following parameters using any of the OPX-2A, MEXEO2 or RS-485 communication.

3.1 Assignment of direct I/O

Assignment to the input terminals

The input signals shown below can be assigned to the input terminals IN0 to IN6 of CN5 by setting parameters. For details on input signals, refer to p.50.

Input terminal	Initial value		Input terminal	Initial value
INO	1: FWD		IN4	24: ALARM-RESET
IN1	2: REV		IN5	20: MB-FREE
IN2	19: STOP-MODE		IN6	22: TH
IN3	48: M0			

Assignment No.	Signal name	Function	
0	Not used	Set when the input terminal is not used.	
1	FWD	Rotate the motor in the forward direction.	
2	REV	Rotate the motor in the reverse direction.	
19	STOP-MODE	Select instantaneous stop or deceleration stop.	
20	MB-FREE	Release the electromagnetic brake.	
21	EXT-ERROR		
22	TH	Stop the motor (normally closed).	
24	ALARM-RESET	Reset of the present alarm.	
27	НМІ	Release of the function limitation of the OPX-2A or MEXE02 (normally closed).	
32	R0		
33	R1	1	
34	R2		
35	R3		
36	R4		
37	R5		
38	R6		
39	R7	General signals	
40	R8	Use these signals when controlling the system via RS-485 communication.	
41	R9		
42	R10		
43	R11	1	
44	R12	1	
45	R13]	
46	R14]	
47	R15]	
48	MO		
49	M1	Coloct the operation date No. using these four life	
50	M2	Select the operation data No. using these four bits	
51	M3]	
54	TL	Disable the torque limiting. (normally closed).	

Related parameters

Parameter name	Description	Initial value
IN0 function select		1: FWD
IN1 function select	Assigns the input signals to the input terminal IN0 to IN6. See the table on the previous page for the assignment number and corresponding signal.	2: REV
IN2 function select		19: STOP-MODE
IN3 function select		48: M0
IN4 function select		24: ALARM-RESET
IN5 function select		20: MB-FREE
IN6 function select		22: TH

• Do not assign the same input signal to multiple input terminals. When the same input signal is assigned to multiple input terminals, the function will be executed if any of the terminals becomes active.

- The ALARM-RESET input will be executed when turning from ON to OFF.
- When the HMI input and TL input are not assigned to the input terminals, these inputs will be always set to ON. When assigning them to multiple terminals (including direct I/O and network I/O), the function will be executed when all terminals are set to ON.

Changing the logic level setting of input signals

You can change the logic level setting for input terminals IN0 to IN6 using the parameter.

Related parameters

Parameter name	Description	Initial value
IN0 contact configuration		
IN1 contact configuration		
IN2 contact configuration	Changes the logic level setting for the input terminal IN0 to IN6. 0: Normally open 1: Normally closed	0
IN3 contact configuration		
IN4 contact configuration		
IN5 contact configuration		
IN6 contact configuration		

Assignment to the output terminals

The output signals shown below can be assigned to the output terminals OUT0 and OUT1 of CN6 by setting parameters. For details on output signals, refer to p.52.

Output terminal	Initial value
OUT0	85: SPEED-OUT
OUT1	65: ALARM-OUT1

Assignment No.	Signal name	Function	
0	Not used	Set when the output terminal is not used.	
1	FWD_R	Output in response to the FWD input.	
2	REV_R	Output in response to the RVS input.	
19	STOP-MODE_R	Output in response to the STOP-MODE input.	
20	MB-FREE_R	Output in response to the MB-FREE input.	
27	HMI_R	Output in response to the HMI input.	
32	R0		
33	R1		
34	R2		
35	R3		
36	R4		
37	R5		
38	R6		
39	R7	Output the status of the general signals D0 to D15	
40	R8	-Output the status of the general signals R0 to R15.	
41	R9		
42	R10		
43	R11	-	
44	R12	_	
45	R13		
46	R14		
47	R15		
48	M0_R		
49	M1_R		
50	M2_R	-Output in response to the M0 to M3 inputs.	
51	M3_R		
54	TL_R	Output in response to the TL input.	
65	ALARM_OUT1	Output the alarm status of the driver (normally closed).	
66	WNG	Output the warning status of the driver.	
68	MOVE	Output while the motor operates.	
71	TLC	Output when the motor torque reaches the torque limiting value.	
77	VA	Output when the motor speed reaches the setting value.	
80	S-BSY	Output when the driver is in internal processing state.	
81	ALARM-OUT2	Output when the overload warning detection level is exceeded. Output when the overload alarm generates. (normally closed)	
82	MPS	Output the ON-OFF state of the main power supply.	
84	DIR	Output the rotation direction of motor shaft.	
85	SPEED-OUT	30 pulses are output with each revolution of the motor output shaf	

Related parameters

Parameter name	Description	Initial value
	Assigns the output signals to the output terminals OUT0 and OUT1. See the table above for the assignment number and	85: SPEED-OUT
• · · · · · · · · ·	corresponding signal.	65: ALARM-OUT1

3.2 Assignment of network I/O

Assign the I/O function via RS-485 communication.

Assignment of input signals

The input signals shown below can be assigned to the NET-IN0 to NET-IN15 of network I/O by setting parameters. See each command description for the assignments of the NET-IN0 to NET-IN15.

Assignment No.	Signal name	Function	Setting range
0	Not used	Set when the input terminal is not used.	-
1	FWD	Rotate the motor to FWD direction.	0: Stop
2	REV	Rotate the motor to REV direction.	1: Operation
19	STOP-MODE	Select instantaneous stop or deceleration stop.	0: Instantaneous stop 1: Deceleration stop
20	MB-FREE	Release the electromagnetic brake.	0: Electromagnetic brak hold 1: Electromagnetic brak release
27	HMI	Release of the function limitation of the OPX-2A or MEXE02 (normally closed).	0: Function limitation 1: Function limitation release
32	R0		
33	R1		
34	R2	-	
35	R3		
36	R4		
37	R5		
38	R6		
39	R7	General signals Use these signals when controlling the system via RS-485 communication.	0: OFF
40	R8		1: ON
41	R9		
42	R10		
43	R11		
44	R12		
45	R13		
46	R14		
47	R15		
48	MO		0: OFF
49	M1	Select the operation data No. using these four	1: ON
50	M2	bits.	(Operation data No.0 to
51	M3	1	15 can be selected.)
54	TL	Disable the torque limiting. (normally closed).	0: Torque limiting disable 1: Torque limiting enable

Related parameters

-	
alue	
10	
/11	
/12	
VD.	
V	
-MODE	
FREE	
0: Not used	

• Do not assign the same input signal to multiple input terminals. When the same input signal is assigned to multiple input terminals, the function will be executed if any of the terminals becomes active.

• When the HMI input and TL input are not assigned to the input terminals, these inputs will be always set to ON. When assigning them to multiple terminals (including direct I/O and network I/O), the function will be executed when all terminals are set to ON.

Assignment to the output terminals

The output signals shown below can be assigned to the NET-OUT0 to NET-OUT15 of network I/O by setting parameters. See each command description for the assignments of the NET-OUT0 to NET-OUT15.

Assignment No.	Signal name	Function	Data read
0	Not used	Set when the output terminal is not used.	
1	FWD_R	Output in response to the FWD input.	
2	RVS_R	Output in response to the RVS input.]
19	STOP-MODE_R	Output in response to the STOP-MODE input.	
20	MB-FREE_R	Output in response to the MB-FREE input.]
27	HMI_R	Output in response to the HMI input.	1
32	R0]
33	R1		
34	R2		
35	R3		
36	R4		
37	R5		
38	R6		0: OFF
39	R7	Output the status of the general signals R0	1: ON
40	R8	to R15.	
41	R9		
42	R10		
43	R11		
44	R12		
45	R13		
46	R14		
47	R15		
48	M0_R]
49	M1_R	Output in response to the MO to M2 inputs	
50	M2_R	Output in response to the M0 to M3 inputs.	
51	M3_R		
54	TL_R	Output in response to the TL input.	
65	ALARM-OUT1	Output the alarm status of the driver (normally closed).	0: Alarm not present 1: Alarm present
66	WNG	Output the warning status of the driver.	0: Warning not present 1: Warning present
68	MOVE	Output while the motor operates.	0: Motor stopped 1: Motor operating
71	TLC	Output when the motor torque reaches the torque limiting value.	0: No torque limiting 1: In torque limiting operation
77	VA	Output when the motor speed reaches the setting value.	0: Speed not attained 1: Speed attainment
80	S-BSY	Output when the driver is in internal processing state.	0: OFF 1: ON
81	ALARM-OUT2	Output when the overload warning detection level is exceeded. Output when the overload alarm generates. (normally closed)	0: Normal operation 1: In overload operatio
82	MPS	Output the ON-OFF state of the main power supply.	0: OFF 1: ON
84	DIR	Output the rotation direction of motor shaft.	0: REV direction 1: FWD direction
l			

Related parameters

Parameter name	Description	Initial value
NET-OUT0 function select		48: M0_R
NET-OUT1 function select		49: M1_R
NET-OUT2 function select		50: M2_R
NET-OUT3 function select		1: FWD_R
NET-OUT4 function select		2: REV_R
NET-OUT5 function select		19: STOP-MODE_R
NET-OUT6 function select	Assigns the output signal to the NET-	66: WNG
NET-OUT7 function select	OUT0 to NET-OUT15.	65: ALARM-OUT1
NET-OUT8 function select	See the table on the previous page for the assignment number and	80: S-BSY
NET-OUT9 function select	corresponding signal.	
NET-OUT10 function select		0: Not used
NET-OUT11 function select		
NET-OUT12 function select		81: ALARM-OUT2
NET-OUT13 function select		68: MOVE
NET-OUT14 function select		77: VA
NET-OUT15 function select		71: TLC

3.3 Input signals

The signal state represents the "ON: Carrying current" or "OFF: Not carrying current" state of the internal photocoupler rather than the voltage level of the signal.

FWD input and REV input

When the FWD input is turned ON, the motor rotates in the clockwise direction. When the FWD input is turned OFF, the motor stops.

When the REV input is turned ON, the motor rotates in the counterclockwise direction. When the REV input is turned OFF, the motor stops.

If both the FWD input and REV input are turned ON, the motor stops instantaneously.

STOP-MODE input

Select how the motor should stop when the FWD input or REV input is turned OFF. When the STOP-MODE input is ON, the motor decelerates to a stop. When the STOP-MODE input is OFF, the motor stops instantaneously.

MB-FREE input

This input signal is used with electromagnetic brake types. Select how the electromagnetic brake would operate when the motor stops.

When the MB-FREE input is ON, the electromagnetic brake will be released.

When the MB-FREE input is OFF, the electromagnetic brake will actuate and hold the shaft in position.

Note The MB-FREE input is disabled while an alarm is present.

EXT-ERROR input

The EXT-ERROR input is normally closed.

Connect an error signal detected externally. When the error signal is input, the EXT-ERROR input will be turned OFF and the motor will be stopped.

When operating the motor, turn the EXT-ERROR input ON.

TH input

The TH input is normally closed. When using the regeneration unit, connect the thermostat output of the regeneration unit.

ALARM-RESET input

When an alarm generates, the motor will stop. When the ALARM-RESET input is turned from ON to OFF, the alarm will be reset (The alarm will be reset at the OFF edge of the ALARM-RESET input). Always reset an alarm after removing the cause of the alarm and ensuring safety.

Note that some alarms cannot be reset with the ALARM-RESET input. See p.143 for alarm descriptions.

HMI input

The HMI input is normally closed.

When the HMI input is turned ON, the function limitation of the OPX-2A or MEXEO2 will be released. When the HMI input is turned OFF, the function limitation will be imposed.

The following functions will be limited to execute.

- I/O test
- Test operation
- Teaching

• Writing, downloading and initializing parameters

Note When the HMI input is not assigned to the input terminal, this input will be always set to ON. When assigning it to multiple terminals (including direct I/O and network I/O), the function will be executed when all terminals are set to ON.

M0 to M3 inputs

Select a desired operation data number for multi-speed operation based on the combination of ON/OFF states of the M0 to M3 inputs.

Refer to p.73 for multi-speed operation.

Operation data No.	М3	M2	M1	MO	Speed setting method	
0	OFF	OFF	OFF	OFF	Analog setting/digital setting	
1	OFF	OFF	OFF	ON		
2	OFF	OFF	ON	OFF		
3	OFF	OFF	ON	ON		
4	OFF	ON	OFF	OFF		
5	OFF	ON	OFF	ON		
6	OFF	ON	ON	OFF		
7	OFF	ON	ON	ON		
8	ON	OFF	OFF	OFF	Digital setting	
9	ON	OFF	OFF	ON		
10	ON	OFF	ON	OFF		
11	ON	OFF	ON	ON		
12	ON	ON	OFF	OFF		
13	ON	ON	OFF	ON]	
14	ON	ON	ON	OFF		
15	ON	ON	ON	ON		

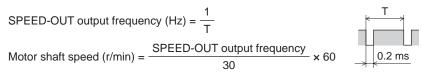
TL input

Note

The TL input is normally closed.

When the TL input is turned ON, the torque limiting is enabled.

When the TL input is turned OFF, the torque limiting becomes invalid.

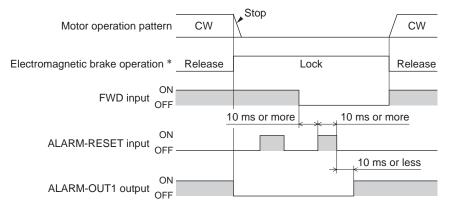

When the TL input is not assigned to the input terminal, this input will be always set to ON. When assigning it to multiple terminals (including direct I/O and network I/O), the function will be executed when all terminals are set to ON.

3.4 Output signals

The signal state represents the "ON: Carrying current" or "OFF: Not carrying current" state of the internal photocoupler rather than the voltage level of the signal.

■ SPEED-OUT output

30 pulses are output with each revolution of the motor output shaft synchronously with the motor operation. The pulse width of output pulse signals is 0.2 ms. The rotation speed of the motor output shaft can be calculated using the SPEED-OUT output.



ALARM-OUT1 output

The ALARM-OUT1 input is normally closed.

When the driver's protective function actuates, the ALARM-OUT1 output turns OFF and the ALM LED blinks . In the case of a standard type, the motor coasts to a stop. In the case of an electromagnetic brake type, on the other hand, the motor stops instantaneously, upon which the electromagnetic brake actuates and holds the shaft in position. To reset an alarm, turn both the FWD input and REV input OFF, and remove the cause of the alarm before turning the ALARM-RESET input ON (keep it ON for 10 ms or more). The ALARM-RESET input is disabled while the FWD input or REV input is ON.

If the alarm cannot be reset with the ALARM-RESET input, once turn off the power, wait for at least 30 sec, and turn on the power again.

* When the motor is an electromagnetic brake type, the electromagnetic brake is actuated to hold the shaft in position at the same time that an alarm generates. The setting, which the electromagnetic brake will actuate and hold the position after the motor coasts to a stop, can be selected using the **OPX-2A**, **MEXEO2** or RS-485 communication.

MOVE output

The MOVE output turns ON while the motor is operating (while any of the input signal for operation is ON).

VA output

The VA output turns ON when the motor speed reaches the setting value.

ALARM-OUT2 output

The ALARM-OUT2 output is normally closed.

When the "overload warning enable" is set to enable, this signal will be turned OFF if the motor load torque exceeds the overload warning level.

Even if the "overload warning enable" is set to disable, this signal will be turned OFF if the overload alarm generates.

WNG output

When a warning generates, the WNG output will turn ON. The motor will continue to operate. Once the cause of the warning is removed, the WNG output will turn OFF automatically.

TLC output

The TLC output turns ON when the motor output torque reaches the limit value.

S-BSY output

The S-BSY output turns ON while internal processing of the driver is being executed.In the following condition, the driver will be in an internal processing status.Issuing maintenance commands via RS-485 communication

MPS output

The MPS output turns ON when the driver main power is ON.

DIR output

The DIR output is the output signal that shows the rotation direction of motor output shaft. The rotation direction shows the forward direction if this signal is ON, and the rotation direction shows the reverse direction if this signal is OFF.

Response output

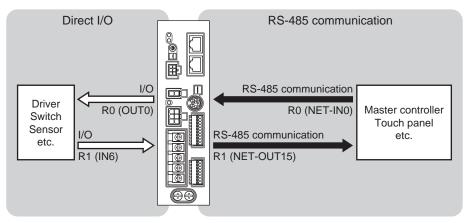
The response output is the output signal that shows the ON/OFF status corresponding to the input signals. The following tables show the correspondence between the input signals and output signals.

Input signal	Output signal	Input signal	Output signal
FWD	FWD_R	MO	M0_R
REV	REV_R	M1	M1_R
STOP-MODE	STOP-MODE_R	M2	M2_R
MB-FREE	MB-FREE_R	M3	M3_R
HMI	HMI_R	TL	TL_R
	·		·

3.5 General signals (R0 to R15)

The R0 to R15 are general signals that enable control via RS-485 communication. Using the R0 to R15 signals, I/O signals for the external device can be controlled by the master device via the driver. The direct I/O of the driver can be used as an I/O unit. See the following example for setting of the general signals.

• When outputting the signals from the master device to the external device


Assign the general signal R0 to the OUT0 output and NET-IN0.

When setting the NET-IN0 to 1, the OUT0 output turns ON. When setting the NET-IN0 to 0, the OUT0 output turns OFF.

• When inputting the output of the external device to the master device

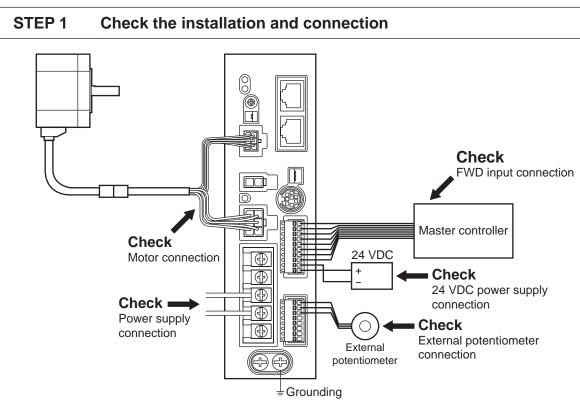
Assign the general signal R1 to the IN6 input and NET-OUT15.

When turning the IN6 input ON by the external device, the NET-OUT15 becomes 1. When turning the IN6 input OFF, the NET-OUT15 becomes 0. The logic level of the IN6 input can be set using "IN6 contact configuration" parameter.

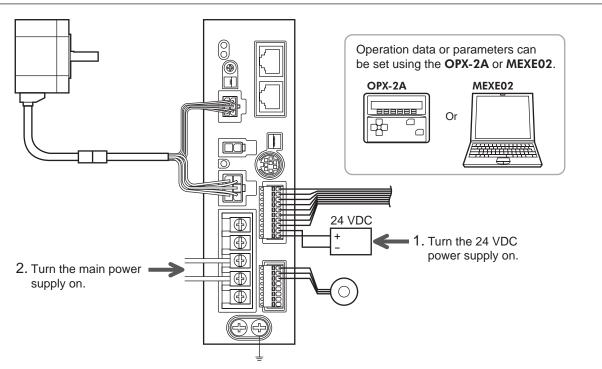
3 Method of control via I/O

This part explains when the operation is controlled via I/O after setting the operation data and parameters by the **OPX-2A** or **MEXE02**.

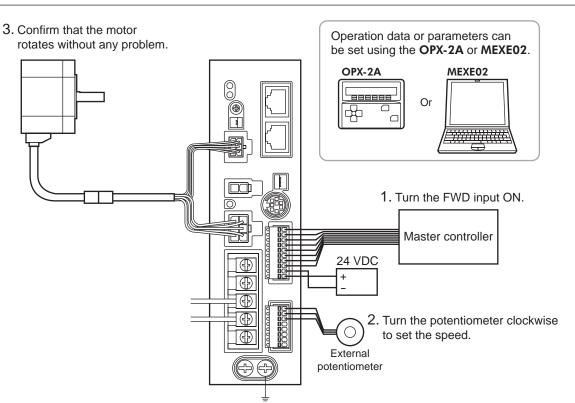
Table of contents


1	Guio	dance	56
2	Ope	ration data and parameter.	58
	2.1	Operation data	58
	2.2	Parameter	
		Parameter list	59
		Function parameter	
		■ I/O function parameter	61
		■ I/O function parameter (RS-485)	
		Analog adjust parameter	
		Alarm/warning parameter	
		Utilities parameter	
		Operation parameter	
		Communication parameter	
3	Met	hod of control via I/O	66
	3.1	Operation data	
	3.2	Setting the rotation speed	
		Analog setting	
		Digital setting	

3.3	Setting the acceleration time and	
	deceleration time	68
	■ When setting the rotation speed with analog	
	setting	. 68
	■ When setting the rotation speed with digital	
	setting	. 68
3.4	Setting the torque limiting	69
3.5	Running/stopping the motor	70
	Operation	. 70
	Stop	
	Rotation direction	. 70
3.6	Example of operation pattern	71
3.7	Multi-motor control	71
	Using an external potentiometer	. 71
	Using external DC voltage	. 72
	■ How to adjust the speed difference	. 72
3.8	Multi-speed operation	73


1 Guidance

If you are new to the **BLE** Series FLEX RS-485 communication type, read this section to understand the operating methods along with the operation flow.


Note Before operating the motor, check the condition of the surrounding area to ensure safety.

STEP 2 Turn on the power

STEP 3 Operate the motor

STEP 4 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present?
- Are the power supply and motor connected securely?
- Is the external potentiometer connected securely?

For more detailed settings and functions, refer to the following pages.

2 Operation data and parameter

The parameters required for motor operation are available in the following two types.

- Operation data
- User parameters

The parameters are saved in the RAM or non-volatile memory. The data saved in the RAM will be erased once the 24 VDC power supply is turned off. On the other hand, the parameters saved in the non-volatile memory will be retained even after the 24 VDC power supply is turned off.

When turning on the driver 24 VDC power supply, the parameters saved in the non-volatile memory will be sent to the RAM. Then, the recalculation and setup for the parameters are executed in the RAM.

Parameters having set via RS-485 communication or industrial network are saved in the RAM. To save the parameters stored in the RAM to the non-volatile memory, execute the "batch NV memory write" of the maintenance command. The parameters set with the **MEXEO2** will be saved in the non-volatile memory if "Data writing" is performed.

When a parameter is changed, the timing to enable the new value varies depending on the parameter. See the following four types.

	Update timing	Description	
A	Effective immediately	Executes the recalculation and setup immediately when writing the parameter.	
В	Effective after stopping the operation	Executes the recalculation and setup after stopping the operation.	
С	Effective after executing configuration or effective after turning the power ON again	Executes the recalculation and setup after executing the configuration or turning the 24 VDC power ON again.	
D	Effective after turning the power ON again	Executes the recalculation and setup after turning the 24 VDC power ON again.	

• Parameters having written via RS-485 communication are written in the RAM. If you change the parameters that become effective after turning on the power again, be sure to save them in the non-volatile memory before turning off the power.

• The non-volatile memory can be rewritten approximately 100,000 times.

2.1 Operation data

The following data is required to operate a motor. Total 16 operation data (No.0 to No.15) can be set in this product. There are the following two setting methods.

- Analog setting for rotation speed: This is a method to set the rotation speed using the external potentiometer or external DC voltage.
- Digital setting for rotation speed: This is a method to set the rotation speed using any of the **OPX-2A**, **MEXEO2** or RS-485 communication.

Item	Description	Setting range	Initial value	Effective *1
Rotational speed No.0 to Rotational speed No.15	Sets the rotation speed.	Analog setting: 100 to 4000 r/min Digital setting: 80 to 4000 r/min	0	
Acceleration No.0 to Acceleration No.15	Sets the time needed for the motor to reach the rotation speed. *2	0.2 to 15 s	0.5	A
Deceleration No.0 to Deceleration No.15	Sets the time needed for the motor to stop from the rotation speed. *3	0.2 10 13 5		
Torque limit No.0 to Torque limit No.15	Torque limit No.0 Sets the motor torque. Sets the maximum torque based on the rated		200	

*1 Indicates the timing for the data to become effective. (A: Effective immediately)

*2 The acceleration time when using the digital setting for rotation speed refers to the time needed for the motor to reach the set rotation speed.

The acceleration time when using the analog setting for rotation speed refers to the time needed for the motor to reach the rated rotation speed (3000 r/min).

*3 The deceleration time when using the digital setting for rotation speed refers to the time needed for the motor to stop from the set rotation speed.

The deceleration time when using the analog setting for rotation speed refers to the time needed for the motor to stop from the rated rotation speed (3000 r/min).

2.2 Parameter

Parameter list

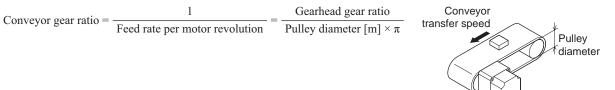
	Reduction gear rate			
	Decimal place for reduction gear rate			
	Amplification speed rate			
Function parameter	Conveyor reduction gear rate			
(p.60)	Decimal place for conveyor reduction gear rate			
	Conveyor amplification speed rate			
	Velocity attainment width			
	Motor rotation direction			
	INO to IN6 function select			
I/O function paramter	INO to IN6 contact configuration			
(p.61)	OUT0 and OUT1 function select			
	• NET-IN0 to NET-IN15 function select			
I/O function parameter (RS-485) (p.62)	NET-OUT0 to NET-OUT15 function select			
(p.02)	Analog operating speed command gain			
Analog adjust parameter (p.63)	Analog operating speed command offset			
	 Analog torque limit gain Analog torque limit offset 			
(p.00)	Analog operating speed maximum value for external input			
	Analog torque limit maximum value external input			
Alarm/warning parameter (p.63)	Over load warning levelOver load warning enable			
(p.00)				
	JOG operating speed			
Utilities parameter (p.63)	JOG operating torque			
(p.03)	Display mode of the data setter speed The data setter speed			
	The data setter editing mode			
	Data setter initial display			
	Analog input signal select			
Operation parameter (p.64)	No operation at initial alarm enable			
(p.64)	Magnetic brake function at alarm			
	Initial thermal input detection			
	Run mode select			
	Communication time out			
Communication parameter	Communication error alarm			
(p.65)	Communication parity			
	Communication stop bit			
	Communication transfer wait time			

Function parameter

Name	Description	Setting range	Initial value	Effective
Reduction gear rate	When entering the gear ratio of the gearhead, the	100 to 9999	100	
Decimal place for reduction gear rate	rotation speed of the gearhead output shaft can be displayed. Set the decimal position for the setting value of the gear ratio by the "decimal place for reduction gear rate" parameter.	0: 1 digit 1: 2 digit 2: 3 digit	2	
Amplification speed rate	Set the speed increasing ratio relative to the otation speed of the motor output shaft. When setting the speed increasing ratio to 1, the speed eduction ratio will be effective. When setting the speed increasing ratio to other than 1, the speed ncreasing ratio will be effective.		1	A
Conveyor reduction gear rate	When setting the conveyor speed reduction ratio, the transfer speed of the conveyor can be	100 to 9999	100	
Decimal place for conveyor reduction gear rate	displayed. Set the decimal position for the setting value of the speed reduction ratio by the "decimal place for conveyor reduction gear rate" parameter.	0: 1 digit 1: 2 digit 2: 3 digit	2	
Conveyor amplification speed rate	Sets the conveyor speed-increasing ratio relative to he rotation speed of the motor output shaft.		1	
Velocity attainment width	Sets the band within which the rotation speed of the motor is deemed to have reached the set value.	0 to 400 r/min	200	
Motor rotation direction	Sets the motor direction to be applied when the FWD input is turned ON.0: + direction=CCW 1: + direction=CW		1	С

* Indicates the timing for the data to become effective.

(A: Effective immediately, C:Effective after executing configuration or effective after turning the power ON again)


• How to set the speed reduction ratio

Set the speed reduction ratio as a combination of the "reduction gear rate" parameter and "decimal place for reduction gear rate" parameter. The relationships of speed reduction ratio and decimal position are explained by the combinations shown below.

Actual speed reduction ratio	"Reduction gear rate" parameter	"Decimal place for reduction gear rate" parameter
1.00 to 9.99		2
10.0 to 99.9	100 to 999	1
100 to 999		0
10.00 to 99.99		2
100.0 to 999.9	1000 to 9999	1
1000 to 9999		0

• Display the conveyor transfer speed

To display the conveyor transfer speed, set the conveyor speed reduction ratio by using the formula below:

When the calculated conveyor speed reduction ratio is used, the conveyor transfer speed is converted as follows:

Conveyor transfer speed $[m/min] = \frac{Motor output shaft rotating speed [r/min]}{2}$

Conveyor gear ratio

Example: The pulley diameter is 0.1 m and gear ratio of the gear head is 20

Conveyor gear ratio = $\frac{\text{Gearhead gear ratio}}{\text{Pulley diameter }[m] \times \pi} = \frac{20}{0.1 [m] \times \pi} \doteq 63.7$

From the conversion formula, the conveyor speed reduction ratio is calculated as 63.7 in this example. This means that the conveyor speed reduction ratio parameter is 637, while the conveyor speed reduction ratio decimal digit setting parameter is 1.

If the speed reduction decimal ratio is 63.7 and rotation speed of the motor is 1300 r/min, the conveyor transfer speed is converted as follows:

Conveyor transfer speed
$$[m/min] = \frac{1300}{63.7} \approx 20.4$$

Accordingly, "20.4" is shown.

■ I/O function parameter

Name	Description Setting range Initial value		Effective		
IN0 function select					
IN1 function select			2: REV		
IN2 function select	1		19: STOP-MODE		
IN3 function select	Assigns the input signals to the input terminals IN0 to IN6.	See table next.	48: M0	В	
IN4 function select			24: ALARM-RESET		
IN5 function select			20: MB-FREE		
IN6 function select			22: TH		
IN0 contact configuration		0: Make (N.O.) 1: Brake (N.C.)	0	С	
IN1 contact configuration	Changes the logic level setting for the input terminals IN0 to IN6.				
IN2 contact configuration					
IN3 contact configuration					
IN4 contact configuration					
IN5 contact configuration					
IN6 contact configuration					
OUT0 function select	Assigns the output signals to the output	See table povt	85: SPEED-OUT		
OUT1 function select	terminals OUT0 and OUT1.			A	

* Indicates the timing for the data to become effective.

(A: Effective immediately, B: Effective after stopping the operation, C:Effective after executing configuration or effective after turning the power ON again)

• Setting range for IN input function selection

	-			
0: No function	22: TH	35: R3	41: R9	47: R15
1: FWD	24: ALARM-RESET	36: R4	42: R10	48: M0
2: REV	27: HMI	37: R5	43: R11	49: M1
19: STOP-MODE	32: R0	38: R6	44: R12	50: M2
20: MB-FREE	33: R1	39: R7	45: R13	51: M3
21: EXT-ERROR	34: R2	40: R8	46: R14	54: TL

• Setting range for OUT output function selection

	•			
0: No function	34: R2	42: R10	50: M2_R	80: S-BSY
1: FWD_R	35: R3	43: R11	51: M3_R	81: ALARM-OUT2
2: REV_R	36: R4	44: R12	54: TL_R	82: MPS
19: STOP-MODE_R	37: R5	45: R13	65: ALARM_OUT1	84: DIR
20: MB-FREE_R	38: R6	46: R14	66: WNG	85: SPEED-OUT
27: HMI_R	39: R7	47: R15	68: MOVE	
32: R0	40: R8	48: M0_R	71: TLC	
33: R1	41: R9	49: M1_R	77: VA	

■ I/O function parameter (RS-485)

Name	Description	Setting range	Initial value	Effective
NET-IN0 function select			48: M0	
NET-IN1 function select			49: M1	
NET-IN2 function select			50: M2	
NET-IN3 function select			1: FWD	
NET-IN4 function select			2: REV	
NET-IN5 function select			19: STOP-MODE	
NET-IN6 function select	Assigns the input signals to the		20: MB-FREE	
NET-IN7 function select		See table next.		
NET-IN8 function select	NET-IN0 to NET-IN15.	See table next.		
NET-IN9 function select				
NET-IN10 function select				C
NET-IN11 function select			0: No function	
NET-IN12 function select				
NET-IN13 function select				
NET-IN14 function select				
NET-IN15 function select				
NET-OUT0 function select			48: M0_R	C
NET-OUT1 function select			49: M1_R	
NET-OUT2 function select			50: M2_R	_
NET-OUT3 function select			1: FWD_R	
NET-OUT4 function select			2: REV_R	
NET-OUT5 function select			19: STOP-MODE_R	
NET-OUT6 function select			66: WNG	
NET-OUT7 function select	Assigns the output signals to the	See table next.	65: ALARM-OUT1	
NET-OUT8 function select	NET-OUT0 to NET-OUT15.		80: S-BSY	
NET-OUT9 function select				
NET-OUT10 function select			0: No function	
NET-OUT11 function select				
NET-OUT12 function select			81: ALARM-OUT2	
NET-OUT13 function select			68: MOVE	
NET-OUT14 function select			77: VA	
NET-OUT15 function select			71: TLC	

* Indicates the timing for the data to become effective. (C: Effective after executing configuration or effective after turning the power ON again)

• Setting range for NET-IN input function selection

0: No function	32: R0	38: R6	44: R12	50: M2
1: FWD	33: R1	39: R7	45: R13	51: M3
2: REV	34: R2	40: R8	46: R14	54: TL
19: STOP-MODE	35: R3	41: R9	47: R15	04.12
20: MB-FREE	36: R4	42: R10	48: M0	
27: HMI	37: R5	43: R11	49: M1	

• Setting range for NET-OUT output function selection

0: No function	34: R2	42: R10	50: M2_R	80: S-BSY
1: FWD_R	35: R3	43: R11	51: M3_R	81: ALARM-OUT2
2: REV_R	36: R4	44: R12	54: TL_R	82: MPS
19: STOP-MODE_R	37: R5	45: R13	65: ALARM_OUT1	84: DIR
20: MB-FREE_R	38: R6	46: R14	66: WNG	
27: HMI_R	39: R7	47: R15	68: MOVE	
32: R0	40: R8	48: M0_R	71: TLC	
33: R1	41: R9	49: M1_R	77: VA	

Analog adjust parameter

Name	Description	Setting range	Initial value	Effective
Analog operating speed command gain	Sets the speed command per 1 VDC of input voltage.	0 to 4000 r/min	800	
Analog operating speed command offset	Sets the offset for speed command input.	-2000 to 2000 r/min	0	
Analog torque limit gain	Sets the torque limit per 1 VDC of input voltage.	0 to 200%	40	A
Analog torque limit offset	Sets the offset for torque limit input.	-50 to 50%	0	
Analog operating speed maximum value for external input	Sets the maximum value of rotation speed.	0 to 4000 r/min	4000	
Analog torque limit maximum value external input	Sets the maximum value of torque limiting.	0 to 200%	200	

* Indicates the timing for the data to become effective. (A: Effective immediately)

Alarm/warning parameter

Name	Description	Setting range	Initial value	Effective
Over load warning level	Sets the percentage to generate the overload warning against the motor load torque.	50 to 100%	100	Δ
Over load warning enable	Sets whether to enable or disable overload warning function.	0: Disable 1: Enable	0	A

* Indicates the timing for the data to become effective. (A: Effective immediately)

Utilities parameter

Name	Description	Setting range	Initial value	Effective
JOG operating speed	Sets the rotation speed at JOG operation.	0, or 80 to 1000 r/min	300	
JOG operating torque	The torque in JOG operation can be limited. Sets the maximum torque based on the rated torque being 100%.	0 to 200%	200	
Display mode of the data setter speed	Sets the display method of rotation speed in the monitor mode. If "0: Signed" is set, "-" will be displayed when rotating in the reverse direction.	0: Signed 1: Absolute	0	A
The data setter editing mode	Editing and clearing the operation data/ parameters can be prohibited by locking operation of the OPX-2A .	0: Disable 1: Enable	1	

* Indicates the timing for the data to become effective. (A: Effective immediately)

Operation parameter

Name	Description	Setting range	Initial value	Effective
Data setter initial display	Sets the initial screen to display on the OPX-2A when the driver power is turned on.	0: Operating speed 1: Conveyor speed 2: Load factor 3: Operating number 4: Mon top view	0	
Analog input signal select	Sets the setting method of operation data. See table next.	0: Analog invalid 1: Analog speed 2: Analog torque	1	
No operation at initial alarm enable	Sets whether to enable or disable the "no operation at initial alarm enable."	0: Disable 1: Enable	0	
Magnetic brake function at alarm	Set the actuated timing of the electromagnetic brake when an alarm is generated. When setting to 0, the electromagnetic brake will actuate and hold the position after the motor coasts to a stop.	0: Lock after free stop 1: Lock immediately	1	с
Initial thermal input detection	Switches whether to enable or disable the initial thermal input detection. When setting to "1: Enable," the regeneration unit overheat alarm will be generated if the 24 VDC power supply is input while the TH input is not assigned.	0: Disable 1: Enable	0	
Run mode select	The motor excitation can be shut off so that the overvoltage alarm is not generated immediately when driving a large inertia. The time until the motor stops will be longer.	0: PWM shut off mode enable 1: PWM shut off mode disable	1	

* Indicates the timing for the data to become effective. (C:Effective after executing configuration or effective after turning the power ON again)

Note When the electromagnetic brake motor is operated in vertical direction, do not set the "run mode select" parameter to "0."

• Analog input signal selection parameter

Setting method of operation data can be changed using the "analog input signal select" parameter. Others except the following combinations are not available to set.

Analog input signal selection parameter	Operation data No.	Rotational speed	Acceleration Deceleration	Torque limit
0	0 to 15	Digital setting		
1	0	Analog setting Digital setting		etting
(Initial value)	1 to 15	Digital setting		
2	0 to 15	Digital setting		Analog setting

Setting example

• When setting all operation data with digital setting: Set the analog input signal selection parameter to 0.

• When setting the only rotation speed of the operation data No.0 with analog setting: Set the analog input signal selection parameter to 1.

Communication parameter

Name	Description	Setting range	Initial value	Effective
Communication time out	Sets the condition in which the communication timeout occurs in RS-485 communication. When setting to zero (0), the driver does not monitor the condition in which the communication timeout occurs.	0 to 10000 ms	0	А
Communication error alarm generates after the RS-485 communication error alarm generates after the RS-485 communication error has occurred by the number of times set here.		1 to 10 times	3	A
Communication parity	Sets the parity for RS-485 communication.	0: No parity 1: Even 2: Odd	1	
Communication stop bit	Sets the stop bit for RS-485 communication.	0: 1 bit 1: 2 bit	0	D
Communication transfer wait time	Sets the transmission waiting time for RS-485 communication.	0 to 10000 (1=0.1 ms)	100	

* Indicates the timing for the data to become effective. (A: Effective immediately, D: Effective after turning the power ON again)

3 Method of control via I/O

This chapter explains the operations that can be performed with the **BLE** Series FLEX RS-485 communication type.

3.1 Operation data

The following data is required to operate a motor. Total 16 operation data (No.0 to No.15) can be set in this product. There are the following two setting methods.

- Analog setting for rotation speed: This is a method to set the rotation speed using the external potentiometer or external DC voltage.
- Digital setting for rotation speed: This is a method to set the rotation speed using any of the **OPX-2A**, **MEXEO2** or RS-485 communication.

Item	Description	Setting method	Setting range	Initial value
Potational speed	otational speed Sets the rotation speed.		100 to 4000 r/min	0 r/min
Rotational speed	Sets the rotation speed.	Digital setting	80 to 4000 r/min	01/11111
Acceleration	Sets the time needed for the motor to reach the rotation speed.	Digital aatting	0.2 to 15 s	0.5.0
Deceleration	Sets the time needed for the motor			0.5 s
Torque limit	Sets the motor torque. Sets the maximum torque based on the rated torque being 100%.	Digital setting Analog setting	0 to 200%	200%

When using the digital setting for the rotation speed or torque limiting, enable the digital setting by setting the setting range of the following parameter to "0: Analog invalid."

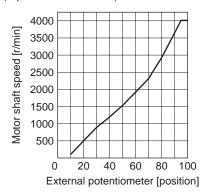
Parameter name	Description	Setting range	Initial value
Analog input signal select	Sets the setting method of operation	0: Analog invalid 1: Analog speed 2: Analog torque	1

3.2 Setting the rotation speed

Analog setting

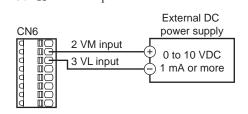

Set the rotation speed by the external potentiometer (supplied) or external DC voltage.

Setting by the external potentiometer

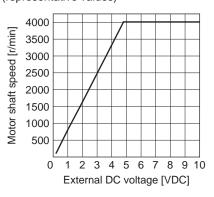

Connect the supplied external potentiometer to the pin Nos.1 to 3 of CN6 of the driver. Use the supplied signal wire for this connection. Use the supplied signal wire for this connection.

Connect the shield wire of the signal wire to the VL input terminal. Make sure the shield wire does not contact other terminals.

Turning the external potentiometer in the clockwise direction makes the motor to rotate faster. Turning it in the counterclockwise direction makes the motor to rotate slower.



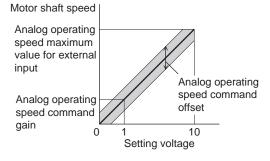
• Speed characteristics (representative values)



• Setting by the external DC voltage

For the external voltage, use a DC power supply (0 to 10 VDC) with reinforced insulation on both the primary side and secondary side, and connect it to the pin Nos. 2 and 3 of CN6 of the driver. The input impedance between the VM input and VL input is approx. 30 k Ω . The VL input is connected to IN-COM1 inside the driver.

 Speed characteristics (representative values)

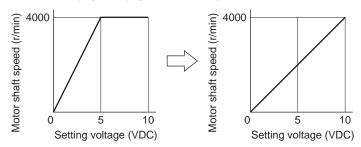


Note Be sure to set the external DC voltage to 10 VDC or lower. When connecting the external DC power supply, make sure the polarities are correct. If the polarities are reversed, the driver may be damaged.

Gain adjustment and offset adjustment for external DC voltage

When setting the rotation speed using the external DC voltage, the relationship between the voltage value and rotation speed can be changed by adjusting the gain or offset. Set the following parameters using any of the **OPX-2A**, **MEXE02** or via RS-485 communication.

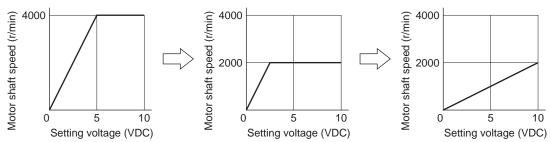
The rotation speed corresponding to the voltage value varies depending on the products.



Parameter name	Description	Setting range	Initial value
Analog operating speed command gain	Sets the speed command per 1 VDC of input voltage.	0 to 4000 r/min	800
Analog operating speed maximum value for external input	Sets the maximum value of rotation speed.		4000
Analog operating speed command offset	Sets the offset for speed command input.	-2000 to 2000 r/min	0

Setting example1:

When setting the rotation speed of the motor output shaft up to 4000 r/min (maximum rotation speed) using 0 to 10 VDC of the external DC voltage


Set the "analog operating speed command gain" to 400.

Setting example2:

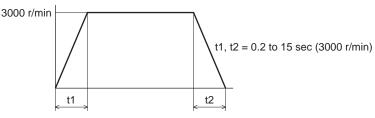
When setting the rotation speed of the motor output shaft up to 2000 r/min (maximum rotation speed) using 0 to 10 VDC of the external DC voltage

Set the "analog operating speed maximum value for external input" to 2000, and then set the "analog operating speed command gain" to 200.

Digital setting

- Using the **OPX-2A**: Refer to the **OPX-2A** OPERATING MANUAL.
- Using the **MEXE02**: Refer to the **MEXE02** OPERATING MANUAL.
- Via RS-485 communication: Refer to "4 Method of control via Modbus RTU (RS-485 communication)" or "5 Method of control via industrial network"

3.3 Setting the acceleration time and deceleration time


The meaning of the acceleration time/deceleration time varies depending on the setting method of the rotation speed.

When setting the rotation speed with analog setting

When using the analog setting, the motor is operated at the acceleration time and deceleration time set in the operating data No.0.

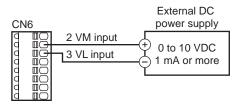
Acceleration time (t1) refers to the time needed for the motor to reach the rated speed (3000 r/min) from the standstill status.

Deceleration time (t2) refers to the time needed for the motor to stop from the rated speed (3000 r/min).

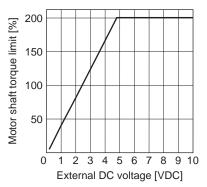
When setting the rotation speed with digital setting

When using the digital setting, the desired value for the acceleration time and deceleration time can be set to the operating data No.0 to No.15 respectively.

Acceleration time refers to the time needed for the motor to reach the setting speed from the standstill status. Deceleration time refers to the time needed for the motor to stop from the setting speed.

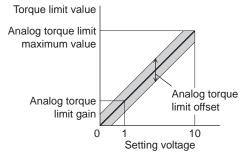

3.4 Setting the torque limiting

Set the torque limiting when restricting the motor output torque. The torque limiting can be set using either of the analog setting or digital setting. This section explains the analog setting by the external DC voltage.


Setting by the external DC voltage

For the external voltage, use a DC power supply (0 to 10 VDC) with reinforced insulation on both the primary side and secondary side, and connect it to the pin Nos. 2 and 3 of CN6 of the driver. The input impedance between the VM input and VL input is approx.

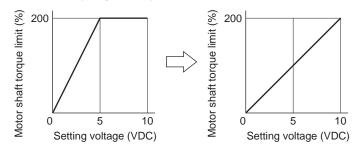
30 k Ω . The VL input is connected to IN-COM1 inside the driver.


• Torque limiting characteristics (representative values)

Note Be sure to set the external DC voltage to 10 VDC or lower. When connecting the external DC power supply, make sure the polarities are correct. If the polarities are reversed, the driver may be damaged.

Gain adjustment and offset adjustment for external DC voltage

When setting the torque limiting using the analog setting, the relationship between the voltage value and torque limiting value can be changed by adjusting the gain or offset. Set the following parameters using any of the **OPX-2A**, **MEXEO2** or via RS-485 communication.

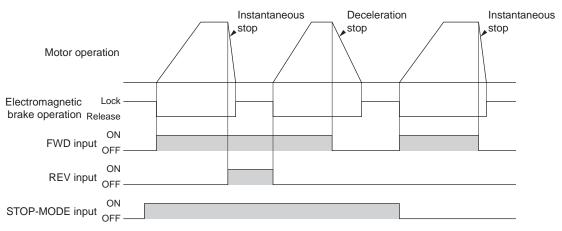


Parameter name	Description	Setting range	Initial value
Analog torque limit gain	Sets the torque limit per 1 VDC of input voltage.		40
Analog torque limit maximum value	Sets the maximum value of torque limit.	0 to 200%	200
Analog torque limit offset	Sets the offset for torque limit input.	-50 to 50%	0

Setting example

When adjusting the torque limiting value up to 200% using 0 to 10 VDC of the external DC voltage

Running/stopping the motor 3.5


Run/stop the motor by inputting operation control signals.

Operation

When the FWD input is turned ON, the motor rotates in the clockwise direction. When the FWD input is turned OFF, the motor stops.

When the REV input is turned ON, the motor rotates in the counterclockwise direction. When the REV input is turned OFF, the motor stops.

If both the FWD input and REV input are turned ON, the motor stops instantaneously.

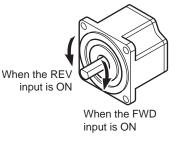
When using the motor in vertical drive (gravitational operation), although it depends on the load condition, if operation is performed with the setting below, the motor shaft may momentarily rotate in the reverse direction (about one-fourth revolution of the motor output shaft) at the time of starting/stopping the motor.

- When the set rotation speed is low
- · When the acceleration time and deceleration time is long

Stop

Note

If the STOP-MODE input is ON, the motor decelerates and stops. If the STOP-MODE input is OFF, the motor stops instantaneously.


Rotation direction

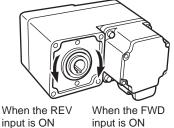
The rotation direction of the motor output shaft represents the direction when viewed from the motor output shaft side.

Combination type • parallel shaft gearhead

The rotation direction of the motor output shaft may vary from that of the gearhead output shaft depending on the gear ratio of the gearhead.

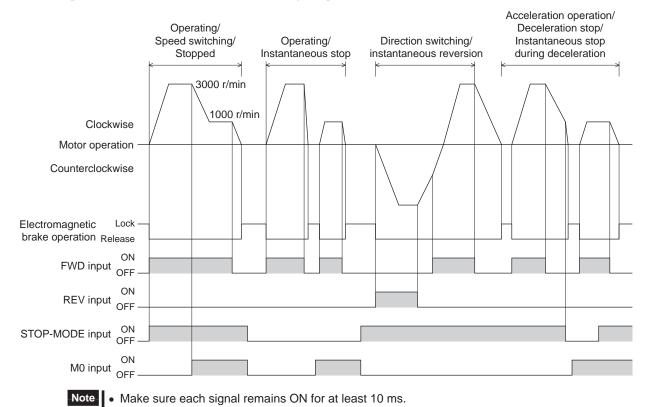
Gear ratio Rotating direction of gearhead output shaf		- ,
5, 10, 15, 20, 200	Same as the motor output shaft	- ,
30, 50, 100	Opposite to the motor output shaft	-


Combination type • hollow shaft flat gearhead


For all gear ratios, the output shaft of the gearhead rotates in the opposite direction to that of the motor. The direction is different depending on whether the pre-assembled motor/gearhead is viewed from the front side or rear side.

Viewed from Front

When the FWD When the REV input is ON input is ON



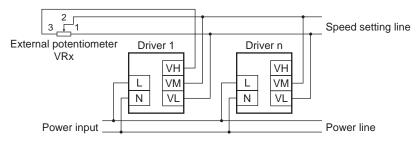
input is ON

3 Method of control via I/O

3.6 Example of operation pattern

The charts below are an example of setting the external potentiometer to 3000 r/min and the rotation speed of the operation data No.1 to 1000 r/min, and switching the speed between these two levels.

When switching the FWD input and REV input, provide an interval of at least 10 ms.


3.7 Multi-motor control

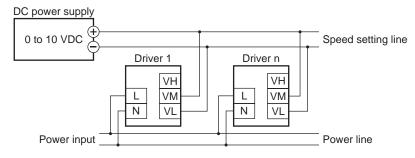
A single external potentiometer (external DC voltage) can be used to operate the same speed for multiple motors.

- The connection examples explained here assume a single-phase specification. In the case of a three-phase
 - specification, connect the power line to a three-phase power supply.
- Connection of a motor and I/O signals is omitted in the figure.

Using an external potentiometer

Connect the drivers as shown below. When performing multi-motor control using the external potentiometer, the number of drivers should not exceed 20 units.

Resistance (VRx) when the number of drivers is n:


Resistance (VRx) = 20/n (k Ω), n/4 (W)

Example: If two drivers are used

Resistance (VRx) = 20/2 (k Ω), 2/4 (W), resistance (VRx) is calculated as $10 \text{ k}\Omega$, 1/2 W.

Using external DC voltage

Connect the drivers as shown below.

Current capacity (I) of external DC power supply when the number of drivers is n:

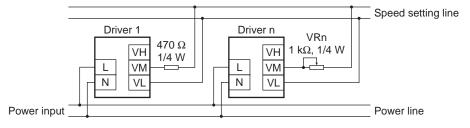
Current capacity (I) = $1 \times n$ (mA)

Example: If two drivers are used

Current capacity (I) = 1×2 (mA), current capacity (I) is calculated as 2 mA or more.

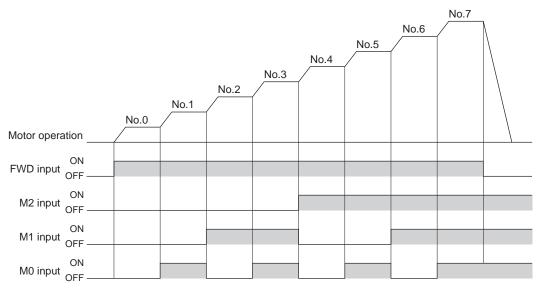
How to adjust the speed difference

To adjust the speed difference among the first motor and the second and subsequent motors, change the parameter or connect a resistor to adjust.


· Adjusting by the parameter

The speed difference can be adjusted by changing the "analog operating speed command gain" parameter and "analog operating speed command offset" parameter for the second and subsequent drivers. This section explains how to adjust by the "analog operating speed command offset" parameter. See p.67 for details.

- When the speed of the second motor is slower than that of the first motor:
- Set the offset value to rotate faster (positive side) by the "analog operating speed command offset" parameter.When the speed of the second motor is faster than that of the first motor:
 - Set the offset value to rotate slower (negative side) by the "analog operating speed command offset" parameter.


· Adjustment by a resistor

Connect a resistor of 470 Ω , 1/4 W to the terminal VM on the driver 1 and connect a variable resistor VRn of 1 k Ω , 1/4 W to the driver 2 and subsequent drivers.

3.8 Multi-speed operation

When assigning the M0 to M3 inputs to the CN5 input terminals, the variable-speed driving of the motor is possible using maximum 16 operation data. This section shows an example assigning the M0 to M2 inputs and performing multi-speed operation by using 8 operating data. See p.51 for the combination of the M0 to M3 inputs and how to select the operating data.

4 Method of control via Modbus RTU (RS-485 communication)

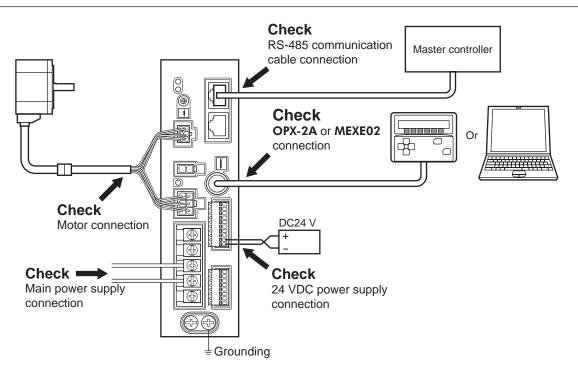
This part explains how to control from the master controller via RS-485 communication. The protocol for the RS-485 communication is the Modbus protocol.

Table of contents

1	Guio	dance	76	
2	Communication specifications79			
3	Sett	ing the switches	81	
4	Sett	ing the RS-485 communication	n83	
5	com 5.1	nmunication mode and munication timing Communication mode Communication timing	84	
6	Mes 6.1 6.2	ssage Query Response	85	
7	7.1 7.2	ction code Reading from a holding register(s). Writing to a holding register Diagnosis Writing to multiple holding registers	89 90 91	

8 Reg	jister address list	93
8.1	Operation commands	93
8.2	Maintenance commands	94
8.3	Monitor commands	
8.4	Parameter R/W commands	
	Operation data	
	User parameters	
9 Gro	up send	104
10 De	tection of communication	
erro	ors	106
10.1	Communication errors	
10.2	2 Alarms and warnings	
11 Tin	ning charts	107
	-	

1 Guidance

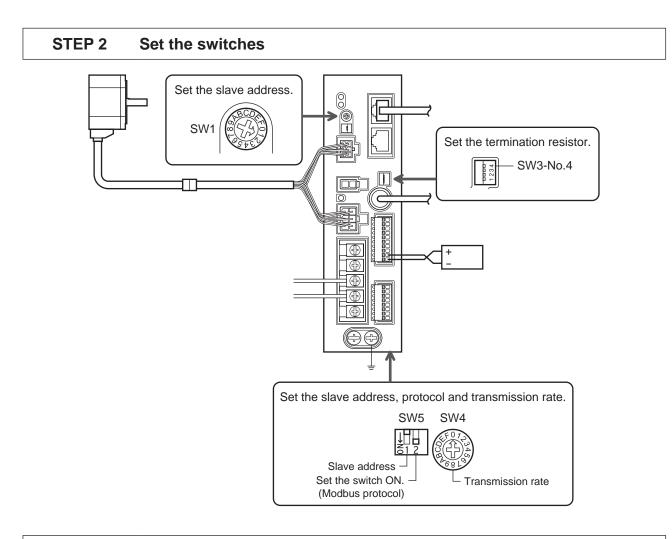

The Modbus protocol is simple and its specification is open to the public, so this protocol is used widely in industrial applications. Modbus communication is based on the single-master/multiple-slave method. Only the master can issue a query (command). Each slave executes the requested process and returns a response message.

If you are new to the **BLE** Series FLEX RS-485 communication type, read this section to understand the operating methods along with the operation flow.

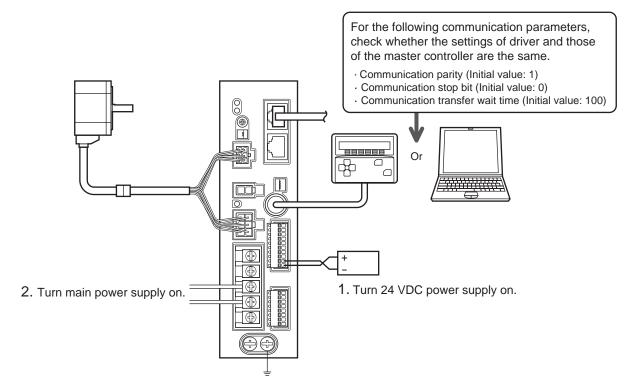
This is an example how to operate the motor based on the operation data and parameters set to the driver by the master controller.

Note Before operating the motor, check the condition of the surrounding area to ensure safety.

STEP 1 Check the installation and connection

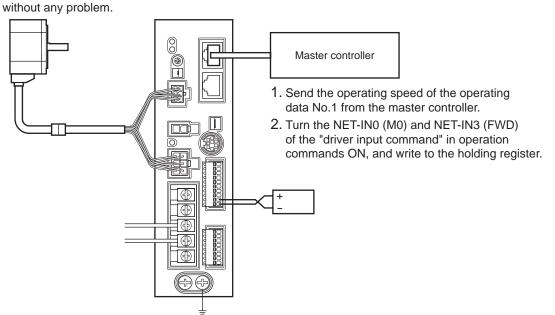

Setting method of the operation data

The analog setting, which permits the setting of the rotation speed with an external potentiometer or external DC voltage, is enabled at the time of shipment.


When controlling by a programmable controller via RS-485 communication, change the setting of the "Analog input signal selection" parameter to 0 (digital setting).

"Analog input signal select" parameter	Operation data No.	Rotational speed	Acceleration Deceleration	Torque limit
0	0 to 15	Digital setting		
1	0	Analog setting Digital setting		setting
(Initial value)	1 to 15	Digital setting		
2 0 ot 15		Digital	setting	Analog setting

Refer to the table below for the parameter setting.


Check that the parameters of the driver and those of the master controller are the same. Use the **OPX-2A** or **MEXEO2** when changing the driver parameters.

STEP 4 Cycle the power

Communication parameters will be enabled after the power is cycled. If you have changed any of the communication parameters, be sure to cycle the power.

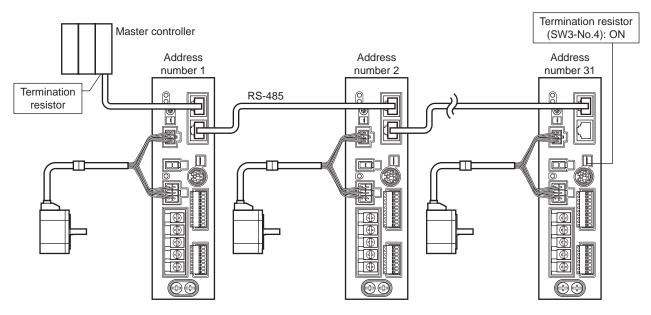
STEP 5 Operate the motor

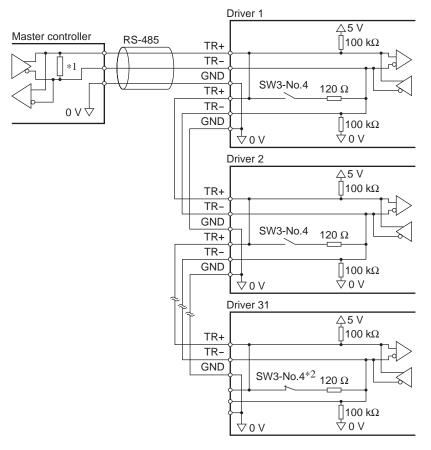
3. Confirm that the motor rotates

STEP 6 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present?
- Are the power supply, motor and RS-485 communication cable connected securely?
- Are the slave address, transmission rate and termination resistor set correctly?
- Is the C-ERR LED lit?
- Is the C-DAT LED lit or blinking?

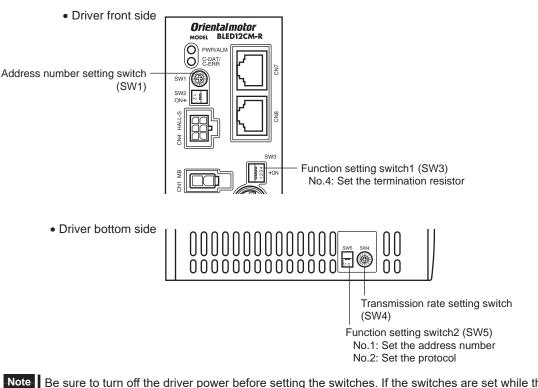

For more detailed settings and functions, refer to following pages.


2 Communication specifications

Electrical characteristics	In conformance with EIA-485, straight cable Use a twisted pair cable (TIA/EIA-568B CAT5e or higher is recommended) and keep the total wiring distance including extension to 50 m (164 ft.) or less. *
Transmission mode	Half duplex
Transmission rate	Selectable from 9600 bps, 19200 bps, 38400 bps, 57600 bps and 115,200 bps.
Physical layer	Asynchronous mode (data: 8 bits, stop bit: 1 bit/2 bits, parity: none/even number/odd number)
Protocol	Modbus RTU mode
Connection pattern	Up to 31 drivers can be connected to one master controller.

* If the motor cable or power supply cable generates an undesirable amount of noise depending on the wiring or configuration, shield the cable or install a ferrite core.

Connection example



*1 Termination resistor 120 Ω

*2 Turn the termination resistor (SW3-No.4) to ON.

3 Setting the switches

Be sure to turn off the driver power before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the driver power is cycled.

Protocol

Set the SW5-No.2 of the function setting switch2 to ON. The Modbus protocol is selected. Factory setting OFF

Address number (slave address)

Set the address number (slave address) using the address number setting switch (SW1) and SW5-No.1 of the function setting switch2. Make sure each address number (slave address) you set for each driver is unique. Address number (slave address) 0 is reserved for broadcasting, so do not use this address.

SW1	SW5-No.1	Address number (slave address)	SW1	SW5-No.1	Address number (slave address)
0		Not used	0		16
1		1	1	-	17
2		2	2	-	18
3		3	3		19
4		4	4		20
5		5	5	-	21
6		6	6	-	22
7		7	7	ON	23
8	- OFF	8	8		24
9		9	9		25
А		10	Α	-	26
В		11	В		27
С		12	С		28
D		13	D		29
Е]	14	E		30
F]	15	F	1	31

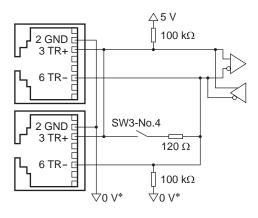
Factory setting SW1: 0, SW5-No.1: OFF (Address number 0)

Set the transmission rate using transmission rate setting switch (SW4).

The transmission rate to be set should be the same as the transmission rate of the master controller.

Factory setting 7

SW4	Transmission rate (bps)
0	9600
1	19200
2	38400
3	57600
4	115,200
5	Not used
6	Not used
7	Network Converter
8 to F	Not used


Note Do not set the SW4 to positions 5, 6 and 8 to F.

Termination resistor

Use a termination resistor for the driver located farthest away (positioned at the end) from the master controller. Turn the SW3-No.4 of the function setting switch1 to ON to set the termination resistor for RS-485 communication (120 Ω).

Factory setting OFF (termination resistor disabled)

SW3-No.4	Termination resistor (120 Ω)
OFF	Disabled
ON	Enabled

* The GND line is used in common with 24 VDC power supply input terminal (CN5).

4 Setting the RS-485 communication

Set parameters required to use via RS-485 communication beforehand.

Parameters set with the OPX-2A or MEXE02

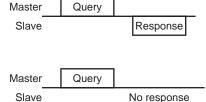
The following parameters cannot be set via RS-485 communication. Set these parameters using the **OPX-2A** or **MEXE02**

Parameter name	Description	Setting range	Initial value
Communication parity	Sets the parity for RS-485 communication.	0: No parity 1: Even 2: Odd	1
Communication stop bit	Sets the stop bit for RS-485 communication.	0: 1 bit 1: 2 bit	0
Communication transfer wait time	Sets the transmission waiting time for RS-485 communication.	0 to 10000 (1=0.1 ms)	100

■ Parameters set with the OPX-2A, MEXE02 or via RS-485 communication

Set the following parameters using any of the OPX-2A, MEXEO2 or RS-485 communication.

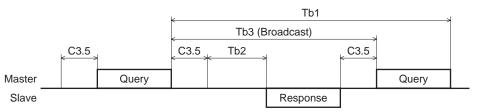
Parameter name Description		Setting range	Initial value
Communication time out Sets the condition in which the communication timeout occurs in RS-485 communication. When setting to zero (0), the driver does not monitor the condition in which the communication timeout occurs.		0 to 10000 ms	0
Communication error alarm	Sets the condition in which the RS-485 communication error alarm generates. The communication error alarm generates after the RS-485 communication error has occurred by the number of times set here.	1 to 10 times	3


5 Communication mode and communication timing

5.1 Communication mode

Modbus protocol communication is based on the single-master/multiple-slave method. Under this protocol, messages are sent in one of two methods.

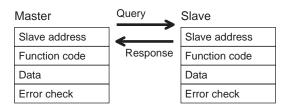
Unicast mode


The master sends a command to only one slave. The slave executes the process and returns a response.

Broadcast mode

If slave address 0 is specified on the master, the master can send a command to all slaves. Each slave executes the process, but does not return a response.

5.2 Communication timing


Character Name		Description	
Tb1 Communication timeout		Intervals between received messages are monitored. If no message could be received after the time set in the "communication time out" parameter, the RS-485 communication timeout alarm generates.	
Tb2	Transmission waiting time	The time after the slave switches its communication line to the transmission mode upon receiving a query from the master, until it starts sending a response. Sets using the "communication transfer wait time" parameter. The actual transmission waiting time corresponds to the silent interval (C3.5) + transmission waiting time (Tb2).	
Tb3	Broadcasting interval	The time until the next query is sent in broadcasting. A time equivalent to or longer than the silent interval (C3.5) plus 5 ms is required.	
C3.5	Silent interval	Be sure to provide a waiting time of 3.5 characters or more. If this waiting time is less than 3.5 characters long, the driver cannot respond. See the following table for transmission waiting time.	

Transmission waiting time of the "silent interval"

Transmission rate (bps)	Transmission waiting time
9600	5.5 ms or more
19200	
38400	3.5 ms or more
57600	3.5 ms of more
115,200	

6 Message

The message format is shown below.

6.1 Query

The query message structure is shown below.

Slave address	Function code	Data	Error check
8 bits	8 bits	N×8 bits	16 bits

Slave address

Specify the slave address (unicast mode).

If the slave address is set to 0, the master can send a query to all slaves (broadcast mode).

Function code

The function codes and message lengths supported by the **BLE** Series FLEX RS-485 communication type are as follows.

Function code	Description	Messag	Broadcast		
Function code	Description	Query		Dioducasi	
03h	Read from a holding register(s).	8	7 to 37	Impossible	
06h	Write to a holding register.	8	8	Possible	
08h	Perform diagnosis.	8	8	Impossible	
10h	Write to multiple holding registers.	11 to 41	8	Possible	

Data

Set data associated with the selected function code. The specific data length varies depending on the function code.

Error check

In the Modbus RTU mode, error checks are based on the CRC-16 method. The slave calculates a CRC-16 of each received message and compares the result against the error check value included in the message. If the calculated CRC-16 value matches the error check value, the slave determines that the message is normal.

- CRC-16 calculation method
 - 1. Calculate an exclusive-OR (XOR) value of the default value of FFFFh and slave address (8 bits).
 - 2. Shift the result of step 1 to the right by 1 bit. Repeat this shift until the overflow bit becomes "1."
 - 3. Upon obtaining "1" as the overflow bit, calculate an XOR of the result of step 2 and A001h.
 - 4. Repeat steps 2 and 3 until a shift is performed eight times.
 - Calculate an XOR of the result of step 4 and function code (8 bits). Repeat steps 2 to 4 for all bytes. The final result gives the result of CRC-16 calculation.

• Example of CRC-16 calculation (slave address: 02h, function code: 07h)

The following table is a calculation example when setting the slave address of the first byte to 02h and setting the function code of the second byte to 07h.

The result of actual CRC-16 calculation is calculated including the data on and after the third byte.

Description	Result	Overflow digit
Default value in CRC register FFFFh	1111 1111 1111 1111	
First byte 02h	0000 0000 0000 0010	
XOR with default value FFFFh	1111 1111 1111 1101	_
First shift to right	0111 1111 1111 1110	1
XOR with A001h	1010 0000 0000 0001 1101 1111 1111 1111	_
Second shift to right	0110 1111 1111 1111	1
XOR with A001h	1010 0000 0000 0001 1100 1111 1111 1110	-
Third shift to right	0110 0111 1111 1111	0
Fourth shift to right	0011 0011 1111 1111	1
XOR with A001h	1010 0000 0000 0001 1001 0011 1111 1110	-
Fifth shift to right	0100 1001 1111 1111	0
Sixth shift to right	0010 0100 1111 1111	1
XOR with A001h	1010 0000 0000 0001 1000 0100 1111 1110	_
Seventh shift to right	0100 0010 0111 1111	0
Eighth shift to right	0010 0001 0011 1111	1
XOR with A001h	1010 0000 0000 0001 1000 0001 0011 1110	-
XOR with next byte 07h	0000 0000 0000 0111 1000 0001 0011 1001	-
First shift to right	0100 0000 1001 1100	1
XOR with A001h	1010 0000 0000 0001 1110 0000 1001 1101	-
Second shift to right	0111 0000 0100 1110	1
XOR with A001h	1010 0000 0000 0001 1101 0000 0100 1111	_
Third shift to right	0110 1000 0010 0111	1
XOR with A001h	1010 0000 0000 0001 1100 1000 0010 0110	-
Fourth shift to right	0110 0100 0001 0011	0
Fifth shift to right	0011 0010 0000 1001	1
XOR with A001h	1010 0000 0000 0001 1001 0010 0000 1000	-
Sixth shift to right	0100 1001 0000 0100	0
Seventh shift to right	0010 0100 1000 0010	0
Eighth shift to right	0001 0010 0100 0001	0
Result of CRC-16	0001 0010 0100 0001	_

6.2 Response

Slave-returned responses are classified into three types: normal response, no response, and exception response. The response message structure is the same as the command message structure.

Slave address	Function code	Data	Error check
8 bits	8 bits	N×8 bits	16 bits

Normal response

Upon receiving a query from the master, the slave executes the requested process and returns a response.

No response

The slave may not return a response to a query sent by the master. This condition is referred to as "No response." The causes of no response are explained below.

Transmission error

The slave discards the query and does not return a response if any of the following transmission errors is detected.

Cause of transmission error	Description
Framing error	Stop bit 0 was detected.
Parity error	A mismatch with the specified parity was detected.
Mismatched CRC	The calculated value of CRC-16 was found not matching the error check value.
Invalid message length	The message length exceeded 256 bytes.

• Other than transmission error

A response may not be returned without any transmission error being detected.

Cause	Description		
Broadcast	If the query was broadcast, the slave executes the requested process but does not return a response.		
Mismatched slave address	The slave address in the query was found not matching the slave address of the driver.		

Exception response

An exception response is returned if the slave cannot execute the process requested by the query. Appended to this response is an exception code indicating why the process cannot be executed. The message structure of exception response is as follows.

Slave address	Function code	Exception code	Error check
8 bits	8 bits	8 bits	16 bits

• Function code

The function code in the exception response is a sum of the function code in the query and 80h. Example) query: $03h \rightarrow Exception$ response: 83h

• Example of exception response

Master	r		Query	Slave		
Slave	Slave address 01h		\leftarrow	Slave address Function code		01h
Function	Function code		Response			86h
	Register address (upper)	02h		Data	Exception code	04h
Data	Register address (lower)		Error check (lower)		heck (lower)	02h
Data	Value write (upper)	FFh		Error check (upper)		61h
	Value write (lower)	FFh				
Error check (lower) 88h		88h				
Error check (upper) 16h						

• Exception code

This code indicates why the process cannot be executed.

Exception code	Communication error code	Cause	Description
01h		Invalid function	 The process could not be executed because the function code was invalid. The function code is not supported. The sub-function code for diagnosis (08h) is other than 00h.
02h	88h	Invalid data address	 The process could not be executed because the data address was invalid. The address is not supported (other than 0000h to 1FFFh). Register address and number of registers are 2000h or more in total.
03h	8Ch	Invalid data	 The process could not be executed because the data was invalid. The number of registers is 0 or more than 17. The number of bytes is other than twice the number of registers. The data length is outside the specified range.
04h	89h 8Ah 8Ch 8Dh	Slave error	 The process could not be executed because an error occurred at the slave. User I/F communication in progress (89h) Downloading, initializing or teaching function is in progress using the OPX-2A Downloading or initialization is in progress using the MEXE02 Non-volatile memory processing in progress (8Ah) Internal processing is in progress. (S-BSY is ON.) An EEPROM error alarm is present. Outside the parameter setting range (8Ch) The value write is outside the setting range.

7 Function code

7.1 Reading from a holding register(s)

This function code is used to read a register (16 bits). Up to 16 successive registers (16×16 bits) can be read. Read the upper and lower data at the same time. If they are not read at the same time, the value may be invalid. If multiple holding registers are read, they are read in order of register addresses.

Example of read

Read operation data for rotation speed Nos.0 and 1 of slave address 1.

Description	Register address	Value read	Corresponding decimal
Rotation speed No.0 (upper)	0480h	0000h	100
Rotation speed No.0 (lower)	0481h 0064h		100
Rotation speed No.1 (upper)	0482h	0000h	4000
Rotation speed No.1 (lower)	0483h	0FA0h	4000

• Query

Field name		Data	Description
Slave address		01h	Slave address 1
Functi	unction code 03h Reading from holding registers		Reading from holding registers
	Register address (upper)	04h	Desister address to start reading from
Data	Register address (lower)	80h	Register address to start reading from
	Number of registers (upper)	00h	Number of registers to be read from the starting
Number of registers (lower)		04h	register address (4 registers=0004h)
Error check (lower)		44h	Colouistion result of CDC 40
Error check (upper)		D1h	Calculation result of CRC-16

• Response

	Field name	Data	Description
Slave address		01h	
Functi	Function code		- Same as query
	Number of data bytes	08h	Twice the number of registers in the query
	Value read from register address (upper)	00h	Value read from register address 0490b
	Value read from register address (lower)	00h	Value read from register address 0480h
Valu	Value read from register address+1 (upper)	00h	Value read from register address 0481h
Data	Value read from register address+1 (lower)	64h	Value read from register address 0481h
	Value read from register address+2 (upper)	00h	Value read from register address 0402h
	Value read from register address+2 (lower)	00h	Value read from register address 0482h
	Value read from register address+3 (upper)	0Fh	
	Value read from register address+3 (lower)	A0h	Value read from register address 0483h
Error	check (lower)	E1h	Coloulation result of CDC 10
Error check (upper)		97h	Calculation result of CRC-16

7.2 Writing to a holding register

This function code is used to write data to a specified register address. However, since the result combining the upper and lower may be outside the data range, write the upper and lower at the same time using the "multiple holding registers (10h)."

Example of write

Write 50 (32h) as overload warning lebel (lower) to slave address 2.

Description	Register address	Value write	Corresponding decimal
Overload warning lebel (lower)	10ABh	32h	50

• Query

	Field name	Data	Description	
Slave	Slave address		Slave address 2	
Function code		06h	Writing to a holding register	
Data	Register address (upper)	10h	Periotor oddroop to be written	
	Register address (lower)	ABh	Register address to be written	
Data	Value write (upper)	00h	Value written to the register address	
	Value write (lower)	32h	Value written to the register address	
Error	Error check (lower)		Calculation result of CRC-16	
Error check (upper)		0Ch		

• Response

	Field name	Data	Description	
Slave	address	02h		
Function code		06h		
	Register address (upper)	10h	Somo os quory	
Dete	Register address (lower)	ABh	Same as query	
Data	Value write (upper)	00h		
	Value write (lower)	32h		
Error of	Error check (lower)			
Error of	Error check (upper)		Calculation result of CRC-16	

7.3 Diagnosis

This function code is used to diagnose the communication between the master and slave. Arbitrary data is sent and the returned data is used to determine whether the communication is normal. 00h (reply to query) is the only sub-function supported by this function code.

Example of diagnosis

Send arbitrary data (1234h) to the slave.

• Query

	Field name	Data	Description
Slave	address	ss 03h Slave address 3	
Functi	unction code		Diagnosis
	Sub-function code (upper)	00h	Deturn the guery date
	Sub-function code (lower)	00h	Return the query data
Data	Data value (upper)	12h	Arbitron, data (1224b)
	Data value (lower)	34h	Arbitrary data (1234h)
Error of	check (lower)	ECh	Coloulation result of CDC 10
Error check (upper)		9Eh	Calculation result of CRC-16

Response

	Field name	Data	Description
Slave	address	03h	
Functi	on code	n code 08h	
	Sub-function code (upper)	00h]
Data	Sub-function code (lower)	00h	
Dala	Data value (upper)	12h	Same as query
	Data value (lower)	34h]
Error of	Error check (lower)]
Error of	check (upper)	9Eh]

7.4 Writing to multiple holding registers

This function code is used to write data to multiple successive registers. Up to 16 registers can be written. Write the data to the upper and lower at the same time. If not, an invalid value may be written. Registers are written in order of register addresses. Note that even when an exception response is returned because some data is invalid as being outside the specified range, etc., other data may have been written properly.

Example of write

Set the following data as acceleration time Nos.0 to 2 as part of operation data at slave address 4.

Description	Register address	Value written	Corresponding decimal	
Operation data acceleration time No.0 (upper)	0600h	0000h	2	
Operation data acceleration time No.0 (lower)	0601h	0002h		
Operation data acceleration time No.1 (upper)	0602h	0000h	50	
Operation data acceleration time No.1 (lower)	0603h	0032h	50	
Operation data acceleration time No.2 (upper)	0604h	0000h	150	
Operation data acceleration time No.2 (lower)	0605h	0096h	150	

• Query

Guory	1		
	Field name	Data	Description
Slave	address	04h	Slave address 4
Functi	ion code	10h	Writing to multiple holding registers
	Register address (upper)	06h	Register address to start writing from
	Register address (lower)	00h	
	Number of registers (upper)	00h	Number of registers to be written from the
	Number of registers (lower)	06h	starting register address (6 registers=0006h)
	Number of data bytes	0Ch	Twice the number of registers in the command (6 registers \times 2 = 12 registers: 0Ch)
	Value written to register address (upper)	00h	Value written to register address 0600h
	Value written to register address (lower)	00h	Value written to register address 0600h
D	Value written to register address+1 (upper)	00h	Value written to register address 0601h
Data	Value written to register address+1 (lower)	02h	
	Value written to register address+2 (upper)	00h	Value written to register address 0602h
	Value written to register address+2 (lower)	00h	Value written to register address 0602h
	Value written to register address+3 (upper)	00h	Value written to register address 0602h
	Value written to register address+3 (lower)	32h	Value written to register address 0603h
	Value written to register address+4 (upper)	00h	Value written to register address 0604b
	Value written to register address+4 (lower)	00h	Value written to register address 0604h
	Value written to register address+5 (upper)	00h	Value written to register address 060Eb
	Value written to register address+5 (lower)	96h	Value written to register address 0605h
Error	check (lower)	85h	Calculation result of CRC-16
Error	check (upper)	70h	

• Response

	Field name	Data	Description
Slave	address	04h	
Function code		10h	
	Register address (upper)	06h	Some on guery
Data	Register address (lower)	00h	Same as query
Dala	Number of registers (upper)	00h	
	Number of registers (lower)	06h	
Error of	Error check (lower)		Calculation result of CRC-16
Error of	check (upper)	D6h	

8 Register address list

All data used by the driver is 32-bit wide. The register for the Modbus protocol is 16-bit wide, and one data is described by two registers. Since the address assignment is big endian, the even number addresses become the upper and the odd number addresses become the lower.

8.1 Operation commands

These are commands related to motor operation. Operation commands are not saved in the non-volatile memory.

	address	Name	Description	READ/	Setting range	
Dec	Hex			WRITE		
48	0030h	Group (upper)	Sets the group address.	R/W	 1: No group specification (Group send is not performed) 	
49	0031h	Group (lower)	bets the group address.	10,00	1 to 31: Group address (Address number of parent slave)	
124	007Ch	Driver input command (upper)	Sets the input command	R/W	See the following explanation	
125	007Dh	Driver input command (lower)	to the driver.		See the following explanation.	
126	007Eh	Driver output command (upper)	Reads the output status	R	Soo poyt page	
127	007Fh	Driver output command (lower)	of the driver.	ĸ	See next page.	

• Group (0030h, 0031h)

Multiple slaves are made into a group and a query is sent to all slaves in the group at once. See p.104 for group details. The initial value is -1. When performing read or write for setting a group, set the upper and lower simultaneously.

Address (Hex)			[Description	of address	*					
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8			
00206		[FFFh]									
0030h	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0			
				[FFI	FFh]						

* []: Initial value

Address (Hex)				Description	of address	*					
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8			
		1 to 31: Sets the address number for the group send. [FFFFh]									
0031h			1			•					
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0			
		1 to 31:	Sets the ad	dress numb	per for the g	roup send.	[FFFFh]				
	·							* []. L. ::::-1			

* []: Initial value

• Driver input command (007Ch, 007Dh)

These are the driver input signals that can be accessed via RS-485 communication. See p.50 for each input signal.

Address (Hex)				Description	of address			
007Ch	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
	-	-	-	-	-	-	-	-
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	-	-	-	-	-	-	-	-

Address (Hex)		Description of address *									
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8			
	NET-IN15 [Not used]	NET-IN14 [Not used]	NET-IN13 [Not used]	NET-IN12 [Not used]	NET-IN11 [Not used]	NET-IN10 [Not used]	NET-IN9 [Not used]	NET-IN8 [Not used]			
007Dh	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0			
	NET-IN7 [Not used]	NET-IN6 [MB-FREE]	NET-IN5 [STOP-MODE]	NET-IN4 [REV]	NET-IN3 [FWD]	NET-IN2 [M2]	NET-IN1 [M1]	NET-IN0 [M0]			

* []: Initial value

• Driver output command (007Eh, 007Fh)

These are the driver output signals that can be received via RS-485 communication. S	See p.52 for each output signal.
--	----------------------------------

Address (Hex)		Description of address						
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
007Eb	-	-	-	-	-	-	-	-
007Eh	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	_	-	-	-	-	_	-	-

Address (Hex)		Description of address *							
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	
007Fh	NET-OUT15 [TLC]	NET-OUT14 [VA]	NET-OUT13 [MOVE]	NET-OUT12 [ALARM- OUT2]	NET-OUT11 [Not used]	NET-OUT10 [Not used]	NET-OUT9 [Not used]	NET-OUT8 [S-BSY]	
007FI	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
	NET-OUT7 [ALARM- OUT1]	NET-OUT6 [WNG]	NET-OUT5 [STOP- MODE_R]	NET-OUT4 [REV_R]	NET-OUT3 [FWD_R]	NET-OUT2 [M2_R]	NET-OUT1 [M1_R]	NET-OUT0 [M0_R]	

* []: Initial value

8.2 Maintenance commands

These commands are used to reset alarms and warnings, and they are also used to execute the batch processing for the non-volatile memory. All commands can be written (WRITE). They are executed when writing from 0 to 1.

Register	address	Name	Description	Setting
Dec	Hex	INAILIE	Description	range
384	0180h	Reset alarm (upper)	Resets the alarms that are present. Some alarms cannot	
385	0181h	Reset alarm (lower)	be reset with the "reset alarm."	
388	0184h	Clear alarm records (upper)	Clears alarm records.	
389	0185h	Clear alarm records (lower)		
390	0186h	Clear warning records (upper)	Clears warning records.	
391	0187h	Clear warning records (lower)	Clears warning records.	
392	0188h	Clear communication error records (upper)	Clears the communication error records.	
393	0189h	Clear communication error records (lower)	clears the communication enor records.	
396	018Ch	Configuration (upper)	Executes the peremeter receipulation and the actur	
397	018Dh	Configuration (lower)	Executes the parameter recalculation and the setup.	
398	018Eh	All data initialization (upper) *	Resets the operation data and parameters saved in the	
399	018Fh	All data initialization (lower) *	non-volatile memory, to their defaults.	
400	0190h	Batch NV memory read (upper)	Reads the parameters saved in the non-volatile memory, to the RAM. All operation data and parameters previously	
401	0191h	Batch NV memory read (lower)	saved in the RAM are overwritten.	
402	0192h	Batch NV memory write (upper)	Writes the parameters saved in the RAM to the non- volatile memory. The non-volatile memory can be rewritten	
403	0193h	Batch NV memory write (lower)	approximately 100,000 times.	

* Communication parity, communication stop bit and transmission waiting time are not initialized. Initialize them using the OPX-2A or MEXE02.

Note The non-volatile memory can be rewritten approx. 100,000 times.

Configuration (018Ch, 018Dh)

Configuration will be executed when all of the following conditions are satisfied:

- An alarm is not present.
- The motor is not operated.
- The **OPX-2A** is in other modes than the test mode or copy mode.
- The MEXEO2 is in other status than downloading, I/O test, test operation or teaching function.

Shows the driver status before and after executing the configuration.

Item	Configuration is ready to execute	Configuration is executing	Configuration is completed	
PWR LED	Lit	Lit		
ALM LED	OFF	OFF	Based on the driver condition.	
Electromagnetic brake	Hold/release	Hold		
Output signals	Allowed	Indeterminable	Allowed	
Input signals	Allowed	Not allowed	Allowed	

Note The correct monitor value may not return even when the monitor is executed while executing the configuration.

8.3 Monitor commands

These commands are used to monitor the command position, command speed, alarm and warning records, etc. All commands can be read (READ).

Register	r address	Namo	Description	Pango
Dec	Hex	- Name	Description	Range
128	0080h	Present alarm (upper)	Monitors the present alarm code.	
129	0081h	Present alarm (lower)	Monitors the present alarm code.	
130	0082h	Alarm record 1 (upper)		
131	0083h	Alarm record 1 (lower)		
132	0084h	Alarm record 2 (upper)		
133	0085h	Alarm record 2 (lower)		
134	0086h	Alarm record 3 (upper)		
135	0087h	Alarm record 3 (lower)		
136	0088h	Alarm record 4 (upper)		
137	0089h	Alarm record 4 (lower)		
138	008Ah	Alarm record 5 (upper)		
139	008Bh	Alarm record 5 (lower)	Monitors the alarm records.	
140	008Ch	Alarm record 6 (upper)		
141	008Dh	Alarm record 6 (lower)		
142	008Eh	Alarm record 7 (upper)		
143	008Fh	Alarm record 7 (lower)		00h to FFh
144	0090h	Alarm record 8 (upper)		
145	0091h	Alarm record 8 (lower)		
146	0092h	Alarm record 9 (upper)		
147	0093h	Alarm record 9 (lower)		
148	0094h	Alarm record 10 (upper)		
149	0095h	Alarm record 10 (lower)		
150	0096h	Present warning (upper)	Monitors the present warning code.	
151	0097h	Present warning (lower)		
152	0098h	Warning record 1 (upper)		
153	0099h	Warning record 1 (lower)		
154	009Ah	Warning record 2 (upper)		
155	009Bh	Warning record 2 (lower)	Monitors the warning records.	
156	009Ch	Warning record 3 (upper)		
157	009Dh	Warning record 3 (lower)		
158	009Eh	Warning record 4 (upper)		
159	009Fh	Warning record 4 (lower)		

Register Dec	address Hex	- Name	Description	Range
160	00A0h	Warning record 5 (upper)		
161	00A1h	Warning record 5 (lower)	_	
162	00A2h	Warning record 6 (upper)		
163	00A3h	Warning record 6 (lower)		
164	00A4h	Warning record 7 (upper)		
165	00A5h	Warning record 7 (lower)		
166	00A6h	Warning record 8 (upper)	Monitors the warning records.	
167	00A7h	Warning record 8 (lower)	—	
168	00A8h	Warning record 9 (upper)		
169	00A9h	Warning record 9 (lower)		
170	00AAh	Warning record 10 (upper)		
171	00ABh	Warning record 10 (lower)		
172	00ACh	Communication error code (upper)	Monitors the last received communication	
173	00ADh	Communication error code (lower)	error code.	
174	00AEh	Communication error code record 1 (upper)		
175	00AFh	Communication error code record 1 (lower)		
176	00B0h	Communication error code record 2 (upper)		
177	00B1h	Communication error code record 2 (lower)		
178	00B2h	Communication error code record 3 (upper)		
179	00B3h	Communication error code record 3 (lower)		00h to FFh
180	00B4h	Communication error code record 4 (upper)		
181	00B5h	Communication error code record 4 (lower)		
182	00B6h	Communication error code record 5 (upper)		
183	00B7h	Communication error code record 5 (lower)	Monitors the communication error records	
184	00B8h	Communication error code record 6 (upper)	that have occurred in the past.	
185	00B9h	Communication error code record 6 (lower)		
186	00BAh	Communication error code record 7 (upper)		
187	00BBh	Communication error code record 7 (lower)		
188	00BCh	Communication error code record 8 (upper)		
189	00BDh	Communication error code record 8 (lower)		
190	00BEh	Communication error code record 9 (upper)		
191	00BFh	Communication error code record 9 (lower)		
192	00C0h	Communication error code record 10 (upper)		
193	00C1h	Communication error code record 10 (lower)		

-	r address	- Name	Description	Range	
		Present operation data No. (upper)	Monitors the operation data No.		
197	00C5h	Present operation data No. (lower)	corresponding to the data used in the current operation.	0 to 15	
200	00C8h	Command speed (upper)	Monitors the command speed	-4010 to +4010 r/min +: Forward	
201	00C9h	Command speed (lower)	Monitors the command speed.	-: Reverse 0: Stop	
206	00CEh	Feedback speed (upper)	Monitors the feedback speed.	-5200 to +5200 r/min +: Forward	
207	00CFh	Feedback speed (lower)		-: Reverse 0: Stop	
212	00D4h	Direct I/O and electromagnetic brake status (upper)	Monitors the each direct I/O signal and	See next table.	
213	00D5h	Direct I/O and electromagnetic brake status (lower)	electromagnetic brake status.		
256	0100h	Operation speed (upper)	Monitors the feedback speed calculated by the "reduction gear rate" parameter or	-20050 to +20050 r/mi +: Forward	
257	0101h	Operation speed (lower)	"amplification speed rate" parameter.	-: Reverse 0: Stop	
258	0102h	Operation speed decimal position (upper)	Monitors the decimal position in the	0: No decimal point 1: 1 digit	
259	0103h	Operation speed decimal position (lower)	operation speed. *1	2: 2 digit 3: 3 digit	
260	0104h	Conveyor transfer speed (upper)	Monitors the feedback speed calculated by the "conveyor reduction gear rate"	-20050 to +20050 r/mi +: Forward	
261	0105h	Conveyor transfer speed (lower)	parameter or "conveyor amplification speed rate" parameter.	-: Reverse 0: Stop	
262	0106h	Conveyor transfer speed decimal position (upper)	Monitors the decimal position in the	0: No decimal point 1: 1 digit	
263	0107h	Conveyor transfer speed decimal position (lower)	conveyor transfer speed. *2	2: 2 digit 3: 3 digit	
264	0108h	Load factor (upper)	Monitors the torque that is output by the motor based on the rated torque being	0 to 200%	
265	0109h	Load factor (lower)	100%.		
268	010Ch	External analog speed setting (upper)	Monitors the value of the analog speed	0 to 4000 r/min	
269	010Dh	External analog speed setting (lower)	setting. *3		
272	0110h	External analog torque limit setting (upper)	Monitors the value of the analog torque	0 to 200%	
273	0111h	External analog torque limit setting (lower)	limiting. *3	0 10 200 /0	
278	External analog voltage setting		Monitors the value of the analog voltage	0 to 100 (1=0.1 V)	
279 0117h External analog voltage setting setting. (lower)			setting.		

*1 The decimal position is automatically changed based on the setting of the "reduction gear rate" parameter or "decimal place for reduction gear rate" parameter.

*2 The decimal position is automatically changed based on the setting of the "conveyor reduction gear rate" parameter or "decimal place for conveyor reduction gear rate" parameter.

*3 FFFFh is displayed when not selecting by the "analog input signal select" parameter.

Address (Hex)		Description of address						
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
00D4h	-	-	-	-	-	-	MB	-
00D411	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	-	-	-	-	-	-	OUT1	OUT2
Address (Hex)				Description	of address			
	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
00D5h	-	-	-	-	-	-	-	-
000511	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	-	IN6	IN5	IN4	IN3	IN2	IN1	IN0

■ Direct I/O and electromagnetic brake status (00D4h, 00D5h)

8.4 Parameter R/W commands

These commands are used to write or read parameters. All commands can be read and written (READ/WRITE). When the operation data is changed, a recalculation and setup will be performed immediately and the changed value will be set. For details on parameters, see p.59 and later.

Operation data

Register address		Name	Setting range	Initial
Dec	Hex			value
1152	0480h	Rotational speed No.0 (upper)		
1153	0481h	Rotational speed No.0 (lower)		
to	to	to	0, or 80 to 4000 r/min	0
1182	049Eh	Rotational speed No.15 (upper)		
1183	049Fh	Rotational speed No.15 (lower)		
1536	0600h	Acceleration No.0 (upper)		
1537	0601h	Acceleration No.0 (lower)		
to	to	to		
1566	061Eh	Acceleration No.15 (upper)		
1567	061Fh	Acceleration No.15 (lower)	2 to 150 (1=0.1 s)	5
1664	0680h	Deceleration No.0 (upper)	2 10 150 (1=0.1 5)	
1665	0681h	Deceleration No.0 (lower)		
to	to	to		
1694	069Eh	Deceleration No.15 (upper)		
1695	069Fh	Deceleration No.15 (lower)		
1792	0700h	Torque limit No.0 (upper)		
1793	0701h	Torque limit No.0 (lower)		
to	to	to	0 to 200%	200
1822	071Eh	Torque limit No.15 (upper)		
1823	071Fh	Torque limit No.15 (lower)		

User parameters

Register Dec	address Hex	- Name	Setting range	Initial value	Effective *
646	0286h	JOG operating speed (upper) 0, or 80 to 1000 r/			
647	0287h	JOG operating speed (lower)	300	A	
900	0384h	Motor rotation direction (upper)			
901	0385h	Motor rotation direction (lower)	0: + direction=CCW 1: + direction=CW	1	С
960	03C0h	Display mode of the data setter speed (upper)	0: Signed		
961	03C1h	Display mode of the data setter speed (lower)	1: Absolute	0	A
962	03C2h	The data setter editing mode (upper)	0: Disable		-
963	03C3h	The data setter editing mode (lower)	1: Enable	1	
4140	102Ch	Run mode select (upper)	0: PWM shut off mode enable		
4141	102Dh	Run mode select (lower)	1: PWM shut off mode disable	1	С
4162	1042h	JOG operation torque (upper)	0.4- 0000/	000	
4163	1043h	JOG operation torque (lower)	0 to 200%	200	
4170	104Ah	Reduction gear rate (upper)	400 to 0000	400	1
4171	104Bh	Reduction gear rate (lower)	100 to 9999	100	
4172	104Ch	Decimal place for reduction gear rate (upper)	0: 1 digit	0	
4173	104Dh	Decimal place for reduction gear rate (lower)	1: 2 digit 2: 3 digit	2	
4174	104Eh	Amplification speed rate (upper)		4	
4175	104Fh	Amplification speed rate (lower)	1 to 5	1	A
4176	1050h	Conveyor reduction gear rate (upper)	400.4.0000	100	
4177	1051h	Conveyor reduction gear rate (lower)	100 to 9999	100	
4178	1052h	Decimal place for conveyor reduction gear rate (upper)	0: 1 digit	0	
4179	1053h	Decimal place for conveyor reduction gear rate (lower)	1: 2 digit 2: 3 digit	2	
4180	1054h	Conveyor amplification speed rate (upper)	4.4-5	4	
4181	1055h	Conveyor amplification speed rate (lower)	1 to 5	1	
4224	1080h	Magnetic brake function at alarm (upper)	0: Lock after free stop	4	
4225	1081h	Magnetic brake function at alarm (lower)	1: Lock immediately	1	
4226	1082h	No operation at initial alarm enable (upper)		0	
4227	1083h	No operation at initial alarm enable (lower)	0: Disable	0	C
4230	1086h	Initial thermal input detection (upper)	1: Enable	0]
4231	1087h	Initial thermal input detection (lower)		0	
4258	10A2h	Over load warning enable (upper)		0	
4259	10A3h	Over load warning enable (lower)		0	
4266	10AAh	Over load warning level (upper)	50 to 4000/	400	- A
4267	10ABh	Over load warning level (lower)	50 to 100%	100	
4320	10E0h	Data setter initial display (upper)	0: Operating speed 1: Conveyor speed	2	
4321	10E1h	Data setter initial display (lower)	2: Load factor 3: Operating number 4: Mon top view	0	C

* Indicates the timing for the data to become effective. (A: Effective immediately, C: Effective after executing configuration or effective after turning the power ON again)

Dec	r address	Name	Setting range	Initial value	Effective
4322	Hex Hex O: Analog input signal select (upper) O: Analog invalid 1: Analog speed				
4323	10E3h	Analog input signal select (lower)	2: Analog speed 2: Analog torque (See p.102 for details)	1	С
4430	114Eh	Velocity attainment width (upper)			
4431	114Fh	Velocity attainment width (lower)	— 0 to 400 r/min	200	А
4352	1100h	IN0 function select (upper)			
4353	1101h	IN0 function select (lower)		1: FWD	
4354	1102h	IN1 function select (upper)			
4355	1103h	IN1 function select (lower)		2: REV	
4356	1104h	IN2 function select (upper)			
4357	1105h	IN2 function select (lower)		19: STOP-MODE	
4358	1106h	IN3 function select (upper)			_
4359	1107h	IN3 function select (lower)	See table on p.102.	48: M0	В
4360	1108h	IN4 function select (upper)			
4361	1109h	IN4 function select (lower)		24: ALARM-RESET	
4362	110Ah	IN5 function select (upper)			
4363	110Bh	IN5 function select (lower)		20: MB-FREE	
4364	110Ch	IN6 function select (upper)			
4365	110Dh	IN6 function select (lower)		22: TH	
4384	1120h	IN0 contact configuration (upper)			
4385	1121h	IN0 contact configuration (lower)			
4386	1122h	IN1 contact configuration (upper)			
4387	1123h	IN1 contact configuration (lower)			
4388	1124h	IN2 contact configuration (upper)			
4389	1125h	IN2 contact configuration (lower)			
4390	1126h	IN3 contact configuration (upper)	0: Make (N.O.)		0
4391	1127h	IN3 contact configuration (lower)	1: Brake (N.C.)	0	С
4392	1128h	IN4 contact configuration (upper)			
4393	1129h	IN4 contact configuration (lower)			
4394	112Ah	IN5 contact configuration (upper)			
4395	112Bh	IN5 contact configuration (lower)			
4396	112Ch	IN6 contact configuration (upper)			
4397	112Dh	IN6 contact configuration (lower)			
4416	1140h	OUT0 function select (upper)		85: SPEED-OUT	
4417	1141h	OUT0 function select (lower)	See table on p.102.	05. SFEED-001	А
4418	1142h	OUT1 function select (upper)		65: ALARM-OUT1	A
4419	1143h	OUT1 function select (lower)			
4448	1160h	NET-IN0 function select (upper)		48: M0	
4449	1161h	NET-IN0 function select (lower)			
4450	1162h	NET-IN1 function select (upper)		49: M1	
4451	1163h	NET-IN1 function select (lower)			
4452	1164h	NET-IN2 function select (upper)		50: M2	
4453	1165h	NET-IN2 function select (lower)		00. WZ	
4454	1166h	NET-IN3 function select (upper)	See table on p.102.	1: FWD	С
4455	1167h	NET-IN3 function select (lower)			Ŭ
4456	1168h	NET-IN4 function select (upper)		2: REV	
4457	1169h	NET-IN4 function select (lower)		2. I\L V	
4458	116Ah	NET-IN5 function select (upper)		19: STOP-MODE	
4459	116Bh	NET-IN5 function select (lower)			
4460	116Ch	NET-IN6 function select (upper)		20: MB-FREE	
4461	116Dh	NET-IN6 function select (lower)			

* Indicates the timing for the data to become effective. (A: Effective immediately, B: Effective after stopping the operation, C: Effective after executing configuration or effective after turning the power ON again)

	r address Hex	- Name	Setting range	Initial value	Effective
Dec 4462		NET INT function colors (upper)			
	116Eh	NET-IN7 function select (upper)	-		
4463 4464	116Fh	NET-IN7 function select (lower)	-		
	1170h	NET-IN8 function select (upper)	-		
4465 4466	1171h 1172h	NET-IN8 function select (lower) NET-IN9 function select (upper)	-		
4467	1172h	NET-IN9 function select (lower)	-		
4468	1173h	NET-IN10 function select (lower)	-		
4469	1174h	NET-IN10 function select (lower)	-		
4470	1176h	NET-IN11 function select (upper)	-		
4471	1177h	NET-IN11 function select (lower)	See table on p.102.	0: No function	
4472	1178h	NET-IN12 function select (upper)	-		
4473	1179h	NET-IN12 function select (lower)	-		
4474	1173h	NET-IN13 function select (upper)	-		
4475	117An	NET-IN13 function select (lower)	-		
4475	117Bh	NET-IN13 function select (lower)	-		
4470	117Ch	NET-IN14 function select (lower)	-		
4478	117Eh	NET-IN15 function select (upper)	-		
4479	117Eh	NET-IN15 function select (lower)	-		
4480	1180h	NET-OUT0 function select (lower)			
4481	1181h	NET-OUT0 function select (lower)	-	48: M0_R	
4482	1182h	NET-OUT1 function select (lower)	-		
4483	1183h	NET-OUT1 function select (lower)	-	49: M1_R	
4484	1184h	NET-OUT2 function select (lower) NET-OUT2 function select (lower) NET-OUT3 function select (upper)			
4485	1185h			50: M2_R	
4486	1186h				
4487	1187h	NET-OUT3 function select (lower)	-	1: FWD_R	С
4488	1188h	NET-OUT4 function select (upper)	-		
4489	1189h	NET-OUT4 function select (lower)	-	2: REV_R	
4490	118Ah	NET-OUT5 function select (upper)	-		
4491	118/th	NET-OUT5 function select (lower)	-	19: STOP-MODE_R	
4492	118Ch	NET-OUT6 function select (upper)	-		
4493	118Dh	NET-OUT6 function select (lower)	-	66: WNG	
4494	118Eh	NET-OUT7 function select (upper)	-		
4495	118Fh	NET-OUT7 function select (lower)	-	65: ALARM-OUT1	
4496	1190h	NET-OUT8 function select (upper)	See table on p.102.		
4497	1191h	NET-OUT8 function select (lower)	1	80: S-BSY	
4498	1192h	NET-OUT9 function select (upper)	1		
4499	1193h	NET-OUT9 function select (lower)	-		
4500	1194h	NET-OUT10 function select (upper)	1		
4501	1195h	NET-OUT10 function select (lower)	-	0: No function	
4502	1196h	NET-OUT11 function select (upper)	1		
4503	1197h	NET-OUT11 function select (lower)	-		
4504	1198h	NET-OUT12 function select (upper)	-		
4505	1199h	NET-OUT12 function select (lower)	-	81: ALARM-OUT2	
4506	119Ah	NET-OUT13 function select (upper)	1		
4507	119Bh	NET-OUT13 function select (lower)	1	68: MOVE	
4508	119Ch	NET-OUT14 function select (upper)	1		
4509	119Dh	NET-OUT14 function select (lower)	-	77: VA	
4510	119Eh	NET-OUT15 function select (lower)	-		
4511	119Fh	NET-OUT15 function select (lower)	-	71: TLC	

* Indicates the timing for the data to become effective. (C: Effective after executing configuration or effective after turning the power ON again)

Register	r address	- Name	Setting range	Initial value	Effective *
Dec	Hex	Name	Setting range		Ellective *
4512	11A0h	Analog operating speed command gain (upper)	0 to 4000 r/min	800	
4513	11A1h	Analog operating speed command gain (lower)	0 10 4000 1/1111	800	
4514	11A2h	Analog operating speed command offset (upper)	-2000 to 2000 r/min	0	
4515	11A3h	Analog operating speed command offset (lower)		0	
4516	11A4h	Analog torque limit gain (upper)	0 to 200%	40	
4517	11A5h	Analog torque limit gain (lower)	0 10 200%	40	
4518	11A6h	Analog torque limit offset (upper)		0	-
4519	11A7h	Analog torque limit offset (lower)	g torque limit offset (lower)		A
4522	11AAh	Analog operating speed maximum value for external input (upper)	0 to 4000 r/min	1000	
4523	11ABh	Analog operating speed maximum value for external input (lower)	0 to 4000 mmn	4000	
4526	11AEh	Analog torque limit maximum value external input (upper)	0 to 200%	200	
4527	11AFh	Analog torque limit maximum value external input (lower)	0 to 200%	200	
4608	1200h	Communication time out (upper)	0: Not monitored	0]
4609	1201h	Communication time out (lower) 1 to 10000 ms		0	
4610	1202h	Communication error alarm (upper)	1 to 10 times	3	
4611	1203h	Communication error alarm (lower)		3	

* Indicates the timing for the data to become effective. (A: Effective immediately)

• "Analog input signal select" parameter

Setting method of operation data can be changed using the "analog input signal select" parameter. Others except the following combinations are not available to set.

"Analog input signal select" parameter	Operation data No.	Rotational speed Acceleration Deceleration		Torque limit
0	0 to 15	Digital setting		
1	0	Analog setting Digital s		setting
(Initial value) 1 to 15		Digital setting		
2	0 ot 15	Digital	setting	Analog setting

Setting example

- When setting all operation data with digital setting: Set the "analog input signal select" parameter to "0."
- When setting only the rotation speed in the operation data No.0 using the analog setting: Set the "analog input signal select" parameter to "1."

• Setting items for I/O signal assignment

IN function select prameter

0: No function	22: TH	35: R3	41: R9	47: R15
1: FWD	24: ALARM-RESET	36: R4	42: R10	48: M0
2: REV	27: HMI	37: R5	43: R11	49: M1
19: STOP-MODE	32: R0	38: R6	44: R12	50: M2
20: MB-FREE	33: R1	39: R7	45: R13	51: M3
21: EXT-ERROR	34: R2	40: R8	46: R14	54: TL

OUT function select prameter

0: No function	32: R0	38: R6	44: R12	50: M2_R	71: TLC
1: FWD_R	33: R1	39: R7	45: R13	51: M3_R	77: VA
2: REV_R	34: R2	40: R8	46: R14	54: TL_R	80: S-BSY
19: STOP-MODE_R	35: R3	41: R9	47: R15	65: ALARM-OUT1	81: ALARM-OUT2
20: MB-FREE_R	36: R4	42: R10	48: M0_R	66: WNG	82: MPS
27: HMI_R	37: R5	43: R11	49: M1_R	68: MOVE	84: DIR
					85: SPEED-OUT

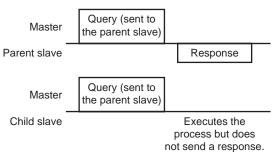
NET-IN function select parameter

0: No function	32: R0	38: R6	44: R12	50: M2
1: FWD	33: R1	39: R7	45: R13	51: M3
2: REV	34: R2	40: R8	46: R14	54: TL
19: STOP-MODE	35: R3	41: R9	47: R15	
20: MB-FREE	36: R4	42: R10	48: M0	
27: HMI	37: R5	43: R11	49: M1	

NET-OUT function select parameter

·	-	-	_		
0: No function	32: R0	38: R6	44: R12	50: M2_R	71: TLC
1: FWD_R	33: R1	39: R7	45: R13	51: M3_R	77: VA
2: REV_R	34: R2	40: R8	46: R14	54: TL_R	80: S-BSY
19: STOP-MODE_R	35: R3	41: R9	47: R15	65: ALARM-OUT1	81: ALARM-OUT2
20: MB-FREE_R	36: R4	42: R10	48: M0_R	66: WNG	82: MPS
27: HMI_R	37: R5	43: R11	49: M1_R	68: MOVE	84: DIR

9 Group send


Multiple slaves are made into a group and a query is sent to all slaves in the group at once.

Group composition

A group consists of one parent slave and child slaves and only the parent slave returns a response.

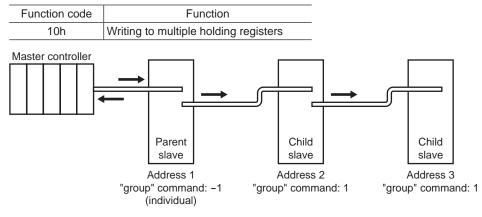
Group address

To perform a group send, set a group address to the child slaves to be included in the group. The child slaves to which the group address has been set can receive a query sent to the parent slave.

Parent slave

No special setting is required on the parent slave to perform a group send. The address of the parent slave becomes the group address. When a query is sent to the parent slave from the master, the parent slave executes the requested process and then returns a response (same as with the unicast mode).

Child slave


Use a "group" command to set a group address to each child slave. Change the group in the unicast mode. When performing read or write for setting a group, set the upper and lower simultaneously.

Resister	address	Name	Description	READ/	Sotting range	
Dec	Hex	Name	Description	WRITE	Setting range	
48	0030h	Group (upper)	Sets the group	R/W	-1: No group specification (Group send is not performed)	
49	0031h	Group (lower)	address.	FX/ VV	1 to 31: Group address (Address number of parent slave)	

Note

Since the group setting is not saved in the non-volatile memory even when the "batch NV memory write" executes, the group setting will be cleared when turning the driver power OFF.

Function code to execute in a group send

Master to slave	Start of positioning operation for address 1		Stop of positioning operation for address 1		Start of positioning operation for address 2		Stop of positioning operation for address 2	
Slave to master		Response from address 1		Response from address 1		Response from address 2		Response from address 2
Motor operation at address 1 (parent slave)								
Motor operation at address 2 (child slave)								
Motor operation at address 3 (child slave)								

10 Detection of communication errors

This function detects abnormalities that may occur during RS-485 communication. The abnormalities that can be detected include alarms, warnings and communication errors.

10.1 Communication errors

A communication error record will be saved in the RAM. You can check the communication errors using the "communication error record" command via RS-485 communication.

Type of communication error	Error code	Cause	Ref.	
RS-485 communication error	84h	A transmission error was detected.		
Command not yet defined	88h	An exception response (exception code 01h, 02h) was detected.		
Execution disable due to user I/F communication in progress	89h	An exception response (exception code 04h)		
Non-volatile memory processing in progress	8Ah	was detected.	p.87	
Outside setting range	8Ch	An exception response (exception code 03h, 04h) was detected.		
Command execute disable	8Dh	An exception response (exception code 04h) was detected.		

Note The communication error record will be cleared once the driver power is turned off.

10.2 Alarms and warnings

When an alarm generates, the ALARM-OUT1 output will turn OFF and the motor will stop. At the same time, the ALM LED will start blinking.

When a warning generates, the WNG output will turn ON. The motor will continue to operate. Once the cause of the warning is removed, the WNG output will turn OFF automatically.

Note The warning records will be cleared by turning off the driver power.

Communication switch setting error (83h)

When setting the transmission rate setting switch (SW4) to positions 8 to F, the transmission rate setting switch error will occur.

RS-485 communication error (84h)

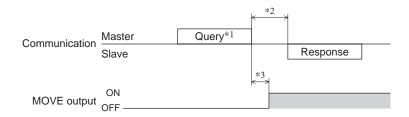
The table below shows the relationship between alarms and warnings when an RS-485 communication error occurs.

Description of error	Description
Warning	A warning generates when one RS-485 communication error (84h) has been detected. If normal reception occurs while the warning is present, the warning will be reset automatically.
Alarm	An alarm generates when a RS-485 communication error (84h) has been detected consecutively by the number of times set in the "communication error alarm" parameter.

RS-485 communication timeout (85h)

If communication is not established with the master after an elapse of the time set by the "communication time out" parameter, the RS-485 communication timeout alarm will generate.

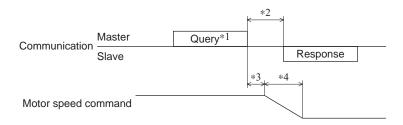
11 Timing charts


Communication start

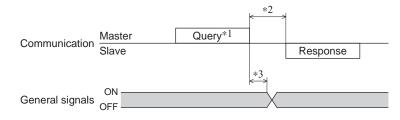
Power supply input ON OFF 1 s or more * * Communication Master Query Response

See p.84 "5.2 Communication timing" for codes in the timing chart.

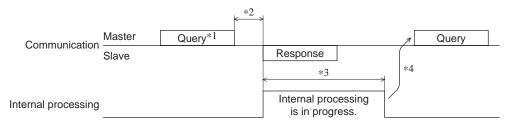
* Tb2 (transmission waiting time) + C3.5 (silent interval) + command processing time


Operation start

*1 A message including a query to start operation via RS-485 communication.


- *2 Tb2 (transmission waiting time) + C3.5 (silent interval) + command processing time
- *3 C3.5 (silent interval) + 4 ms or less

Operation stop, speed change


- *1 A message including a query to stop operation and another to change the speed via RS-485 communication.
- *2 Tb2 (transmission waiting time) + C3.5 (silent interval) + command processing time
- *3 The specific time varies depending on the command speed.
- *4 It varies based on the stopping method selected by the STOP-MODE input.

General signals

- *1 A message including a query for remote output via RS-485 communication.
- *2 Tb2 (transmission waiting time) + C3.5 (silent interval) + command processing time
- *3 C3.5 (silent interval) + 4 ms or less

Configuration

*1 A message including a query for configuration via RS-485 communication.

*2 Tb2 (transmission waiting time) + C3.5 (silent interval) + command processing time

*3 Internal processing time + 1 s or less

*4 Execute a query after the driver internal processing has been completed.

5 Method of control via industrial network

This part explains how to control via industrial network. This product can be controlled via CC-Link communication or MECHATROLINK communication in combination with a network converter (sold separately).

Table of contents

1	Met	hod of control via CC-Link
	com	munication110
	1.1	Guidance 110
	1.2	Setting the switches 113
	1.3	Remote register list 114
	1.4	Assignment for remote I/O of 6 axes
		connection mode 114
		Assignment list of remote I/O 114
		■ Input/output of remote I/O 115
	4 5	Details of remote I/O assignment 116
	1.5	
		connection mode
		■ Input/output of remote I/O
		Details of remote I/O assignment
2	Met	hod of control via
	ME	CHATROLINK communication122
	2.1	Guidance
	2.2	Setting the switches 125
	2.3	I/O field map for the NETC01-M2 126
	2.4	I/O field map for the NETC01-M3 127
	2.5	Communication format 128
		Remote I/O input 128
		Remote I/O output
		Remote register input
		Remote register output 129

3.1	Input signals to the driver	
4.1	Group function	
4.2	Maintenance command	133
4.3	Monitor command	
4.4	Operation data	135
4.5	User parameters	
	Function parameter	
	■ I/O function parameter	
	■ I/O function parameter (RS-485)	
	Analog adjust parameter	
	■ Alarm/warning parameter	
	■ Utilities parameter	
	Operation parameter	
	Communication parameter	
	3.1 3.2 Con 4.1 4.2 4.3 4.4	 3.2 Output signals from the driver Command code list

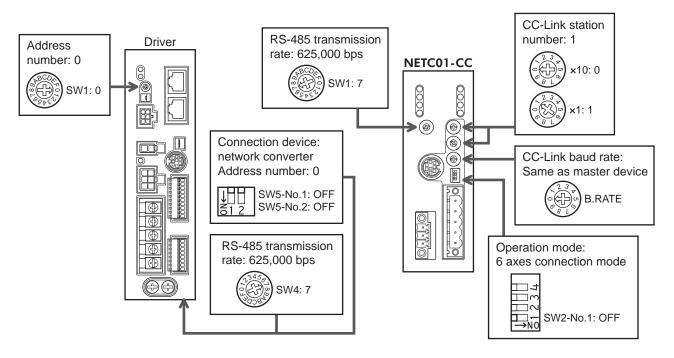
1 Method of control via CC-Link communication

See the following explanation when using the **BLE** Series FLEX RS-485 communication type in combination with the network converter **NETCO1-CC** via CC-Link communication. Refer to p.130 "3 Details of remote I/O" and p.132 "4 Command code list" for remote I/O and command code.

1.1 Guidance

If you are new to the **BLE** Series FLEX RS-485 communication type, read this section to understand the operating methods along with the operation flow.

Note • Before operating the motor, check the condition of the surrounding area to ensure safety.

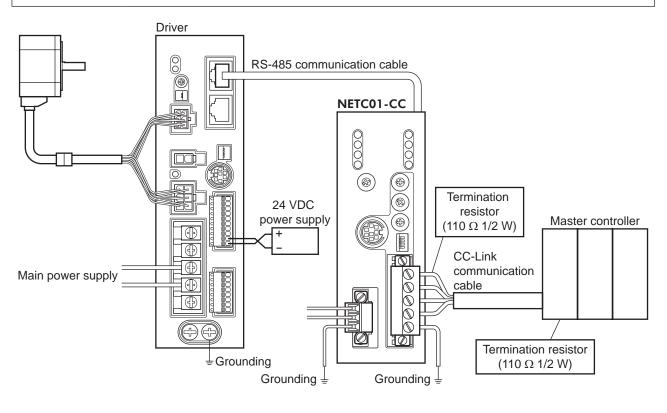

• See the network converter **NETC01-CC** USER MANUAL for how to set the parameter.

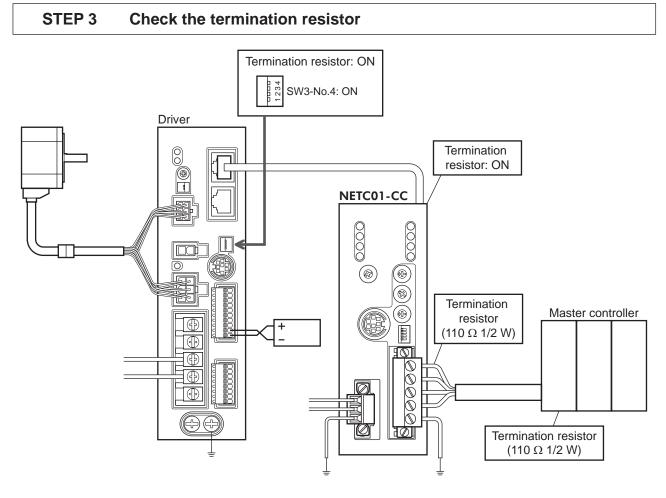
STEP 1 Set the transmission rate, station address and address number.

Using the switches

Setting condition of driver

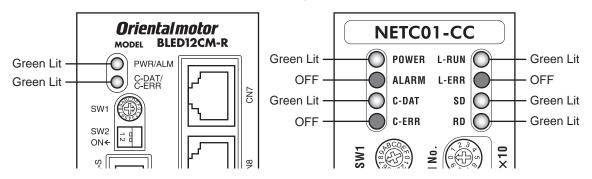
- Address number of the driver: 0
- RS-485 transmission rate: 625,000 bps
- SW5-No.2 of the function setting switch2: OFF
- Setting condition of NETC01-CC
- CC-Link station number: 1
- RS-485 transmission rate: 625,000 bps
- CC-Link baud rate: Same as the master station
- Operation mode: 6 axes connection mode




Using the parameter

- 1. Set the "connection (address number 0) (1D80h)" parameter of the NETC01-CC to "Enable."
- 2. Execute the "batch NV memory write (3E85h)" of the NETC01-CC.
- 3. Cycle the **NETC01-CC** power.

Note "Connection" parameters will be enabled after the power is cycled.



STEP 4 Turn on the power and check the setting

Check that the LED condition has become as shown in the figures.

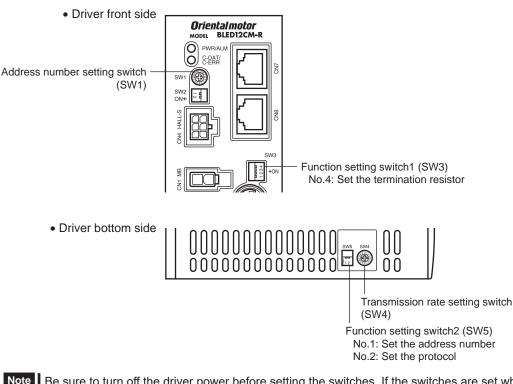
- When C-ERR (red) of the driver or **NETC01-CC** is lit: Check the transmission rate or address number of RS-485 communication.
- When L-ERR (red) of the **NETC01-CC** is lit: Check the type of the CC-Link communication error.

STEP 5 Execute continuous operation via remote I/O of CC-Link communication.

- 1. Set the rotation speed (1241h) for the operation data No.1 of the driver.
- Perform continuous operation by turning ON the M0 and FWD of the address number 0 for remote I/O of CC-Link communication.

RY	Master to NETC	C01-CC)	RY (Master to NETC01-CC)				
Device No.	Signal name	Initial value	Device No.	Signal name	Initial value		
RY0	NET-IN0	MO	RY8	NET-IN8			
RY1	NET-IN1	M1	RY9	NET-IN9			
RY2	NET-IN2	M2	RYA	NET-IN10			
RY3	NET-IN3	FWD	RYB	NET-IN11	Not used		
RY4	NET-IN4	REV	RYC	NET-IN12	Not used		
RY5	NET-IN5	STOP-MODE	RYD	NET-IN13			
RY6	NET-IN6 MB-FREE NET-IN7 Not used		RYE	NET-IN14			
RY7			RYF	NET-IN15			

STEP 6 Were you able to operate the motor properly?


How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present in the driver or **NETC01-CC**?
- Are the address number, transmission rate and termination resistor set correctly?
- Is the "connection" parameter of the **NETC01-CC** set correctly?
- Is the C-ERR LED lit? (RS-485 communication error)
- Is the L-ERR LED lit? (CC-Link communication error)
- Is the operation data (rotation speed) set correctly?
- Are the driver parameters set correctly?

For more detailed settings and functions, refer to next page and later, and the NETCO1-CC USER MANUAL.

1.2 Setting the switches

When using the driver in combination with the network converter, set the switches before use.

Be sure to turn off the driver power before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the driver power is cycled.

Setting the connection device

Set the connection device of RS-485 communication using the function setting switch2 SW5-No.2. Turn this switch OFF when controlling via the network converter.

Factory setting OFF (Network converter)

Address number (slave address)

Set the address number (slave address) using the address number setting switch (SW1) and SW5-No.1 of the function setting switch2. Make sure each address number (slave address) you set for each driver is unique.

Factory setting SW1: 0, SW5-No.1: OFF (Address number 0)

Address number (slave address)	0	1	2	3	4	5	6	7	8	9	10	11
SW1	0	1	2	3	4	5	6	7	8	9	Α	В
SW5-No.1		OFF										
Connection mode	6 axes connection mode 12 axes connection mode											
								12 ax	les com	IECTION	mode	

Transmission rate

Set the transmission rate to 625,000 bps using the transmission rate setting switch (SW4).

Factory setting 7 (625,000 bps)

Termination resistor

Use a termination resistor for the driver located farthest away (positioned at the end) from the network converter. Turn the SW3-No.4 of the function setting switch1 ON to set the termination resistor for RS-485 communication (120 Ω).

	SW3-No.4	Termination resistor (120 Ω)
L	OFF	Disabled
	ON	Enabled

Factory setting OFF (termination resistor disabled)

1.3 Remote register list

Remote register is common to 6-axes connection mode and 12-axes connection mode.

"Monitor", "read and write of parameters" and "maintenance command" for the driver or **NETC01-CC** are executed using remote register.

"n" is an address assigned to the master station by the CC-Link station number setting.

RWw	(Master to NETC01-CC)	RWr (NETC01-CC to master)				
Address No.	Description	Address No.	Description			
RWwn0	Command code of monitor 0	RWrn0	Data of monitor 0 (lower 16 bit)			
RWwn1	Address number of monitor 0	RWrn1	Data of monitor 0 (upper 16 bit)			
RWwn2	Command code of monitor 1	RWrn2	Data of monitor 1 (lower 16 bit)			
RWwn3	Address number of monitor 1	RWrn3	Data of monitor 1 (upper 16 bit)			
RWwn4	Command code of monitor 2	RWrn4	Data of monitor 2 (lower 16 bit)			
RWwn5	Address number of monitor 2	RWrn5	Data of monitor 2 (upper 16 bit)			
RWwn6	Command code of monitor 3	RWrn6	Data of monitor 3 (lower 16 bit)			
RWwn7	Address number of monitor 3	RWrn7	Data of monitor 3 (upper 16 bit)			
RWwn8	Command code of monitor 4	RWrn8	Data of monitor 4 (lower 16 bit)			
RWwn9	Address number of monitor 4	RWrn9	Data of monitor 4 (upper 16 bit)			
RWwnA	Command code of monitor 5	RWrnA	Data of monitor 5 (lower 16 bit)			
RWwnB	Address number of monitor 5	RWrnB	Data of monitor 5 (upper 16 bit)			
RWwnC	Command code	RWrnC	Command code response			
RWwnD	Address number	RWrnD	Address number response			
RWwnE	Data (lower)	RWrnE	Data (lower)			
RWwnF	Data (upper)	RWrnF	Data (upper)			

1.4 Assignment for remote I/O of 6 axes connection mode

Remote I/O assignments of the driver are as follows. "n" is an address assigned to the master station by the CC-Link station number setting. See the network converter **NETCO1-CC** USER MANUAL for 6-axes.

■ Assignment list of remote I/O

-						
Command RY (Master	to NETC01-CC)	Response RX (NETC01-CC to master)				
Device No.	Description	Device No.	Description			
RYn7 to RYn0	Address number "0"	RXn7 to RXn0	Address number "0"			
RYnF to RYn8	remote I/O input	RXnF to RXn8	remote I/O output			
RY (n+1) 7 to RY (n+1) 0	Address number "1"	RX (n+1) 7 to RX (n+1) 0	Address number "1"			
RY (n+1) F to RY (n+1) 8	remote I/O input	RX (n+1) F to RX (n+1) 8	remote I/O output			
RY (n+2) 7 to RY (n+2) 0	Address number "2"	RX (n+2) 7 to RX (n+2) 0	Address number "2"			
RY (n+2) F to RY (n+2) 8	remote I/O input	RX (n+2) F to RX (n+2) 8	remote I/O output			
RY (n+3) 7 to RY (n+3) 0	Address number "3"	RX (n+3) 7 to RX (n+3) 0	Address number "3"			
RY (n+3) F to RY (n+3) 8	remote I/O input	RX (n+3) F to RX (n+3) 8	remote I/O output			
RY (n+4) 7 to RY (n+4) 0	Address number "4"	RX (n+4) 7 to RX (n+4) 0	Address number "4"			
RY (n+4) F to RY (n+4) 8	remote I/O input	RX (n+4) F to RX (n+4) 8	remote I/O output			
RY (n+5) 7 to RY (n+5) 0	Address number "5"	RX (n+5) 7 to RX (n+5) 0	Address number "5"			
RY (n+5) F to RY (n+5) 8	remote I/O input	RX (n+5) F to RX (n+5) 8	remote I/O output			
RY (n+6) 7 to RY (n+6) 0	Control input of	RX (n+6) 7 to RX (n+6) 0	Status output of			
RY (n+6) F to RY (n+6) 8	NETC01-CC *	RX (n+6) F to RX (n+6) 8	NETC01-CC *			
RY (n+7) 7 to RY (n+7) 0	Control input of	RX (n+7) 7 to RX (n+7) 0	Status output of			
RY (n+7) F to RY (n+7) 8	system area *	RX (n+7) F to RX (n+7) 8	system area *			

* See the network converter **NETC01-CC** USER MANUAL for details.

■ Input/output of remote I/O

• Remote I/O input

			Driver		Driver		Driver
NETC01-CC			Address number 0	_	Address number 1	_	Address number 5
RYnF to RYn0	Address number 0 remote I/O input		Address number 0 remote I/O input				
RY (n+1) F to RY (n+1) 0	Address number 1 remote I/O input			L	Address number 1 remote I/O input		
RY (n+2) F to RY (n+2) 0	Address number 2 remote I/O input						
RY (n+3) F to RY (n+3) 0	Address number 3 remote I/O input						
RY (n+4) F to RY (n+4) 0	Address number 4 remote I/O input						
RY (n+5) F to RY (n+5) 0	Address number 5 remote I/O input	<u> </u> 					Address number 5 remote I/O input
RY (n+6) F to RY (n+6) 0	Control input of NETC01-CC						
RY (n+7) F to RY (n+7) 0	Control input of system area						

• Remote I/O output

		Driver	Driver		Driver
NETC01-CC		Address number 0	Address number 1		Address number 5
RXnF to RXn0	Address number 0 remote I/O output	Address number 0 remote I/O output			
RX (n+1) F to RX (n+1) 0	Address number 1 remote I/O output		Address number 1 remote I/O output		
RX (n+2) F to RX (n+2) 0	Address number 2 remote I/O output				
RX (n+3) F to RX (n+3) 0	Address number 3 remote I/O output			••••	
RX (n+4) F to RX (n+4) 0	Address number 4 remote I/O output				
RX (n+5) F to RX (n+5) 0	Address number 5				Address number 5 remote I/O output
RX (n+6) F to RX (n+6) 0	Control output of NETC01-CC				
RX (n+7) F to RX (n+7) 0	Control output of system area				

Details of remote I/O assignment

* []: Initial value

	Comma	nd RY (Master	to NETC01-CC)	Respon	se RX (NETCO	I-CC to master)
	Device No.	Signal name	Description	Device No.	Signal name	Description
	RY(n)0	NET-IN0	[M0] *	RX(n)0	NET-OUT0	[M0_R] *
	RY(n)1	NET-IN1	[M1] *	RX(n)1	NET-OUT1	[M1_R] *
	RY(n)2	NET-IN2	[M2] *	RX(n)2	NET-OUT2	[M2_R] *
	RY(n)3	NET-IN3	[FWD] *	RX(n)3	NET-OUT3	[FWD_R] *
	RY(n)4	NET-IN4	[REV] *	RX(n)4	NET-OUT4	[REV_R] *
	RY(n)5	NET-IN5	[STOP-MODE] *	RX(n)5	NET-OUT5	[STOP-MODE_R] *
	RY(n)6	NET-IN6	[MB-FREE] *	RX(n)6	NET-OUT6	[WNG] *
Address number	RY(n)7	NET-IN7		RX(n)7	NET-OUT7	[ALARM-OUT1] *
"0"	RY(n)8	NET-IN8		RX(n)8	NET-OUT8	[S-BSY] *
	RY(n)9	NET-IN9		RX(n)9	NET-OUT9	
	RY(n)A	NET-IN10		RX(n)A	NET-OUT10	[Not used] *
	RY(n)B	NET-IN11	[Not used] *	RX(n)B	NET-OUT11	
	RY(n)C	NET-IN12		RX(n)C	NET-OUT12	[ALARM-OUT2] *
	RY(n)D	NET-IN13		RX(n)D	NET-OUT13	[MOVE] *
	RY(n)E	NET-IN14		RX(n)E	NET-OUT14	[VA] *
	RY(n)F	NET-IN15		RX(n)F	NET-OUT15	[TLC] *
Address number	RY(n+1)0	NET-IN0	Same as Address	RX(n+1)0	NET-OUT0	Same as Address
"1"	to RY(n+1)F	to NET-IN15	number "0"	to RX(n+1)F	to NET-OUT15	number "0"
	RY(n+2)0	NET-IN0		RX(n+2)0	NET-OUT0	
Address number	to	to	Same as Address	to	to	Same as Address
"2"	RY(n+2)F	NET-IN15	number "0"	RX(n+2)F	NET-OUT15	number "0"
Address number	RY(n+3)0	NET-IN0	Same as Address	RX(n+3)0	NET-OUT0	Same as Address
"3"	to RY(n+3)F	to NET-IN15	number "0"	to RX(n+3)F	to NET-OUT15	number "0"
	RY(n+4)0	NET-INIS		RX(n+4)0	NET-OUT0	
Address number	to	to	Same as Address	to	to	Same as Address
"4"	RY(n+4)F	NET-IN15	number "0"	RX(n+4)F	NET-OUT15	number "0"
Address number	RY(n+5)0	NET-IN0	Same as Address	RX(n+5)0	NET-OUT0	Same as Address
"5"	to RY(n+5)F	to NET-IN15	number "0"	to RX(n+5)F	to NET-OUT15	number "0"
	KT(II+5)F			KX(II+5)F		During execution of
	RY(n+6)0	M-REQ0	Monitor request 0	RX(n+6)0	M-DAT0	monitor 0
	RY(n+6)1	M-REQ1	Monitor request 1	RX(n+6)1	M-DAT1	During execution of monitor 1
ſ	RY(n+6)2	M-REQ2	Monitor request 2	RX(n+6)2	M-DAT2	During execution of monitor 2
	RY(n+6)3	M-REQ3	Monitor request 3	RX(n+6)3	M-DAT3	During execution of monitor 3
	RY(n+6)4	M-REQ4	Monitor request 4	RX(n+6)4	M-DAT4	During execution of monitor 4
NETC01-CC control input/	RY(n+6)5	M-REQ5	Monitor request 5	RX(n+6)5	M-DAT5	During execution of monitor 5
status output	RY(n+6)6	-	-	RX(n+6)6	WNG	Warning
	RY(n+6)7	ALM-RST	Reset alarm	RX(n+6)7	ALM	Alarm
	RY(n+6)8			RX(n+6)8	C-SUC	During execution of RS-485 communication
-	RY(n+6)9	-	-	RX(n+6)9		
	RY(n+6)A	1		RX(n+6)A	1 –	_
	RY(n+6)B			RX(n+6)B	1	
	RY(n+6)C	D-REQ	Command execution request	RX(n+6)C	D-END	Command processing completion

	Comma	nd RY (Master t	o NETC01-CC)	Respon	Response RX (NETC01-CC to master)			
	Device No.	Signal name	Description	Device No.	Signal name	Description		
	RY(n+6)D			RX(n+6)D	R-ERR	Register error		
NETC01-CC control input/ status output	RY(n+6)E	-	-	RX(n+6)E	S-BSY	During system processing		
	RY(n+6)F			RX(n+6)F	-	-		
	RY(n+7)0 to – RY(n+7)F	_	Cannot be used	RX(n+7)0 to RX(n+7)A	-	Cannot be used		
System area control input/ status output				RX(n+7)B	CRD	Remote station communication ready		
รเลเบร บนเрนเ				RX(n+7)C to RX(n+7)F	_	Cannot be used		

1.5 Assignment for remote I/O of 12 axes connection mode

Remote I/O assignments of the driver are as follows. "n" is an address assigned to the master station by the CC-Link station number setting. See the network converter **NETCO1-CC** USER MANUAL for 12-axes.

Command RY (Master	to NFTC01-CC)	Response RX (NETC01-CC to master)				
Device No.	Description	Device No.	Description			
RYn7 to RYn0	Address number "0" remote I/O input	RXn7 to RXn0	Address number "0" remote I/O output			
RYnF to RYn8	Address number "1" remote I/O input	RXnF to RXn8	Address number "1" remote I/O output			
RY (n+1) 7 to RY (n+1) 0	Address number "2" remote I/O input	RX (n+1) 7 to RX (n+1) 0	Address number "2" remote I/O output			
RY (n+1) F to RY (n+1) 8	Address number "3" remote I/O input	RX (n+1) F to RX (n+1) 8	Address number "3" remote I/O output			
RY (n+2) 7 to RY (n+2) 0	Address number "4" remote I/O input	RX (n+2) 7 to RX (n+2) 0	Address number "4" remote I/O output			
RY (n+2) F to RY (n+2) 8	Address number "5" remote I/O input	RX (n+2) F to RX (n+2) 8	Address number "5" remote I/O output			
RY (n+3) 7 to RY (n+3) 0	Address number "6" remote I/O input	RX (n+3) 7 to RX (n+3) 0	Address number "6" remote I/O output			
RY (n+3) F to RY (n+3) 8	Address number "7" remote I/O input	RX (n+3) F to RX (n+3) 8	Address number "7" remote I/O output			
RY (n+4) 7 to RY (n+4) 0	Address number "8" remote I/O input	RX (n+4) 7 to RX (n+4) 0	Address number "8" remote I/O output			
RY (n+4) F to RY (n+4) 8	Address number "9" remote I/O input	RX (n+4) F to RX (n+4) 8	Address number "9" remote I/O output			
RY (n+5) 7 to RY (n+5) 0	Address number "10" remote I/O input	RX (n+5) 7 to RX (n+5) 0	Address number "10" remote I/O output			
RY (n+5) F to RY (n+5) 8	Address number "11" remote I/O input	RX (n+5) F to RX (n+5) 8	Address number "11" remote I/O output			
RY (n+6) 7 to RY (n+6) 0	Control input of	RX (n+6) 7 to RX (n+6) 0	Status output of			
RY (n+6) F to RY (n+6) 8	NETC01-CC *	RX (n+6) F to RX (n+6) 8	NETC01-CC *			
RY (n+7) 7 to RY (n+7) 0	Control input of	RX (n+7) 7 to RX (n+7) 0	Status output of			
RY (n+7) F to RY (n+7) 8	system area *	RX (n+7) F to RX (n+7) 8	system area *			

Assignment list of remote I/O

* See the network converter **NETC01-CC** USER MANUAL for details.

■ Input/output of remote I/O

• Remote I/O input

			Driver		Driver		Driver
NETC01-CC		_	Address number 0	1 1	Address number 1	1	Address number 11
RYn7 to RYn0	Address number 0 remote I/O input		Address number 0 remote I/O input				
RYnF to RYn8	Address number 1 remote I/O input				Address number 1 remote I/O input		
RY (n+1) 7 to RY (n+1) 0	Address number 2 remote I/O input						
RY (n+1) F to RY (n+1) 8	Address number 3 remote I/O input						
RY (n+2) 7 to RY (n+2) 0	Address number 4 remote I/O input						
RY (n+2) F to RY (n+2) 8	Address number 5 remote I/O input						
RY (n+3) 7 to RY (n+3) 0	Address number 6 remote I/O input						
RY (n+3) F to RY (n+3) 8	Address number 7 remote I/O input						
RY (n+4) 7 to RY (n+4) 0	Address number 8 remote I/O input						
RY (n+4) F to RY (n+4) 8	Address number 9 remote I/O input						
RY (n+5) 7 to RY (n+5) 0	Address number 10 remote I/O input						
RY (n+5) F to RY (n+5) 8	Address number 11 remote I/O input	+					Address number 11 remote I/O input
RY (n+6) F to RY (n+6) 0	Control input of NETC01-CC						
RY (n+7) F to RY (n+7) 0	Control input of system area						

• Remote I/O output

NETC01-CC		Driver Address number 0	Driver Address number 1	Driver Address number 11
RXn7 to RXn0	Address number 0 remote I/O output	Address number 0 remote I/O output		
RXnF to RXn8	Address number 1		Address number 1 remote I/O output	
RX (n+1) 7 to RX (n+1) 0	Address number 2 remote I/O output			
RX (n+1) F to RX (n+1) 8	Address number 3 remote I/O output			•••
RX (n+2) 7 to RX (n+2) 0	Address number 4 remote I/O output			
RX (n+2) F to RX (n+2) 8	Address number 5 remote I/O output			
RX (n+3) 7 to RX (n+3) 0	Address number 6 remote I/O output			
RX (n+3) F to RX (n+3) 8	Address number 7 remote I/O output			
RX (n+4) 7 to RX (n+4) 0	Address number 8 remote I/O output			
RX (n+4) F to RX (n+4) 8	Address number 9 remote I/O output			
RX (n+5) 7 to RX (n+5) 0	Address number 10 remote I/O output			
RX (n+5) F to RX (n+5) 8	Address number 11			Address number 11 remote I/O output
RX (n+6) F to RX (n+6) 0	Control output of NETC01-CC			
RX (n+7) F to RX (n+7) 0	Control output of system area			

Details of remote I/O assignment

* []: Initial value

	Comma	nd RY (Master 1	o NETC01-CC)	Respon	se RX (NETCO	I-CC to master)
	Device No.	Signal name	Description	Device No.	Signal name	Description
	RY(n)0	NET-IN0	[M0] *	RX(n)0	NET-OUT0	[M0_R] *
	RY(n)1	NET-IN1	[M1] *	RX(n)1	NET-OUT1	[M1_R] *
	RY(n)2	NET-IN2	[M2] *	RX(n)2	NET-OUT2	[M2_R] *
	RY(n)3	NET-IN3	[FWD] *	RX(n)3	NET-OUT3	[FWD_R] *
	RY(n)4	NET-IN4	[REV] *	RX(n)4	NET-OUT4	[REV_R] *
	RY(n)5	NET-IN5	[STOP-MODE] *	RX(n)5	NET-OUT5	[STOP-MODE_R] *
	RY(n)6	NET-IN6	[MB-FREE] *	RX(n)6	NET-OUT6	[WNG] *
Address number	RY(n)7	NET-IN7		RX(n)7	NET-OUT7	[ALARM-OUT1] *
"0"	RY(n)8	NET-IN0		RX(n)8	NET-OUT8	[S-BSY] *
	RY(n)9	NET-IN1		RX(n)9	NET-OUT9	
	RY(n)A	NET-IN2		RX(n)A	NET-OUT10	[Not used] *
	RY(n)B	NET-IN3	[Not used] *	RX(n)B	NET-OUT11	
	RY(n)C	NET-IN4		RX(n)C	NET-OUT12	[ALARM-OUT2] *
	RY(n)D	NET-IN5		RX(n)D	NET-OUT13	[MOVE] *
	RY(n)E	NET-IN6		RX(n)E	NET-OUT14	[VA] *
	RY(n)F	NET-IN7		RX(n)F	NET-OUT15	[TLC] *
Address number	RY(n+1)0	NET-IN0	Same as Address	RX(n+1)0	NET-OUT0	Same as Address
"1"	to	to	number "0"	to	to	number "0"
	RY(n+1)F	NET-IN15 NET-IN0		RX(n+1)F	NET-OUT15	
Address number	RY(n+2)0 to	to	Same as Address	RX(n+2)0 to	NET-OUT0 to	Same as Address
"2"	RY(n+2)F	NET-IN15	number "0"	RX(n+2)F	NET-OUT15	number "0"
Address number	RY(n+3)0	NET-IN0	Same as Address	RX(n+3)0	NET-OUT0	Same as Address
"3"	to	to	number "0"	to	to	number "0"
-	RY(n+3)F	NET-IN15		RX(n+3)F	NET-OUT15	
Address number	RY(n+4)0 to	NET-IN0 to	Same as Address	RX(n+4)0	NET-OUT0 to	Same as Address
"4"	RY(n+4)F	NET-IN15	number "0"	RX(n+4)F	NET-OUT15	number "0"
Adress sumber	RY(n+5)0	NET-IN0	Same as Address	RX(n+5)0	NET-OUT0	Same as Address
Address number "5"	to	to	number "0"	to	to	number "0"
-	RY(n+5)F	NET-IN15		RX(n+5)F	NET-OUT15	
	RY(n+6)0	M-REQ0	Monitor request 0	RX(n+6)0	M-DAT0	During execution of monitor 0
	RY(n+6)1	M-REQ1	Monitor request 1	RX(n+6)1	M-DAT1	During execution of monitor 1
	RY(n+6)2	M-REQ2	Monitor request 2	RX(n+6)2	M-DAT2	During execution of monitor 2
	RY(n+6)3	M-REQ3	Monitor request 3	RX(n+6)3	M-DAT3	During execution of monitor 3
	RY(n+6)4	M-REQ4	Monitor request 4	RX(n+6)4	M-DAT4	During execution of monitor 4
NETC01-CC control input/	RY(n+6)5	M-REQ5	Monitor request 5	RX(n+6)5	M-DAT5	During execution of monitor 5
status output	RY(n+6)6	-	-	RX(n+6)6	WNG	Warning
	RY(n+6)7	ALM-RST	Reset alarm	RX(n+6)7	ALM	Alarm
	RY(n+6)8			RX(n+6)8	C-SUC	During execution of RS-485 communication
-	RY(n+6)9	-	-	RX(n+6)9		
	RY(n+6)A	1		RX(n+6)A	1 –	_
	RY(n+6)B			RX(n+6)B	1	
	RY(n+6)C	D-REQ	Command execution request	RX(n+6)C	D-END	Command processing completion

	Comma	nd RY (Master t	o NETC01-CC)	Respon	se RX (NETCO	1-CC to master)	
	Device No.	Signal name	Description	Device No.	Signal name	Description	
	RY(n+6)D			RX(n+6)D	R-ERR	Register error	
NETC01-CC control input/ status output	RY(n+6)E	-	-	RX(n+6)E	S-BSY	During system processing	
Status Output	RY(n+6)F			RX(n+6)F	-	-	
•				RX(n+7)0 to RX(n+7)A	-	Cannot be used	
System area control input/ status output	RY(n+7)0 to RY(n+7)F	-	Cannot be used	RX(n+7)B	CRD	Remote station communication read	
				RX(n+7)C to RX(n+7)F	_	Cannot be used	

2 Method of control via MECHATROLINK communication

See the following explanation when using the **BLE** Series FLEX RS-485 communication type in combination with the network converter **NETCO1-M2** or **NETCO1-M3**, via MECHATROLINK communication. Refer to p.130 "3 Details of remote I/O" and p.132 "4 Command code list" for remote I/O and command code.

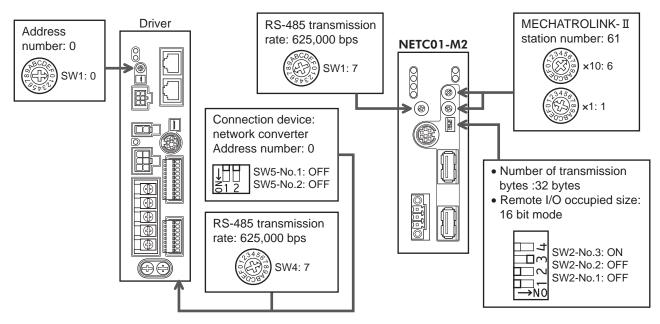
2.1 Guidance

If you are new to the **BLE** Series FLEX RS-485 communication type, read this section to understand the operating methods along with the operation flow.

This section explains the operation method in combination with the **NETC01-M2** as an example.

Before operating the motor, check the condition of the surrounding area to ensure safety.
See the network converter NETC01-M2/NETC01-M3 USER MANUAL for how to set the parameter.

STEP 1 Set the transmission rate, station address and address number.


Using the switches

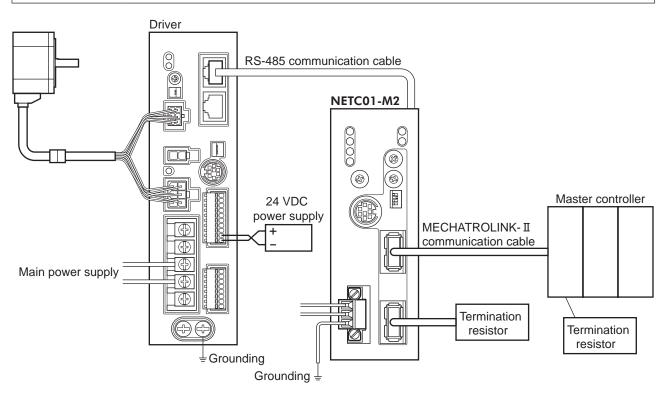
Setting condition of driver

- Address number of the driver: 0
- RS-485 transmission rate: 625,000 bps
- SW5-No.2 of the function setting switchs: OFF

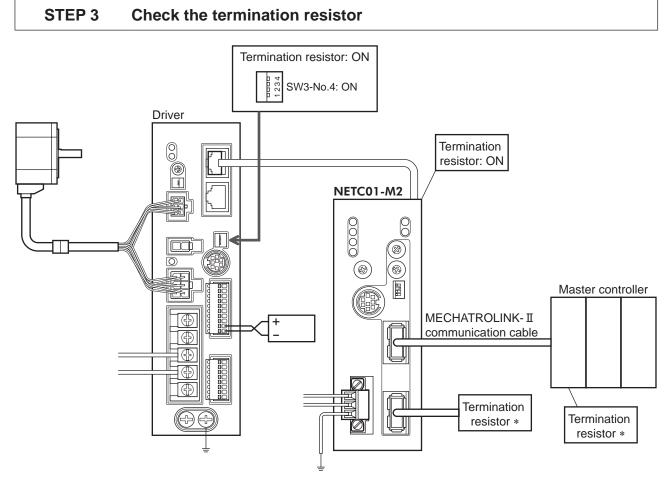
Setting condition of NETC01-M2

- MECHATROLINK- II station address: 61
- RS-485 transmission rate: 625,000 bps
- Remote I/O occupied size: 16 bit mode
- Number of transmission bytes: 32 bytes

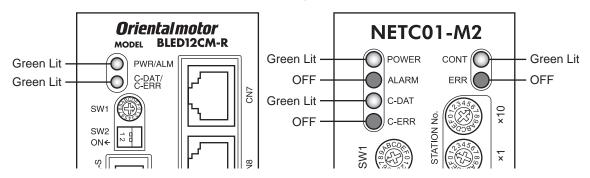
Using the parameter


1. Set the "communication (address number 0) " parameter of the **NETC01-M2** to " Enable" using the **OPX-2A** or **MEXE02**.

2. Cycle the NETC01-M2 power.



- "Communication" parameter will be enabled after the power is cycled.
- When setting the parameters of the NETC01-M2, use the OPX-2A or MEXE02.


* It is not necessary for the **NETC01-M3**.

* It is not necessary for the **NETC01-M3**.

STEP 4 Turn on the power and check the setting

Check that the LED condition has become as shown in the figures.

- When C-ERR (red) of the driver or **NETC01-M2** is lit: Check the transmission rate or address number of RS-485 communication.
- When ERR (red) of the NETC01-M2 is lit: Check the MECHATROLINK- II communication error.

STEP 5 Continuous operation

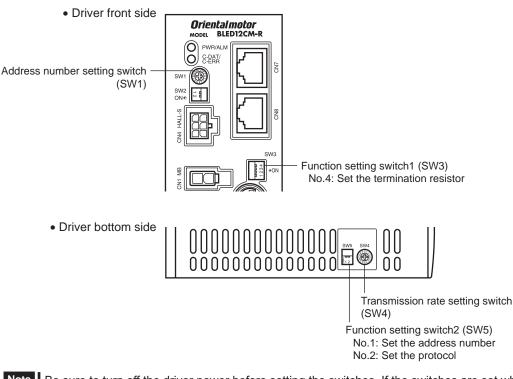
Control the I/O signal of the driver using the I/O command (DATA_RWA: 50h) of MECHATROLINK-II communication.

- 1. Set the rotation speed (1241h) for the operation data No.1 of the driver.
- 2. Perform continuous operation by turning ON the M0 and FWD of the address number 0.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15 [Not used]	NET-IN14 [Not used]	NET-IN13 [Not used]	NET-IN12 [Not used]	NET-IN11 [Not used]	NET-IN10 [Not used]	NET-IN9 [Not used]	NET-IN8 [Not used]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7 [Not used]	NET-IN6 [MB-FREE]	NET-IN5 [STOP- MODE]	NET-IN4 [REV]	NET-IN3 [FWD]	NET-IN2 [M2]	NET-IN1 [M1]	NET-IN0 [M0]

* []: Initial value

STEP 6 Were you able to operate the motor properly?


How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present in the driver or **NETC01-M2**?
- Are the address number, transmission rate and termination resistor set correctly?
- Is the "connection" parameter of the NETC01-M2 set correctly?
- Is the C-ERR LED lit? (RS-485 communication error)
- Is the ERR LED of the NETC01-M2 lit? (MECHATROLINK-II/III communication error)
- Is the operation data (rotation speed) set correctly?
- Are the driver parameters set correctly?

For more detailed settings and functions, refer to next page and later, and the NETC01-M2 USER MANUAL.

2.2 Setting the switches

When using the driver in combination with the network converter, set the switches before use.

Note

Be sure to turn off the driver power before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the driver power is cycled.

Setting the connection device

Set the connection device of RS-485 communication using the function setting switch2 SW5-No.2. Turn this switch OFF when controlling via the network converter.

Factory setting OFF (Network converter)

Address number (slave address)

Set the address number (slave address) using the address number setting switch (SW1) and SW5-No.1 of the function setting switch2. Make sure each address number (slave address) you set for each driver is unique.

Factory setting SW1: 0, SW5-No.1: OFF (Address number 0)

Address number (slave address)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SW1	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
SW5-No.1		OFF														
Connection mode	8 axes connection mode															
Connection mode	16 axes connection mode															

Transmission rate

Set the transmission rate to 625,000 bps using the transmission rate setting switch (SW4).

Factory setting 7 (625,000 bps)

Termination resistor

Use a termination resistor for the driver located farthest away (positioned at the end) from the network converter. Turn the SW3-No.4 of the function setting switch1 ON to set the termination resistor for RS-485 communication (120 Ω).

	SW3-No.4	Termination resistor (120 Ω)
L	OFF	Disabled
-	ON	Enabled

Factory setting OFF (termination resistor disabled)

2.3 I/O field map for the NETC01-M2

Update of remote I/O data (asynchronous) is executed by the "DATA_RWA" Command (50h). When the remote I/O occupied size is 16-bit mode and the number of transmission bytes is 32 bytes (initial value), I/O field map will be as follows. See the network converter **NETCO1-M2** USER MANUAL for other I/O field map.

Byte	Part	Туре	Command	Response		
1			DATA_RWA (50h)	DATA_RWA (50h)		
2	l la a da n fia la			ALARM		
3	Header field	_	OPTION	STATUS		
4				314103		
5		_	Reserved	Connection status		
6						
			Address number "0" remote	Address number "0" remote		
			I/O input	I/O output		
9 10			Address number "1" remote I/O input	Address number "1" remote I/O output		
11			Address number "2" remote	Address number "2" remote		
12			I/O input	I/O output		
13			Address number "3" remote	Address number "3" remote		
14		Remote I/O	I/O input	I/O output		
15 16			Address number "4" remote I/O input	Address number "4" remote		
17				· ·		
18	Data field		Address number "5" remote I/O input	Address number "5" remote I/O output		
19	Data field		Address number "6" remote	Address number "6" remote		
20			I/O input	I/O output		
21			Address number "7" remote	Address number "7" remote		
			I/O input	I/O output		
23 24			Register address number	Register address number response		
25						
26			Command code + TRIG	Command code response + TRIG response + STATUS		
27		Remote resistor				
28			DATA			
29			DATA	DATA response		
30						
31		-	Reserved	Reserved		

2.4 I/O field map for the NETC01-M3

Update of remote I/O data (asynchronous) is executed by "DATA_RWA" Command (20h). When the remote I/O occupied size is 16-bit mode and the number of transmission bytes is 32 bytes (initial value), I/O field map will be as follows. See the network converter **NETCO1-M3** USER MANUAL for other I/O field map.

Byte	Туре	Command	Response		
0	-	DATA_RWA (20h)	DATA_RWA (20h)		
1	-	WDT	RWDT		
2	_	CMD_CTRL	CMD_STAT		
3					
	_	Reserved	Connection status		
6 7		Address number "0" remote I/O input	Address number "0" remote I/O output		
8		Address number "1" remote I/O input	Address number "1" remote I/O output		
10 11		Address number "2" remote I/O input	Address number "2" remote I/O output		
12 13		Address number "3" remote I/O input	Address number "3" remote I/O output		
14 15	Remote I/O	Address number "4" remote I/O input	Address number "4" remote I/O output		
16 17		Address number "5" remote I/O input	Address number "5" remote I/O output		
18 19		Address number "6" remote I/O input	Address number "6" remote I/O output		
20 21		Address number "7" remote I/O input	Address number "7" remote I/O output		
22		Register address number	Register address number response		
24 25		Command code + TRIG	Command code response + TRIG response + STATUS		
26	Remote resistor		· ·		
27					
28		DATA	DATA response		
29					
30	_	Reserved	Reserved		
31			IVESEIVEN		

2.5 Communication format

Communication formats to the driver and **NETC01-M2** (**NETC01-M3**) are as follows.

Remote I/O input

For details on remote I/O, refer to p.130.

• 8 axes connection mode [16 bit mode]

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
[Not used]	[Not used]	[Not used]	[Not used]	[Not used]	[Not used]	[Not used]	[Not used]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[Not used]	[MB-FREE]	[STOP-MODE]	[REV]	[FWD]	[M2]	[M1]	[M0]

* []: Initial value

• 16 axes connection mode [8 bit mode]

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[Not used]	[MB-FREE]	[STOP-MODE]	[REV]	[FWD]	[M2]	[M1]	[M0]

* []: Initial value

Remote I/O output

• 8 axes connection mode [16 bit mode]

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-OUT15 [TLC]	NET-OUT14 [VA]	NET-OUT13 [MOVE]	NET-OUT12 [ALARM- OUT2]	NET-OUT11 [Not used]	NET-OUT10 [Not used]	NET-OUT9 [Not used]	NET-OUT8 [S-BSY]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-OUT7 [ALARM- OUT1]	NET-OUT6 [WNG]	NET-OUT5 [STOP- MODE_R]	NET-OUT4 [REV_R]	NET-OUT3 [FWD_R]	NET-OUT2 [M2_R]	NET-OUT1 [M1_R]	NET-OUT0 [M0_R]

* []: Initial value

• 16 axes connection mode [8 bit mode]

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-OUT7 [ALARM- OUT1]	NET-OUT6 [WNG]	NET-OUT5 [STOP- MODE_R]	NET-OUT4 [REV_R]	NET-OUT3 [FWD_R]	NET-OUT2 [M2_R]	NET-OUT1 [M1_R]	NET-OUT0 [M0_R]

* []: Initial value

Remote register input

• Command [NETC01-M2 (NETC01-M3) to driver]

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
		Command and					
-	TRIG	Command code					
DATA							

• Explanation of command

Name	Description	Setting range
Command code	The command sets the command code for "write and read of parameters," "monitor" and "maintenance."	-
TRIG	This is the trigger for handshake to execute the command code. When turning the TRIG from 0 to 1, the command code and DATA will be executed.	0: No motion 1: Execution
DATA	This is the data writing to the driver (little endian).	-

Remote register output

• Response [Driver to NETC01-M2 (NETC01-M3)]

	······································						
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
STATUS TRIG_R							
DATA_R							

• Explanation of command

Name	Description	Setting range
Command code	The response returns the command code of the command.	-
TRIG_R	This is the trigger for handshake indicating the completion of the command code. When the command code is completed, the TRIG_R will be turned from 0 to 1.	0: Not processing 1: Execution completion
STATUS	This indicates the result that executed the command code.	0: Normal operation 1: Error
DATA_R	This is the data reading from the driver (little endian).	-

3 Details of remote I/O

This is common to **NETCO1-CC**, **NETCO1-M2** and **NETCO1-M3**.

3.1 Input signals to the driver

The following input signals can be assigned to the NET-IN0 to NET-IN15 of remote I/O using the parameter. See the following table for the assignments of the NET-IN0 to NET-IN15. For details on parameter, refer to p.137 "I/O function parameter (RS-485)".

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15	NET-IN14	NET-IN13	NET-IN12	NET-IN11	NET-IN10	NET-IN9	NET-IN8
[Not used]	[Not used]	[Not used]	[Not used]	[Not used]	[Not used]	[Not used]	[Not used]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[Not used]	[MB-FREE]	[STOP-MODE]	[REV]	[FWD]	[M2]	[M1]	[M0]

* []: Initial value

Signal name	Function	Setting range
Not used	Set when the input terminal is not used.	-
FWD	Rotate the motor in the forward direction.	0: Stop
REV	Rotate the motor in the reverse direction.	1: Operation
STOP-MODE	Select instantaneous stop or deceleration stop. 0: Instantaneous stop 1: Deceleration stop	
MB-FREE	Release the electromagnetic brake.	0: Electromagnetic brake hold 1: Electromagnetic brake release
HMI	Release of the function limitation of the OPX-2A or MEXE02 (normally closed)	0: Function limitation 1: Function limitation release
R0 to R15	General signals. Use these signals when controlling the system via RS-485 communication.	0: OFF 1: ON
M0 to M3	Select the operation data No. using these four bits.	0: OFF 1: ON (Operation data No.0 to 15 can be selected.)
TL	Disable the torque limiting. (normally closed).	0: Torque limiting disabled 1: Torque limiting enabled

• Do not assign the same input signal to multiple input terminals. When the same input signal is assigned to multiple input terminals, the function will be executed if any of the terminals becomes active.

• When the HMI input and TL input are not assigned to the input terminals, these inputs will be always set to ON (1). When assigning them to multiple terminals (including direct I/O and network I/O), the function will be executed when all terminals are set to ON (1).

3.2 Output signals from the driver

The following output signals can be assigned to the NET-OUT0 to NET-OUT15 of remote I/O using the parameter. See the following table for the assignments of the NET-OUT0 to NET-OUT15. For details on parameter, refer to p.137 "I/O function parameter (RS-485)".

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-OUT15 [TLC]	NET-OUT14 [VA]	NET-OUT13 [MOVE]	NET-OUT12 [ALARM- OUT2]	NET-OUT11 [Not used]	NET-OUT10 [Not used]	NET-OUT9 [Not used]	NET-OUT8 [S-BSY]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-OUT7 [ALARM- OUT1]	NET-OUT6 [WNG]	NET-OUT5 [STOP- MODE_R]	NET-OUT4 [REV_R]	NET-OUT3 [FWD_R]	NET-OUT2 [M2_R]	NET-OUT1 [M1_R]	NET-OUT0 [M0_R]

* []: Initial value

Signal name	Function	Data read	
Not used	Set when the output terminal is not used.	-	
FWD_R	Output in response to the FWD input.		
REV_R	Output in response to the RVS input.		
STOP-MODE_R	Output in response to the STOP-MODE input.		
MB-FREE_R	Output in response to the MB-FREE input.	0: OFF	
HMI_R	Output in response to the HMI input.	1: ON	
R0 to R15	Output the status of the general signals R0 to R15.		
M0_R to M3_R	Output in response to the M0 to M3 inputs.		
TL_R	Output in response to the TL. input		
ALARM_OUT1	Output the alarm status (normally open).	0: Alarm not present 1: Alarm present	
WNG	Output the warning status.	0: Warning not present 1: Warning present	
MOVE	Output when the motor operates.	0: Motor stopped 1: Motor operating	
TLC	Output when the motor torque reaches the limit value.	0: No torque limiting 1: In torque limiting operation	
VA	Output when the motor speed reaches the setting value.	0: Speed not attained 1: Speed attainment	
S-BSY	Output when the motor is in internal processing state.	0: No internal processing 1: During internal processing	
ALARM-OUT2 Output when the overload warning detection level is exceeded. Output when an overload alarm generates. (normally closed)		0: Normal operation 1: In overload operation	
MPS	Output the ON-OFF state of the main power supply.	0: Main power-OFF 1: Main power-ON	
DIR Output the motor rotation direction.		0: REV direction 1: FWD direction	

4 Command code list

This is common to **NETCO1-CC**, **NETCO1-M2** and **NETCO1-M3**.

4.1 Group function

The driver has a group function. Multiple slaves are made into a group and a operation command is sent to all slaves in the group at once.

Group composition

A group consists of one parent slave and child slaves.

Group address

To perform a group send, set a group address to the child slaves to be included in the group. The child slaves to which the group address has been set can receive a command sent to the parent slave. The operation command will be sent to the child slaves in the same group by sending it to the parent slave.

• Parent slave

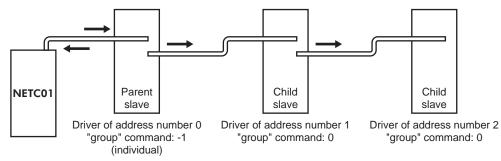
No special setting is required on the parent slave to perform a group send. The address of the parent slave becomes the group address.

Child slave

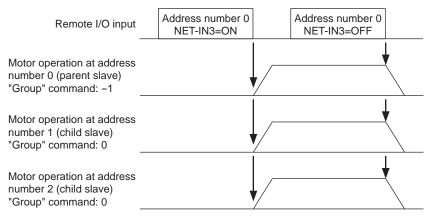
Use a "group" (1018h) to set a group address to each child slave.

Note Only remote I/O input can execute the group function. Read from commands and parameters or write to commands and parameters cannot be executed.

Group setting


The group setting is not saved in the non-volatile memory even when the maintenance command "batch NV memory write" executes.

Comma	Command code		Sotting range	Initial value
Read	Write	Description	Setting range	Initial value
0018h	1018h	Group	Set the group. -1: Individual (No group setting) 0 to 15: Set the group address. (Address number of parent slave) *	−1: Individual


* Set in the 0 to 11 range when using the **NETCO1-CC**, and set in the 0 to 15 range when using the **NETCO1-M2** or **NETCO1-M3**.

Example for setting of the group function

Set as follows when making a group by setting the driver of address number 0 to the parent slave and by setting the driver of address number 1 and 2 to the child slaves.

This is a timing chart for when assigning the FWD signal to NET-IN3 (remote I/O) of the driver in the group.

Note When inputting a command to the parent slave with remote I/O, the motors of the parent slave and child slaves will operate. The motors will not operate if the command is input to the child slaves.

4.2 Maintenance command

These commands are used to clear the alarm records and warning records. They are also used to execute the batch processing for the non-volatile memory.

Command code	Name	Name Description	
30C0h	Reset alarm	Resets the alarms that are present. Some alarms cannot be reset with the "reset alarm."	
30C2h	Clear alarm records	Clears alarm records.	
30C3h	Clear warning records	Clear warning records Clears warning records.	
30C4h	Clear communication error records	Clears the communication error records.	
30C6h	Configuration	Executes the parameter recalculation and the setup.	1: Execute
30C7h	All data initialization *	Resets the parameters saved in the non-volatile memory to the initial value.	
30C8h	Batch NV memory read	Reads the parameters saved in the non-volatile memory, to the RAM. All operation data and parameters previously saved in the RAM are overwritten.	
30C9h	Batch NV memory write	Writes the parameters saved in the RAM to the non-volatile memory.	

* Communication parity, communication stop bit and transmission waiting time are not initialized. Initialize them using the **OPX-2A** or **MEXE02**.

Note The non-volatile memory can be rewritten approximately 100,000 times.

4.3 Monitor command

These commands are used to monitor the driver condition.

Command code	Name	Description
2040h	Present alarm	Monitors the present alarm code.
2041h	Alarm record 1	
2042h	Alarm record 2	
2043h	Alarm record 3	
2044h	Alarm record 4	
2045h	Alarm record 5	_
2046h	Alarm record 6	Monitors the alarm records.
2040h	Alarm record 7	_
2047h 2048h	Alarm record 8	_
	Alarm record 9	_
2049h 204Ah	Alarm record 10	_
		Maniferra tha manager to coming a serie
204Bh	Present warning	Monitors the present warning code.
204Ch	Warning record 1	
204Dh	Warning record 2	_
204Eh	Warning record 3	
204Fh	Warning record 4	
2050h	Warning record 5	Monitors the warning records.
2051h	Warning record 6	
2052h	Warning record 7	
2053h	Warning record 8	
2054h	Warning record 9	
2055h	Warning record 10	
2056h	Present communication error code	Monitors the last received communication error code.
2057h	Communication error code record 1	
2058h	Communication error code record 2	_
2059h	Communication error code record 3	_
205Ah	Communication error code record 4	-
205Bh	Communication error code record 5	Monitors the communication error records that have occurred in the
205Ch	Communication error code record 6	past.
205Dh	Communication error code record 7	
205Eh	Communication error code record 8	_
205Fh	Communication error code record 9	-
2060h	Communication error code record 10	_
2062h	Present operation data No.	Monitors the operation data No. corresponding to the data used in the current operation. While the motor is stopped, the last used operation data number is indicated.
2064h	Command speed	Monitors the command speed.
2067h	Feedback speed	Monitors the feedback speed.
206Ah	Direct I/O and electromagnetic brake status	Monitors the each direct I/O signal and electromagnetic brake status. See the following table for the assignments.
2080h	Operation speed	Monitors the feedback speed calculated by the "reduction gear rate" parameter or "amplification speed rate" parameter. (unit: r/min)
2081h	Operation speed decimal position	Monitors the decimal position in the operation speed. *1
2082h	Conveyor transfer speed	Monitors the feedback speed calculated by the "conveyor reduction gear rate" parameter or "conveyor amplification speed rate" parameter (unit: m/min)
2083h	Conveyor transfer speed decimal position	Monitors the decimal position in the conveyor transfer speed. *2
2084h	Load factor	Monitors the torque that is output by the motor based on the rated torque being 100%. (unit: %)
2086h	External analog speed setting	Monitors the speed setting value by the external potentiometer. (unit: r/min) *3

Command code	Name	Description
2088h	External analog torque limit setting	Monitors the torque limiting value by the external potentiometer. (unit: %) *3
208Bh	External analog voltage setting	Monitors the setting voltage by external voltage. (unit: 0.1 V)

*1 The decimal position is automatically changed based on the setting of the "reduction gear rate" parameter or "decimal place for reduction gear rate" parameter.

*2 The decimal position is automatically changed based on the setting of the "conveyor reduction gear rate" parameter or "decimal place for conveyor reduction gear rate" parameter.

*3 FFFFh is displayed when not selecting by the "analog input signal select" parameter.

					/			
Byte	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	-	IN6	IN5	IN4	IN3	IN2	IN1	IN0
1	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	OUT1	OUT2
3	-	-	-	-	-	-	MB	-

4.4 Operation data

Up to 16 operation data can be set (data Nos.0 to 15).

When the operation data is changed, a recalculation and setup will be performed after the operation is stopped and the changed value will be set.

Command code		- Description	Setting range	Initial
Read	Write	Description	Setting range	value
0240h	1240h	Rotational speed No.0		
to	to	to	0, or 80 to 4000 r/min	0
024Fh	124Fh	Rotational speed No.15		
0300h	1300h	Acceleration No.0		
to	to	to		
030Fh	130Fh	Acceleration No.15	2 to 150 (1=0.1 s)	5
0340h	1340h	Deceleration No.0	2 10 150 (1=0.1 5)	5
to	to	to		
034Fh	134Fh	Deceleration No.15		
0380h	1380h	Torque limit No.0		
to	to	to	0 to 200%	200
038Fh	138Fh	Torque limit No.15		

4.5 User parameters

The parameters are saved in the RAM or non-volatile memory. The data saved in the RAM will be erased once the 24 VDC power supply is turned off. On the other hand, the parameters saved in the non-volatile memory will be retained even after the 24 VDC power supply is turned off.

When turning on the driver 24 VDC power supply, the parameters saved in the non-volatile memory will be sent to the RAM. Then, the recalculation and setup for the parameters are executed in the RAM.

Parameters having set via RS-485 communication or industrial network are saved in the RAM. To save the parameters stored in the RAM to the non-volatile memory, execute the "batch NV memory write" of the maintenance command. The parameters set with the **MEXEO2** will be saved in the non-volatile memory if "Data writing" is performed.

When a parameter is changed, the timing to enable the new value varies depending on the parameter. See the following four types.

	Update timing	Description				
A	Effective immediately	Executes the recalculation and setup immediately when writing the parameter.				
В	Effective after stopping the operation	Executes the recalculation and setup after stopping the operation.				
С	Effective after executing configuration or effective after turning the power ON again	Executes the recalculation and setup after executing the configuration or turning the 24 VDC power ON again.				
D	Effective after turning the power ON again	Executes the recalculation and setup after turning the 24 VDC power ON again.				
NI						

Note

The parameters are written in the RAM area when writing via the **NETC01-CC**, **NETC01-M2** or **NETC01-M3**. When saving data to the non-volatile memory, execute "batch NV memory write" of the maintenance command.

• The non-volatile memory can be rewritten approximately 100,000 times.

Function parameter

Command code		Description	Setting range	Initial value	Effective
Read	Write				T
01C2h	11C2h	Motor rotation direction	0: + direction=CCW 1: + direction=CW	1	С
0825h	1825h	Reduction gear rate	100 to 9999	100	
0826h	1826h	Decimal place for reduction gear rate	0: 1 digit 1: 2 digit 2: 3 digit	2	
0827h	1827h	Amplification speed rate	1 to 5	1	
0828h	1828h	Conveyor reduction gear rate	100 to 9999	100	A
0829h	1829h	Decimal place for conveyor reduction gear rate	0: 1 digit 1: 2 digit 2: 3 digit	2	
082Ah	182Ah	Conveyor amplification speed rate	1 to 5	1]
08A7h	18A7h	Velocity attainment width	0 to 400 r/min	200	

* Indicates the timing for the data to become effective. (A: Effective immediately, C: Effective after executing configuration or effective after turning the power ON again)

■ I/O function parameter

Command code		Description	Setting range	Initial value	Effective	
Read	Write	Description	Setting range	Initial value	*	
0880h	1880h	IN0 function select		1: FWD		
0881h	1881h	IN1 function select	function select			
0882h	1882h	IN2 function select		19: STOP-MODE		
0883h	1883h	IN3 function select	See table next.	48: M0	В	
0884h	1884h	IN4 function select		24: ALARM-RESET		
0885h	1885h	IN5 function select		20: MB-FREE		
0886h	1886h	IN6 function select		22: TH		
0890h	1890h	IN0 contact configuration		0		
0891h	1891h	IN1 contact configuration				
0892h	1892h	IN2 contact configuration				
0893h	1893h	IN3 contact configuration	0: Make (N.O.) 1: Brake (N.C.)		С	
0894h	1894h	IN4 contact configuration				
0895h	1895h	IN5 contact configuration				
0896h	1896h	IN6 contact configuration				
08A0h	18A0h	OUT0 function select	See table next.	85: SPEED-OUT	Α	
08A1h	18A1h	OUT1 function select		65: ALARM-OUT1		

 * Indicates the timing for the data to become effective. (A: Effective immediately, B: Effective after stopping the operation, C: Effective after executing configuration or effective after turning the power ON again)

• Setting range for IN input function selection

0 0				
0: No function	22: TH	35: R3	41: R9	47: R15
1: FWD	24: ALARM-RESET	36: R4	42: R10	48: M0
2: REV	27: HMI	37: R5	43: R11	49: M1
19: STOP-MODE	32: R0	38: R6	44: R12	50: M2
20: MB-FREE	33: R1	39: R7	45: R13	51: M3
21: EXT-ERROR	34: R2	40: R8	46: R14	54: TL

0: No function	34: R2	42: R10	50: M2_R	80: S-BSY
1: FWD_R	35: R3	43: R11	51: M3_R	81: ALARM-OUT2
2: REV_R	36: R4	44: R12	54: TL_R	82: MPS
19: STOP-MODE_R	37: R5	45: R13	65: ALARM-OUT1	84: DIR
20: MB-FREE_R	38: R6	46: R14	66: WNG	85: SPEED-OUT
27: HMI_R	39: R7	47: R15	68: MOVE	
32: R0	40: R8	48: M0_R	71: TLC	
33: R1	41: R9	49: M1_R	77: VA	

		-				
Command code		nd code	Description	Sotting rongo	Initial value	Effective
	Read	Write	- Description	Setting range	Initial value	*
	08B0h	18B0h	NET-IN0 function select		48: M0	
	08B1h	18B1h	NET-IN1 function select]	49: M1	
	08B2h	18B2h	NET-IN2 function select		50: M2	
	08B3h	18B3h	NET-IN3 function select]	1: FWD	
	08B4h	18B4h	NET-IN4 function select]	2: REV	
	08B5h	18B5h	NET-IN5 function select		19: STOP-MODE	
	08B6h	18B6h	NET-IN6 function select]	20: MB-FREE	
	08B7h	18B7h	NET-IN7 function select			
	08B8h	18B8h	NET-IN8 function select	See table next.		
	08B9h	18B9h	NET-IN9 function select			
	08BAh	18BAh	NET-IN10 function select]		
	08BBh	18BBh	NET-IN11 function select		0: No function	
		18BCh	NET-IN12 function select]		
		18BDh	NET-IN13 function select			- C
	08BEh	18BEh	NET-IN14 function select]		
	08BFh	18BFh	NET-IN15 function select			
	08C0h	18C0h	NET-OUT0 function select		48: M0_R	
	08C1h	18C1h	NET-OUT1 function select		49: M1_R	
	08C2h	18C2h	NET-OUT2 function select]	50: M2_R	
	08C3h	18C3h	NET-OUT3 function select		1: FWD_R	
	08C4h	18C4h	NET-OUT4 function select		2: REV_R	
	08C5h	18C5h	NET-OUT5 function select		19: STOP-MODE_R	
	08C6h	18C6h	NET-OUT6 function select		66: WNG	
	08C7h	18C7h	NET-OUT7 function select	See table next.	65: ALARM-OUT1	
	08C8h	18C8h	NET-OUT8 function select		80: S-BSY	
	08C9h	18C9h	NET-OUT9 function select			
	08CAh	18CAh	NET-OUT10 function select		0: No function	
	08CBh	18CBh	NET-OUT11 function select			
	08CCh	18CCh	NET-OUT12 function select		81: ALARM-OUT2	
	08CDh	18CDh	NET-OUT13 function select		68: MOVE	
	08CEh	18CEh	NET-OUT14 function select		77: VA	
	08CFh	18CFh	NET-OUT15 function select		71: TLC	
		1		a a		·

■ I/O function parameter (RS-485)

* Indicates the timing for the data to become effective. (C: Effective after executing configuration or effective after turning the power ON again)

• Setting range for NET-IN input function selection

0: No function	32: R0	38: R6	44: R12	50: M2
1: FWD	33: R1	39: R7	45: R13	51: M3
2: REV	34: R2	40: R8	46: R14	54: TL
19: STOP-MODE	35: R3	41: R9	47: R15	
20: MB-FREE	36: R4	42: R10	48: M0	
27: HMI	37: R5	43: R11	49: M1	

• Setting range for NET-OUT output function selection

	•			
0: No function	33: R1	40: R8	47: R15	66: WNG
1: FWD_R	34: R2	41: R9	48: M0_R	68: MOVE
2: REV_R	35: R3	42: R10	49: M1_R	71: TLC
19: STOP-MODE_R	36: R4	43: R11	50: M2_R	77: VA
20: MB-FREE_R	37: R5	44: R12	51: M3_R	80: S-BSY
27: HMI_R	38: R6	45: R13	54: TL_R	81: ALARM-OUT2
32: R0	39: R7	46: R14	65: ALARM_OUT1	82: MPS
				84: DIR

Analog adjust parameter

Comma Read	nd code Write	Description	Setting range	Initial value	Effective
08D0h	18D0h	Analog operating speed command gain	0 to 4000 r/min	800	
08D1h	18D1h	Analog operating speed command offset	-2000 to 2000 r/min	0	
08D2h	18D2h	Analog torque limit gain	0 to 200%	40	
08D3h	18D3h	Analog torque limit offset	-50 to 50%	0	A
08D5h	18D5h	Analog operating speed maximum value for external input	0 to 4000 r/min	4000	
08D7h	18D7h	Analog torque limit maximum value external input	0 to 200%	200	

* Indicates the timing for the data to become effective. (A: Effective immediately)

Alarm/warning parameter

Command code		Description	Setting range	Initial value	Effective
Read	Write	Decemption	County rungo		*
0851h	1851h	Over load warning enable	0: Disable 1: Enable	0	A
0855h	1855h	Over load warning level	50 to 100%	100	

* Indicates the timing for the data to become effective. (A: Effective immediately)

Utilities parameter

Command code Read Write		Description	Setting range	Initial value	Effective
Reau	ville				-
0143h	1143h	JOG operating speed	0, or 80 to 1000 r/min	300	
01E0h	11E0h	Display mode of the data setter speed	0: Signed 1: Absolute	0	A
01E1h	11E1h	The data setter editing mode	0: Disable 1: Enable	1	A
0821h	1821h	JOG operating torque	0 to 200%	200	

* Indicates the timing for the data to become effective. (A: Effective immediately)

Operation parameter

Comma	nd code	Duratific	0	Initial value	Effective
Read	Write	- Description	Description Setting range		*
0816h	1816h	Run mode select	select 0: PWM shut off mode enable 1: PWM shut off mode disable		
0840h	1840h	Magnetic brake function at alarm 0: Lock after free stop 1: Lock immediately		1	
0841h	1841h	No operation at initial alarm enable	0: Disable	0	
0843h	1843h	Initial thermal input detection	1: Enable	0	с
0870h	1870h	Data setter initial display	0: Operating speed 1: Conveyor speed 2: Load factor 3: Operating number 4: Mon top view	0	
0871h	1871h	Analog input signal select	0: Analog invalid 1: Analog speed 2: Analog torque (See next page for details.)	1	

* Indicates the timing for the data to become effective. (C: Effective after executing configuration or effective after turning the power ON again)

• "Analog input signal select" parameter

Setting method of operation data can be changed using the "analog input signal select" parameter. Others except the following combinations are not available to set.

"Analog input signal select" parameter			Acceleration Deceleration	Torque limit
0	0 to 15	Digital setting		
1	0	Analog setting	Digital setting	
(Initial value)	1 to 15		Digital setting	
2	0 ot 15	Digital setting		Analog setting

Setting example

- When setting all operation data with digital setting: Set the "analog input signal select" parameter to "0."
- When setting only the rotation speed in the operation data No.0 using the analog setting: Set the "analog input signal select" parameter to "1."

Communication parameter

Command code		Description	Setting range	Initial value	Effective
Read Write		Description	Setting range		*
0900h	1900h	Communication time out	0: Not monitored 1 to 10000 ms	0	A
0901h	1901h	Communication error alarm	1 to 10 times	3	

* Indicates the timing for the data to become effective. (A: Effective immediately)

Command code list

6 Inspection, troubleshooting and remedial actions

This part explains the periodical inspection methods as well as confirmation items and remedial actions when problems have happened.

Table of contents

1	Maiı	ntenance and inspection	142
	1.1	Inspection	
	1.2	Warranty	
	1.3	Disposal	
2	Alar	ms, warnings and	
	com	munication errors	143
	2.1	Alarms	
		■ Alarm reset	
		Alarm records	
		Alarm list	
	2.2	Warnings	145
		■ Warning list	
		Warning records	
	2.3	Communication errors	
		Communication error list	
		Communication error records	
3	Trou	bleshooting and remedial	
		ons	147

1 Maintenance and inspection

1.1 Inspection

It is recommended that periodic inspections for the items listed below are conducted after each operation of the motor. If an abnormal condition is noted, discontinue any use and contact your nearest Oriental Motor sales office.

- Note Conduct the insulation resistance measurement or dielectric strength test separately on the motor and the driver. Conducting the insulation resistance measurement or dielectric strength test with the motor and driver connected may result in damage to the product.
 - The driver uses semiconductor elements. Handle the driver with care since static electricity may damage semiconductor elements. Static electricity may damage the driver.

During inspection

- The motor/gearhead mounting screws are not loose.
- Check for any unusual noises in the motor bearings (ball bearings) or other moving parts.
- The bearing (ball bearing) and gear meshing parts of the gearhead are not generating noise.
- The motor/gearhead output shaft is not misaligned with the load shaft.
- Are there any scratches, signs of stress or loose driver connections in the cable?
- Are the openings in the driver blocked?
- The driver mounting screws and power connection terminal screws are not loose.
- Are there any strange smells or appearances within the driver?

1.2 Warranty

Check on the Oriental Motor Website for the product warranty.

1.3 Disposal

Dispose the product correctly in accordance with laws and regulations, or instructions of local governments.

2 Alarms, warnings and communication errors

The driver provides alarms that are designed to protect the driver from overheating, poor connection, error in operation, etc. (protective functions), as well as warnings that are output before the corresponding alarms generate (warning functions).

Communication error will generate when the process requested by the master could not be executed.

2.1 Alarms

When an alarm generates, the ALARM-OUT1 output will turn OFF and the motor will stop. At the same time, the PWR/ALM LED will start blinking.

The present alarm can be checked by counting the number of times the PWR/ALM LED blinks. The alarm can be also checked using any of the **OPX-2A**. **MEXEO2** or RS-485 communication.

Example: Sensor error alarm (number of blinks: 3)

Alarm reset

Before resetting an alarm, always remove the cause of the alarm and ensure safety, and perform one of the reset operations specified below. Refer to p.52 for the timing chart.

- Turn the ALARM-RESET input to ON and then OFF. (This signal will become effective when turning from ON to OFF.)
- Perform an alarm reset using RS-485 communication.
- Perform an alarm reset using the **OPX-2A** or **MEXE02**.
- Cycle the power.

Some alarms cannot be reset with the ALARM-RESET input, **OPX-2A**, **MEXE02** or RS-485 communication. Check the following table to identify which alarms meet this condition. To reset these alarms, cycle the power.

Alarm records

Up to 10 generated alarms are saved in the non-volatile memory in order of the latest to oldest. Alarm records saved in the non-volatile memory can be read and cleared when performing any of the following.

- Read the alarm records by the monitor command via RS-485 communication.
- Clear the alarm records by the maintenance command via RS-485 communication.
- Read and clear the alarm records using the **OPX-2A** or **MEXE02**.

Alarm list

Code	No. of LED blinks	Alarm type	Cause	Remedial action	Reset using the ALARM- RESET input	
30h	2	Overload	A load exceeding the rated torque was applied to the motor for 5 seconds or more.	 Decrease the load. Review the operation pattern settings such as the acceleration/ deceleration time. 		
28h	2	Sensor error	during operation, or the signal	Check the connection between the		
42h	3	Initial sensor error	The motor sensor signal line broke or signal connector came off before the main power supply was turned on.	driver and motor.		
22h	4	Overvoltage	 The main power-supply voltage became higher than the rated voltage by approx. 20%. A load exceeding the allowable gravitational capacity of the motor is driven or sudden starting/stopping of a large inertial load is performed. 	 Check the main power supply voltage. If this alarm occurs during operation, reduce the load or increase the acceleration/ deceleration time. Use a regeneration unit. 	Possible	
25h	5	Undervoltage	The main power-supply voltage became lower than the rated voltage by approx. 40%	 Check the main power supply voltage. Check the wiring of the power supply cable. 		
31h	6	Overspeed	The rotation speed of the motor output shaft exceeded approx. 4800 r/min	 Decrease the load. Review the operation pattern settings such as the acceleration/ deceleration time. 		
20h	7	Overcurrent	Excessive current has flown through the driver due to ground fault, etc.	Check the wiring between the driver and motor for damage, and then cycled the power.	Not possible	
41h	8	EEPROM error	 Stored data was damaged. Data became no longer writable or readable. 	Initialize the parameters if the OPX-2A or MEXE02 is used. If the alarm does not reset even after the power has been cycled, contact your nearest office.		
51h	9	Overheated regeneration unit	 Overheating of the regeneration unit was detected. Lead wires of the thermostat output of the regeneration unit broke during operation. 	 The power consumption of the regeneration unit exceeds the permissible level. Review the load condition and operating conditions. Check the connection of the regeneration unit. 		
6Eh	10	External stop *1	The EXT-ERROR input turned OFF.	Check the EXT-ERROR input.	Possible	
46h	11	Initial operation inhibition *2	The 24 VDC power supply was cycled when the FWD input or REV input was ON.	Turn the FWD input and REV input OFF, and then cycle the 24 VDC power supply.		
81h		Network bus error	When the motor operates, the master controller for the network converter shows a disconnection status.	Check the connector or cable of the master controller.		
83h	12	Communication switch setting error	Transmission rate setting switch (SW4) was out-of-specification.	Check the transmission rate setting switch (SW4).	Not possible	
84h		RS-485 communication error	The number of consecutive RS-485 communication errors reached the set value of the "communication error alarm" parameter.	 Check the connection between the master controller and driver. Check the setting of RS-485 communication. 	Possible	

*1 It generates when assigning the EXT-ERROR to the IN0 to IN6 inputs.
*2 It generates when setting the "no operation at initial alarm enable" parameter to "Enable."

Code	No. of LED blinks	Alarm type	Cause	Remedial action	Reset using the ALARM- RESET input
85h	RS-485 communication 12 timeout		The time set in the "communication time out" parameter has elapsed, and yet the communication could not be established with the master controller.	Check the connection between the master controller and driver.	
8Eh		Network converter error	An alarm was generated in the network converter.	Check the alarm code of the network converter.	
23h	13	Main power off	 The main power supply was shut off while operating. Although the 24 VDC power supply has been turned on, the operation command was input while the main power supply was shut off. 	 Check the connections between the driver and power supply. Check the power supply cable wiring. 	Possible
2Dh	14	Main circuit output error *	The motor drive wire broke or motor power connector came off.	Check the connection between the driver and motor.	

* This alarm does not generate when the torque limiting value is set to less than 200%.

2.2 Warnings

When a warning generates, the WNG output will turn ON. The motor will continue to operate. Once the cause of the warning is removed, the WNG output will turn OFF automatically.

Warning list

Code	Warning type	Cause	Remedial action
			Decrease the load.
30h	Overload *	The load torque of the motor exceeded the overload warning level.	 Review the operation pattern settings such as the acceleration/ deceleration time.
		• When moving from the test mode to other mode using the OPX-2A or MEXE02 , the FWD input or REV input was turned ON.	
6Ch	Operation error	• When changing the assignment of the input terminal using any of the OPX-2A , MEXE02 or RS-485 communication, the assigned terminal was ON.	Turn the input signals OFF.
0.46	RS-485	The DC 405 communication error was detected	Check the connection between the master controller and driver.
•	communication error	The RS-485 communication error was detected.	 Check the setting of RS-485 communication.

* The detection level can be changed using the **MEXE02** or **OPX-2A**.

Warning records

Up to 10 generated warnings are saved in the RAM in order of the latest to oldest. Warning records saved in the RAM can be read or cleared when performing any of the following.

- Read the warning records by the monitor command via RS-485 communication.
- Clear the warning records by the maintenance command via RS-485 communication.
- $\bullet\,$ Read and reset the warning records using the $\ensuremath{\text{OPX-2A}}$ or $\ensuremath{\text{MEXE02}}.$

Note You can also clear the warning records by turning off the driver power.

2.3 Communication errors

Up to 10 communication errors are saved in the RAM in order of the latest to the oldest and you can check using the **MEXEO2** or via RS-485 communication.

Communication error list

Code	Communication error type	Cause	Remedial action
84h	RS-485 communication error	One of the following errors was detected. · Framing error	 Check the connection between the master controller and driver. Check the setting of RS-485
		BCC error	communication.
88h	Command not yet defined	The command requested by the master could not be executed	 Check the setting value for the command.
		because of being undefined.	Check the flame configuration.
89h	Execution disable due to user I/F communication in progress	The command requested by the master could not be executed because the OPX-2A or MEXE02 was communicating with the driver.	Wait until the processing for the OPX-2A or MEXE02 will be completed.
8Ah	Non-volatile memory processing in progress	The command could not be executed because the driver was performing the non-volatile memory processing. • Internal processing was in progress. (S-BSY is ON.) • An EEPROM error alarm was present.	 Wait until the internal processing will be completed. When the EEPROM error was generated, initialize all parameters using any of the OPX-2A, MEXE02 or RS-485 communication.
8Ch	Outside setting range The setting data requested by the master could not be executed due to outside the range.		Check the setting data.
8Dh	Command execute disable	When the command is unable to execute, it was tried to execute.	Check the driver status.

Communication error records

Up to 10 communication errors are saved in the RAM in order of the latest to oldest.

Communication error records saved in the RAM can be read or cleared when performing any of the following.

- Read the communication error records by the monitor command via RS-485 communication.
- Clear the communication error records by the maintenance command via RS-485 communication.
- Clear the communication error records by the RS-485 communication monitor of the **MEXEO2**.

Note You can also clear the communication records by turning off the driver power.

3 Troubleshooting and remedial actions

During motor operation, the motor or driver may fail to function properly due to an improper speed setting or wiring. When the motor cannot be operated correctly, refer to the contents provided in this section and take appropriate action. If the problem persists, contact your nearest Oriental Motor sales office.

Phenomenon	Possible cause	Remedial action
	The power supply is not connected correctly.	Check the connection of the power supply.
	Both the FWD input and REV input are OFF.	Turn ON either the FWD input or REV input one at a
The motor does not operate.	Both the FWD input and REV input are ON.	time.
	The ALM LED (red) is blinking.	An alarm generated due to a protective function being triggered. Refer to p.143 to reset the alarm.
	Electromagnetic brake is not released. (electromagnetic brake motor only)	Turn ON the MB-FREE input.
	The FWD input and REV input are connected wrongly or otherwise not connected correctly.	Check the connection of the FWD input and REV input. The motor rotates in the clockwise direction when the FWD input is ON, and in the counterclockwise direction when the REV input is ON.
The motor rotates in the	The combination type • parallel shaft gearhead is using a gear with a gear ratio of 30, 50 or 100.	When the gear ratio of the combination type • parallel shaft gearhead is 30, 50 or 100, the rotation direction of the gear output shaft is opposite the rotation direction of the motor output shaft. Accordingly, reverse the FWD input and REV input operations.
direction opposite to the specified direction.	A combination type • hollow shaft	• With a combination type • hollow shaft flat gearhead, the rotation direction of the gear output shaft is opposite the rotation direction of the motor output shaft. Accordingly, reverse the FWD input and REV input operations.
	flat gearhead is used.	• Is the gearhead viewed in the correct direction? With a combination type • hollow shaft flat gearhead, the rotation direction of the gearhead changes according to the direction in which the gearhead is viewed.
	The motor (gearhead) output shaft is not misaligned with the load shaft.	Check the coupling condition of the motor (gearhead) output shaft and load shaft.
 Motor operation is unstable. Motor vibration is too great. 	Effect of noise.	Check the operation only with the motor, driver and other external equipment required for operation. If an effect of noise has been confirmed, implement the following countermeasures: • Move the motor and driver farther away from noise generation sources. • Review the wiring. • Change the signal cables to a shielded type. • Install ferrite cores.
The motor doesn't stop	The STOP-MODE input is ON.	To cause the motor to stop instantaneously, turn OFF the STOP-MODE input.
instantaneously.	The inertial load is large.	Reduce the load inertia or connect the accessory regeneration unit (sold separately).
The electromagnetic brake does not hold.	The MB-FREE input is ON.	Turn OFF the MB-FREE input.

Note • Check the alarm message when the alarm generates.

• I/O signals can be monitored using the **OPX-2A**, **MEXE02** or RS-485 communication. Use to check the wiring condition of the I/O signals.

Troubleshooting and remedial actions

7 Reference

This part explains the standards and CE Marking.

Table of contents

1	Spe	cifications150
	1.1	Specifications 150
	1.2	General specifications 152
	1.3	Dimension 152
2	Reg	ulations and standards153
	2.1	UL Standards and CSA Standards 153
	2.2	CE Marking 153
	2.3	RoHS Directive155
	2.4	Republic of Korea, Radio Waves Act 155
	2.5	Conformity to the EMC156

1 Specifications

The value in a state where the gearhead is not combined is described in each specification for the "rated torque," "maximum instantaneous torque," "rated rotation speed" and "speed control range."

- \Box in the model names indicates a number representing the gear ratio.
- \blacksquare indicates a number representing the length of a connection cable.

1.1 Specifications

Standard type

	Combination type • parallel shaft gearhead	BLE23AR□S■	BLE23CR□S■	BLE46AR□S■	BLE46CR□S■	
Model	Combination type • hollow shaft flat gearhead	BLE23AR□F■	BLE23CR□F■	BLE46AR□F■	BLE46CR□F■	
	Round shaft type	BLE23ARA■	BLE23CRA■	BLE46ARA■	BLE46CRA■	
Rated output p	ower (Continuous)	30	W	60	D W	
	Datad voltage	Single-phase	Single-phase 200-240 VAC	Single-phase	Single-phase 200-240 VAC	
	Rated voltage	100-120 VAC	Three-phase 200-240 VAC	100-120 VAC	Three-phase 200-240 VAC	
Devices events	Permissible voltage range	-15 to +10%				
Power supply input	Rated frequency	50/60 Hz				
input	Permissible frequency range	±5%				
	Rated input current	1.3 A	Single-phase: 0.8 A Three-phase: 0.45 A	2.0 A	Single-phase: 1.2 A Three-phase: 0.7 A	
	Maximum input current	3.5 A	Single-phase: 2.1 A Three-phase: 1.2 A	4.5 A	Single-phase: 2.6 A Three-phase: 1.5 A	
Control Power	Voltage	24 VDC				
Supply	Permissible Voltage Range	-15 to +20%				
Rated torque		0.1 N·m (14.2 oz-in)		0.2 N·m (28 oz-in)		
Maximum instantaneous torque*1		0.2 N·m (28 oz-in) 0.4 N·m (56 oz-in)				
Rated rotation speed		3000 r/min				
Speed control range		100 to 4000 r/min (Analog setting) 80 to 4000 r/min (Setting in 1 r/min increments during digital setting)*2				

*1 The maximum instantaneous torque can be used for up to approximately 5 seconds.

*2 These specifications apply when the RS-485 communication is used with either the **OPX-2A** or **MEXE02**.

	Combination type • parallel shaft gearhead	BLE512AR□S■	BLE512CR□S■	
Model	Combination type • hollow shaft flat gearhead	BLE512AR□F■	BLE512CR□F■	
	Round shaft type	BLE512ARA■	BLE512CRA	
Rated output p	ower (Continuous)	120	W	
	Rated voltage	Single-phase 100-120 VAC	Single-phase 200-240 VAC Three-phase 200-240 VAC	
D	Permissible voltage range	-15 to +10%		
Power supply	Rated frequency	50/60 Hz		
input	Permissible frequency range	±5%		
	Rated input current	3.3 A	Single-phase: 2.0 A Three-phase: 1.2 A	
	Maximum input current	8.2 A	Single-phase: 4.4 A Three-phase: 2.5 A	
Control Power	Voltage	24 VDC		
Supply	Permissible Voltage Range	-15 to +20%		
Rated torque	·	0.4 N⋅m (56 oz-in)		
Maximum insta	ntaneous torque*1	0.8 N·m (113 oz-in)		
Rated rotation	speed	3000 r/min		
Speed control r	range	100 to 4000 r/min 80 to 4000 r/min (Setting in 1 r/min		

*1 The maximum instantaneous torque can be used for up to approximately 5 seconds.

*2 These specifications apply when the RS-485 communication is used with either the **OPX-2A** or **MEXE02**.

Electromagnetic brake type

	Combination type • parallel shaft gearhead	BLE23AMR⊡S∎	BLE23CMR⊡S∎	BLE46AMR⊡S∎	BLE46CMR□S■	
Model	Combination type • hollow shaft flat gearhead	BLE23AMR□F■	BLE23CMR□F■	BLE46AMR□F■	BLE46CMR□F■	
	Round shaft type	BLE23AMRA	BLE23CMRA	BLE46AMRA	BLE46CMRA	
Rated output p	ower (Continuous)	30	Ŵ	60) W	
	Rated voltage	Single-phase 100-120 VAC	Single-phase 200-240 VAC	Single-phase 100-120 VAC	Single-phase 200-240 VAC	
		100-120 VAC	Three-phase 200-240 VAC	100-120 VAC	Three-phase 200-240 VAC	
Dannan annah	Permissible voltage range	-15 to +10%				
Power supply input	Rated frequency	50/60 Hz				
input	Permissible frequency range	±5%				
	Rated input current	1.3 A	Single-phase: 0.8 A Three-phase: 0.45 A	2.0 A	Single-phase: 1.2 A Three-phase: 0.7 A	
	Maximum input current	3.5 A	Single-phase: 2.1 A Three-phase: 1.2 A	4.5 A	Single-phase: 2.6 A Three-phase: 1.5 A	
Control Power	Voltage	24 VDC				
Supply	Permissible Voltage Range	-15 to +20%				
Rated torque	·	0.1 N·m (14.2 oz-in)		0.2 N·m (28 oz-in)		
Maximum instantaneous torque*1		0.2 N·m (28 oz-in) 0.4 N·m (56 oz-in)				
Rated rotation	speed	3000 r/min				
Speed control range		100 to 4000 r/min (Analog setting) 80 to 4000 r/min (Setting in 1 r/min increments during digital setting)*2				
Electromagneti	c Brake Type	Power of	off activated type, autom	natically controlled by	the driver	
Brake*3	Static Friction Torque	0.1 N·m (0.1 N·m (14.2 oz-in)		0.2 N·m (28 oz-in)	

*1 The maximum instantaneous torque can be used for up to approximately 5 seconds.

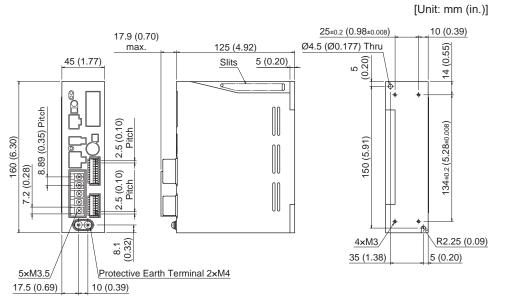
*2 These specifications apply when the RS-485 communication is used with either the **OPX-2A** or **MEXE02**.

*3 Do not start or stop the motor by turning the power supply ON/OFF, as this will cause the electromagnetic brake to wear abnormally.

	Combination type • parallel shaft gearhead		BLE512AMR⊡S■	BLE512CMR□S■	
Model	Combination type • hollow shaft flat gearhead		BLE512AMR□F■	BLE512CMR□F■	
	Roun	d shaft type	BLE512AMRA■	BLE512CMRA	
Rated output p	ower (O	Continuous)	120	W	
	Rated	l voltage	Single-phase	Single-phase 200-240 VAC	
			100-120 VAC	Three-phase 200-240 VAC	
Dowor oupply	Permi	ssible voltage range	-15 to +10%		
Power supply input	Rated	l frequency	50/60 Hz		
input	Permi	ssible frequency range	±5%		
	Rated	l input current	3.3 A	Single-phase: 2.0 A Three-phase: 1.2 A	
	Maximum input current		8.2 A	Single-phase: 4.4 A Three-phase: 2.5 A	
Control Power	Voltage		24 VDC		
Supply	Permi	ssible Voltage Range	-15 to +20%		
Rated torque			0.4 N·m (56 oz-in)		
Maximum insta	ntanec	ous torque*1	0.8 N·m (113 oz-in)		
Rated rotation speed			3000 r/min		
Speed control range			100 to 4000 r/min (Analog setting) 80 to 4000 r/min (Setting in 1 r/min increments during digital setting)*2		
Electromagneti	с	Brake Type	Power off activated type, automatically controlled by the driver		
Brake*3		Static Friction Torque	0.4 N·m (56 oz-in)	

*1 The maximum instantaneous torque can be used for up to approximately 5 seconds.

*2 These specifications apply when the RS-485 communication is used with either the **OPX-2A** or **MEXE02**.


*3 Do not start or stop the motor by turning the power supply ON/OFF, as this will cause the electromagnetic brake to wear abnormally.

1.2 General specifications

Item		Motor Driver			
	Ambient temperature	0 to +50 °C [+32 to +122 °F] (non-freezing)			
	Ambient humidity	85% or less (non-condensing)	35% or less (non-condensing)		
	Altitude	Up to 1000 m (3300 ft.) above sea level			
Operating environment	Surrounding atmosphere	No corrosive gas, dust, water or oil. Cannot be used in radioactive materials, magne	No corrosive gas, dust, water or oil. Cannot be used in radioactive materials, magnetic field, vacuum or other special environment.		
	Vibration	Not subject to continuous vibrations or excessive impact. In conformance with JIS C 60068-2-6 "Sine-wave vibration test method" Frequency range: 10 to 55 Hz Pulsating amplitude: 0.15 mm (0.006 in.) Sweep direction: 3 directions (X, Y, Z) Number of sweeps: 20 times			
Ambient temperature		-25 to +70 °C [-13 to +158 °F] (non-freezing)			
Storage environment Shipping environment	Ambient humidity	85% or less (non-condensing)			
	Altitude	Up to 3000 m (10000 ft.) above sea level			
Degree of protection		IP65 (Excluding the mounting surface of the round shaft type and connectors)	IP20		

1.3 Dimension

Mass: 0.7 kg (1.54 lb.)

2 Regulations and standards

2.1 UL Standards and CSA Standards

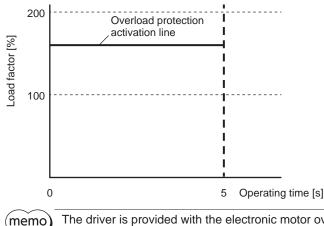
This product is recognized by UL under the UL and CSA Standards.

2.2 CE Marking

This product is affixed with the marks under the following directives.

Low Voltage Directive

Installation conditions

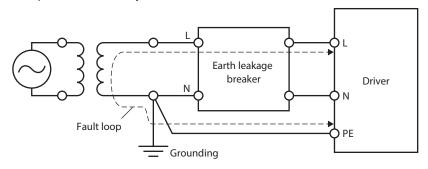

	Motor	Driver
Overvoltage category	Ⅲ *1	Π
Pollution degree	3	2
Degree of protection	IP65 *2	IP20
Protection against electric shock	Class I e	equipment

*1 Overvoltage category II when EN 60950-1 is applicable.

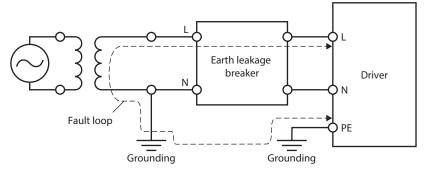
*2 Excluding the mounting surface of the round shaft type and the connector part.

- This product cannot be used in IT power distribution systems.
- Isolate power cables such as the connection cable, power supply cable and other drive cables from the signal cable (CN3, CN5 to CN8) by means of double insulation.
- Use a circuit breaker conforming to EN or IEC Standards.
- The driver is not provided with the motor overtemperature protection specified in EN Standards.
- The driver is provided with the electronic motor overload protection specified in EN Standards.

Overload protection characteristics

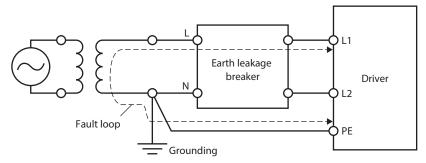


The driver is provided with the electronic motor overload protection, but is not provided with the thermal retention function and the speed sensitive function.

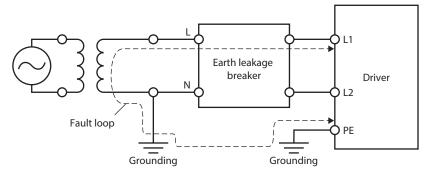

- The driver is not provided with the ground fault protection. Wire the product in accordance with "Wiring example having considered ground fault protection." Also observe the followings.
 - Earth leakage breaker: Rated sensitivity current 30 mA
 - Fault loop impedance: Equal to or less than the value in table
 - When connecting to a power supply of Overvoltage category III, use an insulation transformer to ground its secondary side (N for single-phase, Neutral point for three-phase).

Driver power supply specifications	Fault loop impedance
Single-phase 100-120 V	500 Ω
Single-phase 200-240 V Three-phase 200-240 V	1000 Ω

- Wiring example having considered ground fault protection Single-phase 100-120 V
 - TN power distribution systems

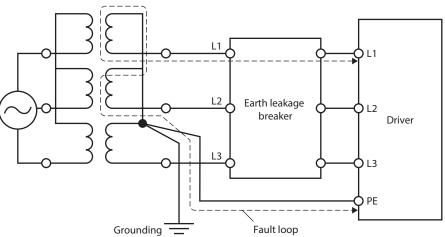


• TT power distribution systems

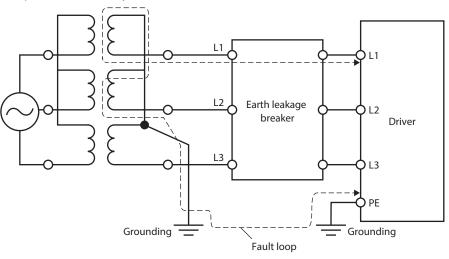


Single-phase 200-240 V

• TN power distribution systems



• TT power distribution systems



Three-phase 200-240 V

• TN power distribution systems

• TT power distribution systems

EMC Directive

Refer to "2.5 Conformity to the EMC" for details about conformity.

2.3 RoHS Directive

This product does not contain the substances exceeding the restriction values.

2.4 Republic of Korea, Radio Waves Act.

This product is affixed with the KC Mark under the Radio Waves Act, the Republic of Korea.

2.5 Conformity to the EMC

Effective measures must be taken against the EMI that the motor and driver may give to adjacent controlsystem equipment, as well as the EMS of the motor and driver itself, in order to prevent a serious functional impediment in the machinery. The use of the following installation and wiring methods will enable the motor and driver to be compliant with the EMC.

Oriental Motor conducts EMC testing on its motors and driver in accordance with "Example of motor and driver installation and wiring" on p.157.

The user is responsible for ensuring the machine's compliance with the EMC, based on the installation and wiring explained below.

This equipment is not intended for use in residential environments nor for use on a lowvoltage public network supplied in residential premises, and it may not provide adequate protection to radio reception interference in such environments.

Connecting a mains filter

Install a mains filter in the power line in order to prevent the noise generated within the driver from propagating outside via the AC input line. For mains filters, use the product as shown below, or an equivalent.

Manufacturer	Single-phase 100-120 V Single-phase 200-240 V	Three-phase 200-240 V	
SOSHIN ELECTRIC CO.,LTD	HF2010A-UPF	HF3010C-SZA, NFU3010C-Z1	
Schaffner EMC	FN2070-10-06	FN3025HP-10-71	

- Overvoltage category II applies to the mains filter.
- Install the mains filter as close to the driver as possible.
- Use cable clamps and other means to secure the input and output cables firmly to the surface of the enclosure.
- Connect the ground terminal of the mains filter to the grounding point, using as thick and short a wire as possible.
- Do not place the AC input cable (AWG18 to 14: 0.75 to 2.0 mm²) parallel with the mains-filter output cable (AWG18 to 14: 0.75 to 2.0 mm²). Parallel placement will reduce mains filter effectiveness if the enclosure's internal noise is directly coupled to the power supply cable by means of stray capacitance.

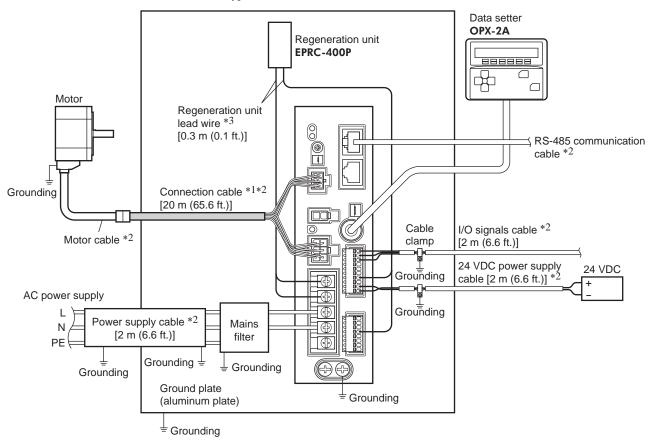
Connecting the external power supply

Use an external power supply conforming to the EMC. Use a shielded cable for wiring and wire/ground the external power supply over the shortest possible distance. Refer to "Wiring the power supply cable" for how to ground the shielded cable.

Grounding procedure

The cable used to ground the motor, driver, mains filter and power supply cable (shielded cable) must be as thick and short to the grounding point as possible so that no potential difference is generated. Choose a large, thick and uniformly conductive surface for the grounding point. Refer to the p.32 for the recommended grounding method.

Wiring the power supply cable


Use a shielded cable of AWG18 to 14 (0.75 to 2.0 mm²) in diameter for the driver power supply cable and keep it as short as possible. Strip a part of the shielded cable and ground the stripped part using a metal cable clamp that contacts the stripped cable around its entire circumference, or use a drain wire to make the ground connection. When grounding the shielded cable, connect both ends (mains filter side and power supply side) to earth to prevent a potential difference from generating in the shielded cable.

- Connect the motor/driver and other peripheral control equipment directly to the grounding point so as to prevent a potential difference from developing between grounds.
- When relays or electromagnetic switches are used together with the system, use mains filters and CR circuits to suppress surges generated by them.
- Keep cables as short as possible without coiling and bundling extra lengths.
- Wire the power lines such as the motor cable and power cable away from the signal cables by providing a minimum clearance of 100 mm (3.94 in.) between them. If they must cross, do so at a right angle. Place the AC input cable and output cable of a mains filter separately from each other.
- Use a connection cable (supplied or sold separately) when extending the wiring distance between the motor and driver. The EMC measures are conducted using the Oriental Motor connection cable.

Example of motor and driver installation and wiring

Illustration shows the standard type.

- *1 Performance has been evaluated based on connection cable lengths of up to 20 m (65.6 ft.). You can connect up to three connection cables.
- *2 Shielded cable
- *3 Unshielded cable

Precautions about static electricity

Static electricity may cause the driver to malfunction or become damaged. Do not come close to or touch the driver while the power is on except when operating the switch of the front of driver.

To change the settings of driver switches, be sure to use an insulated screwdriver.

7 Reference

8 Appendix

This part explains accessories (sold separately) that are used in combination with the products.

Table of contents

- 1 Accessories (sold separately)160
- 2 Related products (sold separately).....161

1 Accessories (sold separately)

Connection cable

This cable is used to extend the wiring distance between the driver and motor. Connection can be extended to a maximum of 20.4 m (66.9 ft.). Flexible connection cables are also available. You can connect up to three connection cables.

Standard type

Connection cable		 Flexible connection cable 	
Length [m (ft.)]	Model	Length [m (ft.)]	Model
1 (3.3)	CC01BLE	1 (3.3)	CC01BLER
2 (6.6)	CC02BLE	2 (6.6)	CC02BLER
3 (9.8)	CC03BLE	3 (9.8)	CC03BLER
5 (16.4)	CC05BLE	5 (16.4)	CC05BLER
7 (23.0)	CC07BLE	7 (23.0)	CC07BLER
10 (32.8)	CC10BLE	10 (32.8)	CC10BLER
15 (49.2)	CC15BLE	15 (49.2)	CC15BLER
20 (65.6)	CC20BLE	20 (65.6)	CC20BLER

Electromagnetic brake type

Connection cable

Connection cable		 Flexible connection cable 		
Length [m (ft.)]	Model	Length [m (ft.)]	Model	
1 (3.3)	CC01BLEM	1 (3.3)	CC01BLEMR	
2 (6.6)	CC02BLEM	2 (6.6)	CC02BLEMR	
3 (9.8)	CC03BLEM	3 (9.8)	CC03BLEMR	
5 (16.4)	CC05BLEM	5 (16.4)	CC05BLEMR	
7 (23.0)	CC07BLEM	7 (23.0)	CC07BLEMR	
10 (32.8)	CC10BLEM	10 (32.8)	CC10BLEMR	
15 (49.2)	CC15BLEM	15 (49.2)	CC15BLEMR	
20 (65.6)	CC20BLEM	20 (65.6)	CC20BLEMR	

Data setter

The data setter lets you set data and parameters for your **BLE** Series FLEX RS-485 communication type with ease and also functions as a monitor.

Model: OPX-2A

Communication cable for the support software

Be sure to purchase the communication cable for the support software when connecting a driver to the PC in which the **MEXEO2** has been installed.

This is a set of a PC interface cable and USB cable. The cable is connected to the USB port on the PC.

Model: CC05IF-USB [5 m (16.4 ft.)]

The MEXEO2 can be downloaded from Oriental Motor Web site Download Page.

RS-485 communication cable

You can link drivers using this cable connected to the RS-485 communication connectors (CN7, CN8). Model: **CC002-RS4** [0.25 m (0.8 ft.)]

DIN rail mounting plate

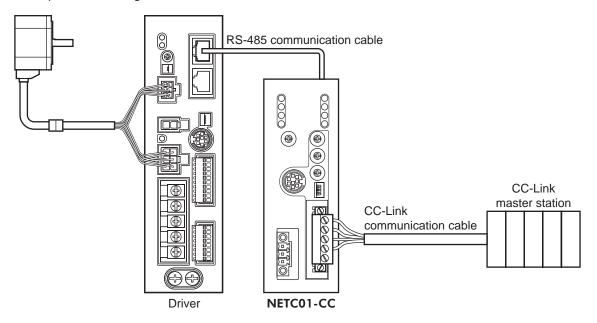
When mounting the driver to a DIN rail, use a DIN rail mounting plate. Use a DIN rail 35 mm (1.38 in.) wide.

Model: PADP03

Regeneration unit

If vertical drive (gravitational operation) such as elevator applications is performed or if sudden start-stop operation of a large inertial load is repeated frequently, connect the regeneration unit **EPRC-400P**.

Model: EPRC-400P


2 Related products (sold separately)

Network converter

NETC01-CC (CC-Link Ver.1.1 compatible) NETC02-CC (CC-Link Ver.2 compatible) NETC01-M2 (MECHATROLINK-II compatible) NETC01-M3 (MECHATROLINK-III compatible) NETC01-ECT (EtherCAT compatible)

When the **BLE** Series FLEX RS-485 communication type is used in a CC-Link system or MECHATROLINK system, EtherCAT system while connecting the driver via the network converter, the converted data from the each communication protocol to the RS-485 communication protocol can be sent to the driver. Alarms and other data output from the driver, which normally conform to the RS-485 communication protocol, can also be converted to each communication protocol and sent to the master station accordingly.

Example: Connecting to the network converter NETC01-CC

- Unauthorized reproduction or copying of all or part of this Operating Manual is prohibited. If a new copy is required to replace an original manual that has been damaged or lost, please contact your nearest Oriental Motor branch or sales office.
- Oriental Motor shall not be liable whatsoever for any problems relating to industrial property rights arising from use of any information, circuit, equipment or device provided or referenced in this manual.
- Characteristics, specifications and dimensions are subject to change without notice.
- While we make every effort to offer accurate information in the manual, we welcome your input. Should you find unclear descriptions, errors or omissions, please contact the nearest office.
- **Orientalmotor** and <u>(FLEX)</u> are registered trademark or trademark of Oriental Motor Co., Ltd., in Japan and other countries. Modbus is a registered trademark of the Schneider Automation Inc.

CC-Link is a registered trademark of the CC-Link Partner Association.

MECHATROLINK is a registered trademark of the MECHATROLINK Members Association.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. Other product names and company names mentioned in this manual may be registered trademarks or trademarks of their respective companies and are hereby acknowledged. The third-party products mentioned in this manual are recommended products, and

references to their names shall not be construed as any form of performance guarantee. Oriental Motor is not liable whatsoever for the performance of these third-party products.

© Copyright ORIENTAL MOTOR CO., LTD. 2013

Published in April 2023

• Please contact your nearest Oriental Motor office for further information.

ORIENTAL MOTOR U.S.A. CORP. Technical Support Tel:800-468-3982 8:30am EST to 5:00pm PST (M-F) www.orientalmotor.com

ORIENTAL MOTOR (EUROPA) GmbH Schiessstraße 44, 40549 Düsseldorf, Germany Technical Support Tel:00 800/22 55 66 22 www.orientalmotor.de

ORIENTAL MOTOR (UK) LTD. Unit 5 Faraday Office Park, Rankine Road, Basingstoke, Hampshire RG24 8QB UK Tel:+44-1256347090 www.oriental-motor.co.uk

ORIENTAL MOTOR (FRANCE) SARL Tel:+33-1 47 86 97 50 www.orientalmotor.fr

ORIENTAL MOTOR ITALIA s.r.l. Tel:+39-02-93906347 www.orientalmotor.it ORIENTAL MOTOR ASIA PACIFIC PTE. LTD. Singapore Tel:1800-842-0280 www.orientalmotor.com.sg

ORIENTAL MOTOR (MALAYSIA) SDN. BHD. Tel:1800-806-161 www.orientalmotor.com.my

ORIENTAL MOTOR (THAILAND) CO., LTD. Tel:1800-888-881 www.orientalmotor.co.th

ORIENTAL MOTOR (INDIA) PVT. LTD. Tel:1800-120-1995 (For English) 1800-121-4149 (For Hindi) www.orientalmotor.co.in

TAIWAN ORIENTAL MOTOR CO., LTD. Tel:0800-060708 www.orientalmotor.com.tw

SHANGHAI ORIENTAL MOTOR CO., LTD. Tel:400-820-6516 www.orientalmotor.com.cn INA ORIENTAL MOTOR CO., LTD. Korea

Tel:080-777-2042 www.inaom.co.kr

ORIENTAL MOTOR CO., LTD. 4-8-1 Higashiueno, Taito-ku, Tokyo 110-8536 Japan Tel:+81-3-6744-0361 www.orientalmotor.co.jp