## All-in-One 5-Phase Stepping Motor PKA Series

## USER MANUAL

C $\in$ [

Thank you for purchasing an Oriental Motor product.
This Manual describes product handling procedures and safety precautions.

- Please read it thoroughly to ensure safe operation.
- Always keep the manual where it is readily available.


## Table of contents

1 Safety precautions ..... 3
2 Overview of the PKA Series ..... 5
3 System configuration ..... 6
4 Introduction ..... 7
5 Precautions for use ..... 8
6 Preparation ..... 9
6-1 Checking the product ..... 9
6-2 Product type ..... 9
6-3 Names and functions of parts ..... 9
7 Installation ..... 11
7-1 Location for installation ..... 11
7-2 Installation method ..... 11
7-3 Installing a load ..... 12
7-4 Permissible radial load and permissible axial load ..... 12
7-5 Installing and wiring in compliance with EMC Directive ..... 12
8 Connection ..... 14
8-1 Connection of power supply and I/O signals, grounding motor ..... 14
8-2 Connecting the data setter ..... 16
8-3 Connecting the RS-485 communication cable ..... 17
9 Explanation of I/O signals ..... 18
9-1 Assignment of direct I/O ..... 18
9-2 Assignment of network I/O ..... 22
9-3 Input signals ..... 26
9-4 Output signals ..... 30
9-5 General signals (R0 to R15) ..... 33
10 Operation ..... 34
10-1 Positioning operation ..... 34
10-2 Continuous operation ..... 39
10-3 JOG operation ..... 42
10-4 Return-to-home operation ..... 42
10-5 Test operation ..... 45
10-6 Stop operation ..... 46
10-7 Position coordinate management ..... 47
10-8 Timing charts ..... 49
10-9 Operation data and parameters ..... 54
11 Method of control via I/O ..... 64
11-1 Guidance ..... 64
12 Method of control via Modbus protocol ..... 66
12-1 Guidance ..... 66
12-2 Communication specifications ..... 69
12-3 Setting the switches ..... 70
12-4 Communication mode ..... 71
12-5 Communication timing ..... 72
12-6 Message ..... 72
12-7 Function code ..... 75
12-8 Setting of RS-485 communication. ..... 78
12-9 Register address list ..... 79
12-10 Group send ..... 93
12-11 Detection of communication errors. ..... 94
12-12 Timing charts ..... 95
13 Method of control via Network converter ..... 97
13-1 Setting the PKA Series switches ..... 97
13-2 When using the motor with CC-Link communication ..... 99
13-3 When using the motor with MECHATROLINK communication ..... 105
13-4 Details of remote I/O ..... 111
13-5 Command code list ..... 113
14 Alarms and warnings ..... 123
14-1 Alarms ..... 123
14-2 Warnings ..... 126
14-3 Communication errors ..... 127
15 Troubleshooting and remedial actions ..... 128
16 Inspection ..... 129
17 General specifications ..... 130
18 Accessories ..... 131

The precautions described below are intended to prevent danger or injury to the user and other personnel through safe, correct use of the product. Use the product only after carefully reading and fully understanding these instructions.


## $\triangle$ CAUTION

## Note

Handling the product without observing the instructions that accompany a "WARNING" symbol may result in serious injury or death.
Handling the product without observing the instructions that accompany a "CAUTION" symbol may result in injury or property damage.

The items under this heading contain important handling instructions that the user should observe to ensure safe use of the product.

## 4. WARNING

## General

- Do not use the product in explosive or corrosive environments, in the presence of flammable gases, locations subjected to splashing water, or near combustibles. Failure to do so may result in fire or injury.
- Assign qualified personnel the task of installing, wiring, operating/controlling, inspecting and troubleshooting the product. Failure to do so may result in fire, injury or damage to equipment.
- When the power is shut off or the motor does not maintain excitation, the motor will lose the holding torque. Take measures to keep the moving parts in position for vertical operations such as elevator applications. Failure to do so will cause the moving parts to fall and it may result in injury or damage to equipment.
- Depending on the type of the alarm (protective function), the motor may stop and lose its holding torque when the alarm generates. This may cause injury or damage to equipment.
- When the motor generates an alarm (any of the motor's protective functions is triggered), first remove the cause and then clear the protection function. Continuing the operation without removing the cause of the problem may cause malfunction of the motor, leading to injury or damage to equipment.


## Connection

- Keep the motor's input-power voltage within the specified range to avoid fire.
- For the motor power supply, use a DC power supply with reinforced insulation on its primary and secondary sides. Failure to do so may cause electric shock.
- Connect the cables securely according to the wiring diagram in order to prevent fire.
- Do not forcibly bend, pull or pinch the cable or lead wire. Doing so may cause fire. Applying stress to the connection area of the connectors may cause damage to the product.


## Operation

- Turn off the power in the event of a power failure. Or the motor may suddenly start when the power is restored and may cause injury or damage to equipment.
- Do not turn the motor excitation OFF while operating. The motor will stop its operation and lose the holding torque. This may cause injury or damage to equipment.
- Configure an interlock circuit in sequence program so that the system including the motor operates on the safe side when a RS-485 communication error generates.


## Repair, disassembly and modification

- Do not disassemble or modify the motor. Refer all such internal inspections and repairs to the Oriental Motor sales office from which you purchased the product.


## ACAUTION

## General

- Do not use the motor beyond its specifications. Doing so may result in injury or damage to equipment.
- Keep your fingers and objects out of the openings in the motor. Failure to do so may result in fire or injury.
- Do not touch the motor during operation or immediately after stopping. The surface is hot and may cause a skin burn(s).


## Transportation

- Do not carry the motor by holding the motor output shaft or leadwire/connector assembly. Doing so may cause injury.


## Installation

- Install the motor in the enclosure in order to prevent injury.
- Keep the area around the motor free of combustible materials in order to prevent fire or a skin burn(s).
- Provide a cover over the rotating parts (output shaft) of the motor. Failure to do so may result in injury.


## Connection

- The connectors CN1, CN2, CN3 and CN4 of the motor are not electrically insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the motor and these equipment to short, damaging both.
- When connecting, check the indication of the motor and be sure to observe the polarity of the power supply. Reverse-polarity connection may cause damage to the motor. The power-supply circuit and the RS-485 communication circuit are not electrically insulated. Therefore, when controlling multiple motors via RS-485 communication, the reverse polarity of the power supply will cause a short circuit and may result in damage to the motors.


## Operation

- Provide an emergency stop device or emergency stop circuit external to the equipment so that the entire equipment will operate safely in the event of a system failure or malfunction. Failure to do so may result in injury.
- Before supplying power to the motor, turn all input signals to the motor OFF. Otherwise, the motor may start suddenly at power on and cause injury or damage to equipment.
- Set a suitable operation speed and acceleration/deceleration rate. Improper setting may cause loss of the motor synchronism and moving the load to an unexpected direction, which may result in injury or damage to equipment.
- Do not touch the rotating part (output shaft) during operation. Doing so may cause injury.
- When rotating the output shaft manually while the motor stops, cut off the motor current by turning off the power supply or motor excitation. Failure to do so may cause injury
- The motor surface temperature may exceed $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$ even under normal operating conditions. If the operator is allowed to approach the running motor, attach a warning label as shown below in a conspicuous position. Failure to do so may result in skin burn(s).


Warning label

- Immediately when trouble has occurred, stop running and turn off the motor power. Failure to do so may result in fire or injury.
- Static electricity may cause the motor to malfunction or suffer damage. While the motor is receiving power, do not touch the motor. Always use an insulated slotted screwdriver to adjust the motor's switches.


## Disposal

- Dispose the product correctly in accordance with laws and regulations, or instructions of local governments.


## 2 Overview of the PKA Series

The PKA Series is a 5-phase stepping motor integrated with a control circuit.
The motor is compatible with I/O control and RS-485 communication.
The operation data and parameters can be set using a support software MEXE02 or an accessory data setter OPX-
2A, or via RS-485 communication.

## Main features

- Three operating patterns

You can perform positioning operation, return-to-home operation and continuous operation. Up to 64 operation data points can be set, and multi-point positioning is also possible.

- Low vibration and low noise

The microstep drive control circuit implemented the smooth drive function achieves low-vibration and low-noise.

- Compatible with Modbus RTU (RS-485 communication)

You can set operation data and parameters or issue operation start/stop commands from the master station. Up to 31 motors can be connected to one master.

## - Alarm and warning functions

The motor provides alarms that are designed to protect the motor from overheating, poor connection, error in operation, etc. (protective functions), as well as warnings that are output before the corresponding alarms generate (warning functions).

## Accessories

The operation data and parameters can be set using a MEXE02, accessory OPX-2A or via RS-485 communication. Provide the MEXE02 or OPX-2A as necessary.

- MEXE02 .....The MEXE02 can be downloaded from Oriental Motor Website Download Page. When the MEXE02 is used, a communication cable for support software CC05IF-USB (accessory) is needed to connect a PC and driver. Be sure to purchase it.
- OPX-2A......This product can be purchased separately.


## - Related products

The PKA Series can be used via various network when connecting to a network converter.

| Network converter model | Supported network |
| :---: | :---: |
| NETC01-CC | CC-Link Ver.1.1 |
| NETC02-CC | CC-Link Ver.2 |
| NETC01-M2 | MECHATROLINK-II |
| NETC01-M3 | MECHATROLINK-III |
| NETC01-ECT | EtherCAT |

## 3 System configuration



* The PC must be supplied by the user. Use the accessory communication cable for the support software when connecting the PC and motor.


## 4 Introduction

## ■ Before use

Only qualified personnel of electrical and mechanical engineering should work with the product.
Use the product correctly after thoroughly reading the section "1 Safety precautions" on p.3. In addition, be sure to observe the contents described in warning, caution, and note in this manual.
The product described in this manual has been designed and manufactured to be incorporated in general industrial equipment. Do not use for any other purpose.
For the motor power supply, use a DC power supply with reinforced insulation on its primary and secondary sides. Oriental Motor Co., Ltd. is not responsible for any damage caused through failure to observe this warning.

■ Operating Manuals for the PKA Series
Operating manuals for the PKA Series are listed below.
After reading the manuals, keep them in a convenient place where they are readily available.

- PKA Series OPERATING MANUAL

This manual explains safety precautions, connector pin assignments and others.

- PKA Series USER MANUAL (this document)

This manual explains the function, installation and connection of the motor as well as operating method.

## ■ CE Marking

Because the input power supply voltage of this product is 24 VDC , it is not subject to the Low Voltage Directive but install and connect this product as follows.

- This product is designed and manufactured to be installed within another device. Install the product in an enclosure.
- For the motor power supply, use a DC power supply with reinforced insulation on its primary and secondary sides.
- Installation conditions
- Overvoltage category:I
- Pollution degree: 2
- Degree of protection: IP20


## - EMC Directive

This product is conducted EMC testing under the conditions specified in "Example of installation and wiring" on p.13. The conformance of your mechanical equipment with the EMC Directive will vary depending on such factors as the configuration, wiring, and layout for other control system devices and electrical parts used with this product. It therefore must be verified through conducting EMC measures in a state where all parts including this product have been installed in the equipment.

## Applicable Standards

| EMI | EN 55011 group 1 class A <br> EN 61000-6-4 |
| :---: | :--- |
| EMS | EN 61000-6-2 |

## $\triangle$ CAUTION

This equipment is not intended for use in residential environments nor for use on a lowvoltage public network supplied in residential premises, and it may not provide adequate protection to radio reception interference in such environments.

## - Republic of Korea, Radio Waves Act

This product is affixed the KC Mark under the Republic of Korea, Radio Waves Act.

## RoHS Directive

The products do not contain the substances exceeding the restriction values of RoHS Directive (2011/65/EU).

## 5 Precautions for use

This section covers limitations and requirements the user should consider when using the product.

- Do not apply a radial load and axial load in excess of the specified permissible limit

Operating the motor under an excessive radial load or axial load may damage the motor bearings (ball bearings). Be sure to operate the motor within the specified permissible limit of radial load and axial load.
Refer to p .12 for details.

- Use the motor in conditions where its surface temperature will not exceed $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$

The motor surface temperature may exceed $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ under certain conditions (ambient temperature, operating speed, duty cycle, etc.). To prevent damage of the control circuit or deterioration of the motor bearings (ball bearings), use the motor in a condition where the motor surface temperature will not exceed $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$.

- Holding torque at standstill

The motor holding torque is reduced by the current cutback function of the driver at motor standstill. When selecting a motor, check the holding torque at motor standstill in the specifications on the catalog.

- Preventing electrical noise

See" $7-5$ Installing and wiring in compliance with EMC Directive" on p .12 for measures with regard to noise.

- Rotation direction of output shaft

The motor output shaft rotates in the figure at the factory setting. The rotation direction can be changed by the parameter.
The CW and CCW indicate the rotation direction of the motor, as seen from the output shaft.

- When setting the position (travel amount) to a positive •When setting the position (travel amount) to a negative value value



## - Overvoltage alarm by regeneration energy

The overvoltage alarm will generate depending on the operating condition. When an alarm is generated, review the operating conditions.
If the motor becomes the overvoltage condition, the motor coil will be short-circuited in the control circuit and the holding torque will be generated (dynamic brake). When the voltage returns to normal, the dynamic brake will automatically be released.

- Saving data to the non-volatile memory

Do not turn off the power supply while writing the data to the non-volatile memory and five seconds after the completion of writing the data. Doing so may abort writing the data and cause a EEPROM error alarm to generate. The non-volatile memory can be rewritten approximately 100,000 times.

## 6 Preparation

This chapter explains the items you should check, as well as the name and function of each part.

## 6-1 Checking the product

Verify that the items listed below are included. Report any missing or damaged items to the Oriental Motor sales office from which you purchased the product.

- Motor $\qquad$ 1 unit
- CN1 leadwire/connector assembly. 1 pc. [0.6 m (2 ft.), 12-pins]
- CN2, CN3 connector cap .2 pcs.
- OPERATING MANUAL 1 copy


## 6-2 Product type

$\square$ PKA544KD [Frame size 42 mm ( 1.65 in. )] PKA566KD [Frame size 60 mm (2.36 in.)]

6-3 Names and functions of parts


| Name | Function | Ref. |
| :--- | :--- | :--- |
| Address number setting <br> switch (SW2) | Use this switch when controlling the system via RS-485 communication. <br> Use this switch and SW1-No.3 of the function setting switch, to set the <br> address number of RS-485 communication. (Factory setting: 0) | p. 70 <br> p. 98 |
| Transmission rate setting <br> switch (SW3) | Use this switch when controlling the system via RS-485 communication. <br> Sets the transmission rate of RS-485 communication. (Factory setting: 7) | p. 71 <br> p. 98 |
| Power supply and I/O signal <br> connector (CN1) | Connects the main power supply (+24 VDC) and I/O signals. | p. 14 |
| RS-485 communication <br> connectors (CN2/CN3) | Connects the RS-485 communication cable. | p. 17 |
| Data edit connector (CN4) | Connects a PC in which the MEXEO2 has been installed, or the OPX-2A. | p. 16 |
| Mounting holes (4 places) | Secure the motor with screws using these mounting holes. | p. 11 |

## 7 Installation

This chapter explains the installation location and installation methods of the motor, along with load installation. The installation and wiring methods in compliance with the EMC Directive are also explained.

## 7-1 Location for installation

The motor has been designed and manufactured to be installed within another device. Install it in a well-ventilated location that provides easy access for inspection.
The location must also satisfy the following conditions:

- Inside an enclosure that is installed indoors (provide vent holes)
- Operating ambient temperature 0 to $+50^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ [non-freezing]
- Operating ambient humidity $85 \%$ or less [non-condensing]
- Area that is free of explosive atmosphere or toxic gas (such as sulfuric gas) or liquid
- Area not exposed to direct sun
- Area free of excessive amount of dust, iron particles or the like
- Area not subject to splashing water (rain, water droplets), oil (oil droplets) or other liquids
- Area free of excessive salt
- Area not subject to continuous vibration or excessive shocks
- Area free of excessive electromagnetic noise (from welders, power machinery, etc.)
- Area free of radioactive materials, magnetic fields or vacuum
- $1,000 \mathrm{~m}$ (3,300 ft.) or lower above sea level


## 7-2 Installation method

The motor can be installed in any direction.
Install the motor onto an appropriate flat metal plate having excellent vibration resistance and heat conductivity. When installing the motor, secure it with four bolts (not included) through the four mounting holes provided. Do not leave a gap between the motor and metal plate.
Insert the pilot located on the motor's installation surface into the mounting plate's.

- Installation method A


Installation method B


| Model | Nominal size | Tightening torque <br> $[\mathrm{N} \cdot \mathrm{m}(\mathrm{oz}-\mathrm{in})]$ | Effective depth of screw thread <br> $[\mathrm{mm}(\mathrm{in})]$. | Installation method |
| :---: | :---: | :---: | :---: | :---: |
| PKA544KD | M3 | $1(142)$ | $4.5(0.177)$ | A |
| PKA566KD | M4 | $2(280)$ | - | B |

## 7-3 Installing a load

When connecting a load to the motor, align the centers of the load shaft and motor output shaft. Also, keep the radial load and axial load under the permissible values.

| Installation method | Description |
| :---: | :--- |
| Using a coupling | Align the centers of the motor output shaft and load shaft in a straight line. |
| Using a belt drive | Align the motor output shaft and load shaft in parallel with each other, and position both <br> pulleys so that the line connecting their centers is at a right angle to the shafts. |
| Using a gear drive | Align the motor output shaft and gear shaft in parallel with each other, and let the gears <br> mesh at the center of the tooth widths. |

Note - When coupling the load to the motor, pay attention to the centering of the shafts, belt tension, parallelism of the pulleys, and so on. Securely tighten the coupling and pulley set screws.

- Be careful not to damage the output shaft or bearings when installing a coupling or pulley to the motor output shaft.
- Do not modify or machine the motor output shaft. Doing so may damage the bearings and destroy the motor.


## 7-4 Permissible radial load and permissible axial load

The radial load and the axial load on the motor's output shaft must be kept under the permissible values listed on below. The permissible axial loads are the motor's mass. The axial load should not exceed the motor's mass.

Note Failure due to fatigue may occur when the motor bearings and output shaft are subject to repeated loading by a radial or axial load that is in excess of the permissible limit.

| Model | Permissible radial load [ N (lb.)] |  |  |  |  | Permissible axial load [ N (lb.)] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Distance from the tip of motor's output shaft |  |  |  |  |  |
|  | 0 mm (0 in.) | 5 mm (0.2 in.) | 10 mm (0.39 in.) | 15 mm (0.59 in.) | 20 mm (0.79 in.) |  |
| PKA544KD | 20 (4.5) | 25 (5.6) | 34 (7.6) | 52 (11.7) | - | 10 (2.2) |
| PKA566KD | 63 (14.1) | 75 (16.8) | 95 (21) | 130 (29) | 190 (42) | 20 (4.5) |

## 7-5 Installing and wiring in compliance with EMC Directive

Effective measures must be taken against the EMI that the motor may give to adjacent control-system equipment, as well as the EMS of the motor itself, in order to prevent a serious functional impediment in the machinery. The use of the following installation and wiring methods will enable the motor to be compliant with the EMC directive. Refer to "CE Marking" on p. 7 for the applicable standards.
Oriental Motor conducts EMC measurements on its motors in accordance with "Example of installation and wiring" on p.13. The user is responsible for ensuring the machine's compliance with the EMC Directive, based on the installation and wiring explained below.

## Power supply

This motor is a product of DC power supply input. Use a DC power supply (switching power supply etc.) that conforms to the EMC Directive.

## Noise filter for power supply line

- Connect a noise filter in the DC power supply input to prevent the noise generated in the motor from propagating externally through the power supply line.
- When using a power supply transformer, be sure to connect a noise filter to the AC input side of the power supply transformer.
- For a noise filter, use MC1210 (TDK-Lambda Corporation) or equivalent product.
- Install the noise filter as close to the AC input terminal of DC power supply as possible. Use cable clamps and other means to secure the input cables (AWG18: $0.75 \mathrm{~mm}^{2}$ or more) and output cables (AWG18: $0.75 \mathrm{~mm}^{2}$ or more) firmly to the surface of the enclosure.
- Connect the ground terminal of the noise filter to the grounding point, using as thick and short a wire as possible.
- Do not place the input cable parallel with the output cable. Parallel placement will reduce noise filter effectiveness if the enclosure's internal noise is directly coupled to the power supply cable by means of stray capacitance.


## How to ground

Install the motor to the grounded metal plate.
The cable used to ground the noise filter must be as thick and short as possible so that no potential difference is generated. Choose a large, thick and uniformly conductive surface for the grounding point.

## ■ Wiring the power supply cable and signal cable

- Use a included leadwire/connector assembly for the power supply and I/O signals cable, and keep it as short as possible. When extending the lead wire, use a shielded cable of AWG22 ( $0.3 \mathrm{~mm}^{2}$ ) or more.
- To ground a power supply cable, use a metal clamp or similar device that will maintain contact with the entire circumference of the cable. Attach a cable clamp to the end of the cable, and connect it as shown in the figure.



## Notes about installation and wiring

- Connect the motor and other peripheral control equipment directly to the grounding point so as to prevent a potential difference from developing between grounds.
- When relays or electromagnetic switches are used together with the system, use noise filters and CR circuits to suppress surges generated by them.
- Keep cables as short as possible without coiling and bundling extra lengths.
- Place the input cable and output cable of a noise filter separately from each other.


## Example of installation and wiring



Note
The driver uses parts that are sensitive to electrostatic charge. Take measures against static electricity since static electricity may cause the motor to malfunction or suffer damage.

## 8 Connection

This chapter explains how to connect the power supply, I/O signals and others.

For protection against electric shock, do not turn on the power supply until the wiring is completed.

Note

- Ensure that the connector plugged in securely. Insecure connection may cause malfunction or damage to the motor.
- When unplugging the connector, do so while pressing the latches on the connector.
- When plugging/unplugging the connector, turn off the power and wait for the PWR LED to turn off before doing so.


## 8-1 Connection of power supply and I/O signals, grounding motor

Connect the power supply and I/O signals to the motor using the included CN1 leadwire/connector assembly (12-pins).

Programmable
controller


## CN1 connector pin assignments

| Lead wire color | Pin No. | Signal name | Description |
| :---: | :---: | :---: | :--- |
| Yellow | 1 | FG | Frame Ground |
| Black/White | 2 | GND | Power supply GND |
| Orange | 3 | IN-COM | Input common |
| Red/White | 4 | +24 VDC | +24 VDC power supply input |
| Green | 5 | IN0 | Control input 0 (initial value: +LS) |
| Blue | 6 | IN1 | Control input 1 (initial value: -LS) |
| Purple | 7 | IN2 | Control input 2 (initial value: HOMES) |
| Gray | 8 | IN3 | Control input 3 (initial value: STOP) |
| White | 9 | OUT0+ | Control output 0 (initial value: ALM) |
| Black | 10 | OUT0- |  |
| Brown | 11 | OUT1+ | Control output 1 (initial value: READY) |
| Red | 12 | OUT1- |  |

- Pin assignment



## Connecting the power supply

Use a power supply that can supply the current capacity show in the table.

| Model | Input power supply voltage | Power supply current capacity |
| :---: | :---: | :---: |
| PKA544KD | $24 \mathrm{VDC} \pm 10 \%$ | 1.4 A or more |
| PKA566KD |  | 2.5 A or more |

## ■ Grounding method

Ground the Frame Ground terminal (FG) of pin No. 1 as necessary.
Ground using a wire of AWG24 to 16 ( 0.2 to $1.25 \mathrm{~mm}^{2}$ ), and do not share the protective earth terminal with a welder or any other power equipment.

## ■ I/O signal connection example

Note - Keep the input signal to 24 VDC .

- Use output signals at 24 VDC 10 mA or less. If the output signal current exceeds 10 mA , connect external resistor R to keep the current to 10 mA or below.
- Connecting to a current sink output circuit (NPN specifications)

- Connecting to a current source output circuit (PNP specifications)



## 8-2 Connecting the data setter

Connect the MEXE02 or OPX-2A to the motor via an accessory data setter cable.
When the MEXE02 is used, use an accessory communication cable for the support software.

$\triangle$ CAUTION
The connectors CN1, CN2, CN3 and CN4 of the motor are not electrically insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the motor and these equipment to short, damaging both.

## 8-3 Connecting the RS-485 communication cable

Connect this cable if you want to control your product via RS-485 communication or network converter. Connect the RS-485 communication cable to CN2 or CN3. You can use the vacant connectors to connect a different PKA Series. An accessory RS-485 communication cable is available. Refer to p .131 for details.


## - CN2/CN3 connector pin assignments

| Pin No. | Signal name | Description |
| :---: | :---: | :--- |
| 1 | TR + | RS-485 communication signal (+) |
| 2 | TR- | RS-485 communication signal (-) |
| 3 | GND | GND |
| 4 | FG | Frame Ground |



- Internal circuit



## 9 Explanation of I/O signals

In this manual, I/O signals are described as follows.

- Direct I/O: I/O signals accessed via I/O signal connector (CN1)
- Network I/O: I/O signals accessed via RS-485 communication

Set the following parameters using the MEXE02, OPX-2A or RS-485 communication.

## 9-1 Assignment of direct I/O

## Assignment to the input terminals

The input signals shown below can be assigned to the input terminals INO to IN3 of CN1 by setting parameters. For details on input signals, refer to p.26.

| Signal name of direct I/O | Initial value |
| :---: | :---: |
| IN0 | $60:+$ LS |
| IN1 | $61:-$ LS |
| IN2 | $62:$ HOMES |
| IN3 | $18:$ STOP |


| Assignment No. | Signal name | Function |
| :---: | :---: | :---: |
| 0 | Not used | Set when the input terminal is not used. |
| 1 | FWD | Continuous operation in the positive direction. |
| 2 | RVS | Continuous operation in the negative direction. |
| 3 | HOME | Return-to-home operation. |
| 4 | START | Positioning operation. |
| 5 | SSTART | Sequential operation. |
| 6 | +JOG | JOG operation in the positive direction. |
| 7 | -JOG | JOG operation in the negative direction. |
| 8 | MSO | Direct positioning operation. |
| 9 | MS1 |  |
| 10 | MS2 |  |
| 11 | MS3 |  |
| 12 | MS4 |  |
| 13 | MS5 |  |
| 16 | FREE * | Motor excitation switching between excitation and non-excitation. |
| 17 | AWO |  |
| 18 | STOP | Stop of the motor operation. |
| 24 | ALM-RST | Reset of the current alarm. |
| 25 | P-PRESET | Position preset. |
| 27 | HMI | Release of the function limitation of the MEXE02 or OPX-2A. |
| 32 | R0 | General signals. <br> Use these signals when controlling the system via RS-485 communication. |
| 33 | R1 |  |
| 34 | R2 |  |
| 35 | R3 |  |
| 36 | R4 |  |
| 37 | R5 |  |
| 38 | R6 |  |
| 39 | R7 |  |


| Assignment No. | Signal name | Function |
| :---: | :---: | :---: |
| 40 | R8 | General signals. <br> Use these signals when controlling the system via RS-485 communication. |
| 41 | R9 |  |
| 42 | R10 |  |
| 43 | R11 |  |
| 44 | R12 |  |
| 45 | R13 |  |
| 46 | R14 |  |
| 47 | R15 |  |
| 48 | M0 | Select the operation data No. using these six bits. |
| 49 | M1 |  |
| 50 | M2 |  |
| 51 | M3 |  |
| 52 | M4 |  |
| 53 | M5 |  |
| 60 | +LS | + limit sensor |
| 61 | -LS | - limit sensor |
| 62 | HOMES | Home sensor |
| 63 | SLIT | Slit sensor |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.


## Related parameters

| Parameter name | Description | Initial value |
| :---: | :---: | :---: |
| IN0 input function selection | Assigns the following input signals to INO to IN3 of the input terminals. (See table next) | 60: +LS |
| IN1 input function selection |  | 61: -LS |
| IN2 input function selection |  | 62: HOMES |
| IN3 input function selection |  | 18: STOP |


| 0: Not used | 8: MS0 | 18: STOP | 36: R4 | 44: R12 | 52: M4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1:FWD | 9: MS1 | 24: ALM-RST | 37: R5 | 45: R13 | 53: M5 |
| 2: RVS | 10: MS2 | 25: P-PRESET | 38: R6 | 46: R14 | 60: +LS |
| 3: HOME | 11: MS3 | 27: HMI | 39: R7 | 47: R15 | 61:-LS |
| 4: START | 12: MS4 | 32: RO | 40: R8 | 48: M0 | 62: HOMES |
| 5: SSTART | 13: MS5 | 33: R1 | 41: R9 | 49: M1 | 63: SLIT |
| 6: +JOG | 16: FREE * | 34: R2 | 42: R10 | 50: M2 |  |
| 7:-JOG | 17: AWO | 35: R3 | 43: R11 | 51: M3 |  |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.

Note - Do not assign the same input signal to multiple input terminals. When the same input signal is assigned to multiple input terminals, the function will be executed if any of the terminals becomes active.

- If the HMI input is not assigned to the input terminal, the HMI input will always become ON (function limitation release). When assigning to both direct I/O and network I/O, the function will be executed when both of them are set to ON.


## ■ Changing the logic level setting of input signals

You can change the logic level setting for input terminals INO to IN3 using the parameter.

## Related parameters

| Parameter name | Description | Initial value |
| :---: | :--- | :---: |
| IN0 input logic level setting | Changes the logic level setting for input |  |
| IN1 input logic level setting | Cerminals IN0 to IN3. <br> ter <br> 0: Normally open | 0 |
| IN2 input logic level setting | Normally closed |  |
| IN3 input logic level setting |  |  |

## Assignment to the output terminals

The output signals shown below can be assigned to the output terminals OUT0 and OUT1 of CN1 by setting parameters. For details on output signals, refer to p. 30 .

| Signal name of direct I/O | Initial value |
| :---: | :---: |
| OUT0 | 65: ALM |
| OUT1 | 67: READY |


| Assignment No. | Signal name |  |
| :---: | :---: | :--- |
| 0 | Not used | Set when the output terminal is not used. |
| 1 | FWD_R | Output in response to the FWD. |
| 2 | RVS_R | Output in response to the RVS. |
| 3 | HOME_R | Output in response to the HOME. |
| 4 | START_R | Output in response to the START. |
| 5 | SSTART_R | Output in response to the SSTART. |
| 6 | +JOG_R | Output in response to the +JOG. |
| 7 | -JOG_R | Output in response to the -JOG. |
| 8 | MSO_R | Output in response to the MSO. |
| 9 | MS1_R | Output in response to the MS1. |
| 10 | MS2_R | Output in response to the MS2. |
| 11 | MS3_R | Output in response to the MS3. |
| 12 | MS4_R | Output in response to the MS4. |
| 13 | MS5_R | Output in response to the MS5. |
| 16 | FREE_R * | Output in response to the FREE. |
| 17 | AWO_R | Output in response to the AWO. |
| 18 | STOP_R | Output in response to the STOP. |
| 32 | R0 | Output the status of the general signal R0. |
| 33 | R1 | Output the status of the general signal R1. |
| 34 | R2 | Output the status of the general signal R2. |
| 35 | R3 | Output the status of the general signal R3. |
| 36 | R4 | Output the status of the general signal R4. |
| 37 | R5 | Output the status of the general signal R5. |
| 38 | R6 | Output the status of the general signal R6. |
| 39 | R7 | Output the status of the general signal R7. |
| 40 | R8 | Output the status of the general signal R8. |
| 41 | R9 | Output the status of the general signal R9. |
| 42 | R10 | Output the status of the general signal R10. |
| 43 | R11 | Output the status of the general signal R11. |
| 44 | R12 | Output the status of the general signal R12. |
| 45 | R13 | Output the status of the general signal R13. |
|  |  |  |
| 10 |  |  |


| Assignment No. | Signal name |  |
| :---: | :---: | :--- |
| 46 | R14 | Output the status of the general signal R14. |
| 47 | R15 | Output the status of the general signal R15. |
| 48 | M0_R | Output in response to the M0. |
| 49 | M1_R | Output in response to the M1. |
| 50 | M2_R | Output in response to the M2. |
| 51 | M3_R | Output in response to the M3. |
| 52 | M4_R | Output in response to the M4. |
| 53 | M5_R | Output in response to the M5. |
| 60 | +LS_R | Output in response to the +LS. |
| 61 | -LS_R | Output in response to the - LS. |
| 62 | HOMES_R | Output in response to the HOMES. |
| 63 | SLIT_R | Output in response to the SLIT. |
| 65 | ALM | Output the alarm status (normally closed). |
| 66 | WNG | Output the warning status. |
| 67 | READY | Output when the motor is ready. |
| 68 | MOVE | Output when the motor operates. |
| 70 | HOME-P | Output when the motor is in home position. |
| 72 | TIM | Output once every 7.2 ${ }^{\circ}$ rotation of the motor output shaft. |
| 73 | AREA1 | Output when the motor is within the area 1. |
| 74 | AREA2 | Output when the motor is within the area 2. |
| 75 | AREA3 | Output when the motor is within the area 3. |
| 80 | S-BSY | Output when the motor is in internal processing state. |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.


## Related parameters

| Parameter name |  | Description |  |  |  | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUTO output function selection |  | Assigns the following output signals to OUT0 and OUT1 of the output terminals. (See table next) |  |  |  | 65: ALM |
| OUT1 output function selection |  |  |  |  |  | 67: READY |
| 0: Not used | 9: MS1_R | 33: R1 | 42: R10 | 51: M3_R | 67: |  |
| 1:FWD_R | 10: MS2_R | 34: R2 | 43: R11 | 52: M4_R | 68: M |  |
| 2: RVS_R | 11:MS3_R | 35: R3 | 44: R12 | 53: M5_R | 70: HO | ME-P |
| 3: HOME_R | 12: MS4_R | 36: R4 | 45: R13 | 60: +LS_R | 72: TIM |  |
| 4: START_R | 13: MS5_R | 37: R5 | 46: R14 | 61:-LS_R | 73: AR | A1 |
| 5: SSTART_R | 16: FREE_R * | 38: R6 | 47: R15 | 62: HOMES_R | 74: AR | A2 |
| 6: +JOG_R | 17: AWO_R | 39: R7 | 48: MO_R | 63: SLIT_R | 75: AR | A3 |
| 7: -JOG_R | 18: STOP_R | 40: R8 | 49: M1_R | 65: ALM | 80: S- |  |
| 8: MSO_R | 32: R0 | 41: R9 | 50: M2_R | 66: WNG |  |  |

[^0]
## 9-2 Assignment of network I/O

Assign the I/O function via RS-485 communication.

## Assignment of input signals

The input signals shown below can be assigned to the NET-IN0 to NET-IN15 of the network I/O by setting parameters. See each command description for the assignment of the NET-IN0 to NET-IN15.

| Assignment No. | Signal name | Function | Setting range |
| :---: | :---: | :---: | :---: |
| 0 | Not used | Set when the input terminal is not used. | - |
| 1 | FWD | Continuous operation in the positive direction. | 0: Deceleration stop <br> 1: Operation |
| 2 | RVS | Continuous operation in the negative direction. |  |
| 3 | HOME | Return-to-home operation. | 0 : No operation 1: Start operation |
| 4 | START | Positioning operation. |  |
| 5 | SSTART | Sequential operation. |  |
| 6 | +JOG | JOG operation in the positive direction. |  |
| 7 | -JOG | JOG operation in the negative direction. |  |
| 8 | MSO | Direct positioning operation. |  |
| 9 | MS1 |  |  |
| 10 | MS2 |  |  |
| 11 | MS3 |  |  |
| 12 | MS4 |  |  |
| 13 | MS5 |  |  |
| 16 | FREE * | Motor excitation switching between excitation | 0: Excitation |
| 17 | AWO | and non-excitation. | 1: Non-excitation |
| 18 | STOP | Stop of the motor operation. | 0: No operation 1: Stop operation |
| 24 | ALM-RST | Reset of the current alarm. | 0 : No operation <br> 1: Reset alarm |
| 25 | P-PRESET | Position preset. | 0 : No operation <br> 1: Preset |
| 27 | HMI | Release of the function limitation of the MEXE02 or OPX-2A | 0 : Function limitation <br> 1: Function limitation release |
| 32 | R0 | General signals. <br> Use these signals when controlling the system via RS-485 communication. | $\begin{aligned} & \text { 0: OFF } \\ & \text { 1:ON } \end{aligned}$ |
| 33 | R1 |  |  |
| 34 | R2 |  |  |
| 35 | R3 |  |  |
| 36 | R4 |  |  |
| 37 | R5 |  |  |
| 38 | R6 |  |  |
| 39 | R7 |  |  |
| 40 | R8 |  |  |
| 41 | R9 |  |  |
| 42 | R10 |  |  |
| 43 | R11 |  |  |
| 44 | R12 |  |  |
| 45 | R13 |  |  |
| 46 | R14 |  |  |
| 47 | R15 |  |  |


| Assignment No. | Signal name |  | Sunction | Setting range |
| :---: | :---: | :---: | :---: | :---: |
| 48 | M0 |  |  |  |
| 49 | M1 |  |  |  |
| 50 | M2 | Select the operation data No. using these six | 0 to 63: Operation data No. |  |
| 51 | M3 |  |  |  |
| 52 | M4 |  |  |  |
| 53 | M5 |  |  |  |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.


## Related parameters

| Parameter name | Description | Initial value |
| :---: | :---: | :---: |
| NET-IN0 input function selection | Assigns the following input signals to NET-INO to NET-IN15. (See table next) | 48: M0 |
| NET-IN1 input function selection |  | 49: M1 |
| NET-IN2 input function selection |  | 50: M2 |
| NET-IN3 input function selection |  | 4: START |
| NET-IN4 input function selection |  | 3: HOME |
| NET-IN5 input function selection |  | 18: STOP |
| NET-IN6 input function selection |  | 0 : Not used |
| NET-IN7 input function selection |  | 17: AWO |
| NET-IN8 input function selection |  | 8: MS0 |
| NET-IN9 input function selection |  | 9: MS1 |
| NET-IN10 input function selection |  | 10: MS2 |
| NET-IN11 input function selection |  | 5: SSTART |
| NET-IN12 input function selection |  | 6: +JOG |
| NET-IN13 input function selection |  | 7: -JOG |
| NET-IN14 input function selection |  | 1: FWD |
| NET-IN15 input function selection |  | 2: RVS |


| 0: Not used | 7: -JOG | 16: FREE * | 33: R1 | 40: R8 | 47: R15 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1: FWD | 8: MS0 | 17: AWO | 34: R2 | 41:R9 | 48: M0 |
| 2: RVS | 9: MS1 | 18: STOP | 35: R3 | 42: R10 | 49: M1 |
| 3: HOME | 10: MS2 | 24: ALM-RST | 36: R4 | 43: R11 | 50: M2 |
| 4: START | 11: MS3 | 25: P-PRESET | 37: R5 | 44: R12 | 51: M3 |
| 5: SSTART | 12: MS4 | 27: HMI | 38: R6 | 45: R13 | 52: M4 |
| 6: +JOG | 13: MS5 | 32: R0 | 39: R7 | 46: R14 | 53:M5 |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.

Note - Do not assign the same input signal to multiple input terminals. When the same input signal is assigned to multiple input terminals, the function will be executed if any of the terminals becomes active.

- If the HMI input is not assigned to the input terminal, the HMI input will always become ON (function limitation release). When assigning to both direct I/O and network I/O, the function will be executed when both of them are set to ON.


## Assignment to the output terminals

The output signals shown below can be assigned to the NET-OUT0 to NET-OUT15 of the network I/O by setting parameters. See each command description for the assignment of the NET-OUT0 to NET-OUT15.

| Assignment No. | Signal name | Function | Setting range |
| :---: | :---: | :---: | :---: |
| 0 | Not used | Set when the output terminal is not used. | - |
| 1 | FWD_R | Output in response to the FWD. | $\begin{aligned} & \text { 0: OFF } \\ & \text { 1:ON } \end{aligned}$ |
| 2 | RVS_R | Output in response to the RVS. |  |
| 3 | HOME_R | Output in response to the HOME. |  |
| 4 | START_R | Output in response to the START. |  |
| 5 | SSTART_R | Output in response to the SSTART. |  |
| 6 | +JOG_R | Output in response to the +JOG. |  |
| 7 | -JOG_R | Output in response to the -JOG. |  |
| 8 | MSO_R | Output in response to the MSO. |  |
| 9 | MS1_R | Output in response to the MS1. |  |
| 10 | MS2_R | Output in response to the MS2. |  |
| 11 | MS3_R | Output in response to the MS3. |  |
| 12 | MS4_R | Output in response to the MS4. |  |
| 13 | MS5_R | Output in response to the MS5. |  |
| 16 | FREE_R * | Output in response to the FREE. |  |
| 17 | AWO_R | Output in response to the AWO. |  |
| 18 | STOP_R | Output in response to the STOP. |  |
| 32 | R0 | Output the status of the general signal RO. |  |
| 33 | R1 | Output the status of the general signal R1. |  |
| 34 | R2 | Output the status of the general signal R2. |  |
| 35 | R3 | Output the status of the general signal R3. |  |
| 36 | R4 | Output the status of the general signal R4. |  |
| 37 | R5 | Output the status of the general signal R5. |  |
| 38 | R6 | Output the status of the general signal R6. |  |
| 39 | R7 | Output the status of the general signal R7. |  |
| 40 | R8 | Output the status of the general signal R8. |  |
| 41 | R9 | Output the status of the general signal R9. |  |
| 42 | R10 | Output the status of the general signal R10. |  |
| 43 | R11 | Output the status of the general signal R11. |  |
| 44 | R12 | Output the status of the general signal R12. |  |
| 45 | R13 | Output the status of the general signal R13. |  |
| 46 | R14 | Output the status of the general signal R14. |  |
| 47 | R15 | Output the status of the general signal R15. |  |
| 48 | MO_R | Output in response to the M0 to M5 | 0 to 63: Operation data No. |
| 49 | M1_R |  |  |
| 50 | M2_R |  |  |
| 51 | M3_R |  |  |
| 52 | M4_R |  |  |
| 53 | M5_R |  |  |
| 60 | +LS_R | Output in response to the +LS. | $\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$ |
| 61 | -LS_R | Output in response to the -LS. |  |
| 62 | HOMES_R | Output in response to the HOMES. |  |
| 63 | SLIT_R | Output in response to the SLIT. |  |
| 65 | ALM | Output the alarm status. | 0: Alarm not present <br> 1: Alarm present |


| Assignment No. | Signal name | Function | Setting range |
| :---: | :---: | :--- | :--- |
| 66 | WNG | Output the warning status. | 0: Warning not present <br> $1:$ Warning present |
| 67 | READY | Output when the motor is ready. | 0: Not ready <br> $1:$ Ready |
| 68 | MOVE | Output when the motor operates. | 0: Motor stopped <br> $1:$ Motor operating |
| 70 | HOME-P | Output when the motor is in home position. | 0: Not home position <br> $1:$ Home position |
| 72 | AREA1 | Output once every 7.2 ${ }^{\circ}$ rotation of the motor <br> output shaft. | 0: OFF <br> $1:$ Ontput when the motor is within the area 1. |
| 73 | AREA2 | Output when the motor is within the area 2. | 0: Outside area <br> $1:$ Inside area |
| 74 | AREA3 | Output when the motor is within the area 3. | 0: OFF <br> 75 |
| 80 | S-BSY | Output when the motor is in internal processing <br> state. | 1: ON |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.
Related parameters


[^1]
## 9-3 Input signals

The following input signals are photocoupler inputs. The signal state represents the "ON: Carrying current" or "OFF: Not carrying current" state of the internal photocoupler rather than the voltage level of the signal.

■ Internal circuit


## ■ M0 to M5 input

Select a desired operation data number for positioning operation or continuous operation based on the combination of ON/OFF states of the M0 to M5 inputs.

| Operation data No. | M5 | M4 | M3 | M2 | M1 | M0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | OFF | OFF | OFF | OFF | OFF | OFF |
| 1 | OFF | OFF | OFF | OFF | OFF | ON |
| 2 | OFF | OFF | OFF | OFF | ON | OFF |
| 3 | OFF | OFF | OFF | OFF | ON | ON |
| 4 | OFF | OFF | OFF | ON | OFF | OFF |
| 5 | OFF | OFF | OFF | ON | OFF | ON |
| 6 | OFF | OFF | OFF | ON | ON | OFF |
| 7 | OFF | OFF | OFF | ON | ON | ON |
| 8 | OFF | OFF | ON | OFF | OFF | OFF |
| 9 | OFF | OFF | ON | OFF | OFF | ON |
| 10 | OFF | OFF | ON | OFF | ON | OFF |
| 11 | OFF | OFF | ON | OFF | ON | ON |
| 12 | OFF | OFF | ON | ON | OFF | OFF |
| 13 | OFF | OFF | ON | ON | OFF | ON |
| 14 | OFF | OFF | ON | ON | ON | OFF |
| 15 | OFF | OFF | ON | ON | ON | ON |
| 16 | OFF | ON | OFF | OFF | OFF | OFF |
| 17 | OFF | ON | OFF | OFF | OFF | ON |
| 18 | OFF | ON | OFF | OFF | ON | OFF |
| 19 | OFF | ON | OFF | OFF | ON | ON |
| 20 | OFF | ON | OFF | ON | OFF | OFF |
| 21 | OFF | ON | OFF | ON | OFF | ON |
| 22 | OFF | ON | OFF | ON | ON | OFF |
| 23 | OFF | ON | OFF | ON | ON | ON |
| 24 | OFF | ON | ON | OFF | OFF | OFF |
| 25 | OFF | ON | ON | OFF | OFF | ON |
| 26 | OFF | ON | ON | OFF | ON | OFF |
| 27 | OFF | ON | ON | OFF | ON | ON |
| 28 | OFF | ON | ON | ON | OFF | OFF |
| 29 | OFF | ON | ON | ON | OFF | ON |
| 30 | OFF | ON | ON | ON | ON | OFF |
| 31 | OFF | ON | ON | ON | ON | ON |


| Operation data No. | M5 | M4 | M3 | M2 | M1 | M0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | ON | OFF | OFF | OFF | OFF | OFF |
| 33 | ON | OFF | OFF | OFF | OFF | ON |
| 34 | ON | OFF | OFF | OFF | ON | OFF |
| 35 | ON | OFF | OFF | OFF | ON | ON |
| 36 | ON | OFF | OFF | ON | OFF | OFF |
| 37 | ON | OFF | OFF | ON | OFF | ON |
| 38 | ON | OFF | OFF | ON | ON | OFF |
| 39 | ON | OFF | OFF | ON | ON | ON |
| 40 | ON | OFF | ON | OFF | OFF | OFF |
| 41 | ON | OFF | ON | OFF | OFF | ON |
| 42 | ON | OFF | ON | OFF | ON | OFF |
| 43 | ON | OFF | ON | OFF | ON | ON |
| 44 | ON | OFF | ON | ON | OFF | OFF |
| 45 | ON | OFF | ON | ON | OFF | ON |
| 46 | ON | OFF | ON | ON | ON | OFF |
| 47 | ON | OFF | ON | ON | ON | ON |
| 48 | ON | ON | OFF | OFF | OFF | OFF |
| 49 | ON | ON | OFF | OFF | OFF | ON |
| 50 | ON | ON | OFF | OFF | ON | OFF |
| 51 | ON | ON | OFF | OFF | ON | ON |
| 52 | ON | ON | OFF | ON | OFF | OFF |
| 53 | ON | ON | OFF | ON | OFF | ON |
| 54 | ON | ON | OFF | ON | ON | OFF |
| 55 | ON | ON | OFF | ON | ON | ON |
| 56 | ON | ON | ON | OFF | OFF | OFF |
| 57 | ON | ON | ON | OFF | OFF | ON |
| 58 | ON | ON | ON | OFF | ON | OFF |
| 59 | ON | ON | ON | OFF | ON | ON |
| 60 | ON | ON | ON | ON | OFF | OFF |
| 61 | ON | ON | ON | ON | OFF | ON |
| 62 | ON | ON | ON | ON | ON | OFF |
| 63 | ON | ON | ON | ON | ON | ON |

## START input

This signal starts the positioning operation.
Select the operation data No. and turn the START input to ON to start positioning operation.

## Related parameter

| Parameter name | Description | Setting range | Initial value |
| :---: | :--- | :---: | :---: |
| Return-to-home <br> incomplete alarm | Sets the alarm signal status: When the positioning <br> operation is started while the position origin has not been <br> set, selects whether the alarm generates or not. | 0: Disable <br> $1:$ Enable | 0 |

Note When the "return-to-home incomplete alarm" parameter is set to "enable", the return-to-home incomplete alarm will generate if the positioning operation is started while the position origin has not been set.

## SSTART input

This signal starts the sequential operation.
Positioning operation based on the next data No. will be performed every time the SSTART input turns ON.
This function is useful when multiple positioning operations must be performed sequentially, because there is no need to repeatedly select each data No.
See p. 37 for sequential operation.

## Related parameter

| Parameter name | Description | Setting range | Initial value |
| :--- | :--- | :---: | :---: |
| Return-to-home <br> incomplete alarm | Sets the alarm signal status: When the positioning <br> operation is started while the position origin has not been <br> set, selects whether the alarm generates or not. | $0:$ Disable <br> $1:$ Enable | 0 |

Note
When the "return-to-home incomplete alarm" parameter is set to "enable", the return-to-home incomplete alarm will generate if the positioning operation is started while the position origin has not been set.

## - FWD input, RVS input

These signals start the continuous operation. Operation is performed based on the FWD or RVS input and the operating speed corresponding to the selected operation data No.
Turn the FWD signal to ON, to perform continuous operation in the positive direction.
Turn the RVS signal to ON, to perform continuous operation in the negative direction.
The motor operates continuously while the FWD or RVS input is ON. When the FWD or RVS input is turned OFF, the motor will decelerate to a stop. If the signal of the same direction is turned ON again during deceleration, the motor will accelerate and continue operating. If the FWD and RVS inputs are turned ON simultaneously, the motor will decelerate to a stop.
When the operation data No. is changed during continuous operation, the speed will change to the one specified for the new operation data No.
See p. 39 for continuous operation.

## STOP input

When the STOP input turns ON, the motor will stop. When the STOP input turns ON while a positioning operation is being performed, the balance of the travel amount will be cleared. See p. 46 for stop action.

## Related parameter

| Parameter name | Description | Setting range | Initial value |
| :--- | :--- | :--- | :---: |
| STOP input action | Sets how the motor should stop when | 0: Immediate stop <br> 1: Deceleration stop <br> a STOP input is turned ON. | 2: Immediate stop+current OFF <br> 3: Deceleration stop+current OFF |
|  |  | 1 |  |

## ■ MS0 to MS5 input

This signal starts the direct positioning operation.
When any of the MSO to MS5 inputs is turned ON, the positioning operation corresponding to the input data No. will be performed. Since the positioning operation is enabled by turning any of the MSO to MS5 inputs ON, you can save the steps of selecting the operation data No.
See p. 39 for direct positioning operation.

## Related parameters

| Parameter name | Description | Setting range | Initial value |
| :--- | :--- | :---: | :---: |
| Return-to-home <br> incomplete alarm | Sets the alarm signal status: When the positioning <br> operation is started while the position origin has not been <br> set, selects whether the alarm generates or not. | 0: Disable <br> 1: Enable | 0 |
| MS0 operation data <br> No. selection | Sets operation data No. corresponding to MS0 input. |  | 0 |
| MS1 operation data <br> No. selection | Sets operation data No. corresponding to MS1 input. |  | 1 |
| MS2 operation data <br> No. selection | Sets operation data No. corresponding to MS2 input. | Operation data | 2 |
| MS3 operation data <br> No. selection | Sets operation data No. corresponding to MS3 input. |  | 3 |
| MS4 operation data <br> No. selection | Sets operation data No. corresponding to MS4 input. |  |  |
| MS5 operation data <br> No. selection | Sets operation data No. corresponding to MS5 input. |  | 5 |

Note When the "return-to-home incomplete alarm" parameter is set to "enable", the return-to-home incomplete alarm will generate if the positioning operation is started while the position origin has not been set.

## HOME input

This signal starts the return-to-home operation.
Turn the HOME input ON to start return-to-home operation. When the return-to-home operation is completed and the motor stops, the HOME-P output turns ON.
See p. 42 for return-to-home operation.
Related parameters

| Parameter name | Description | Setting range | Initial value |
| :--- | :--- | :--- | :---: |
| Home-seeking mode | Sets the mode for return-to-home operation. | $0: 2$-sensor mode <br> $1: 3$-sensor mode | 1 |
| Operating speed for <br> home-seeking | Sets the operating speed for return-to-home <br> operation. | 1 to $1,000,000 \mathrm{~Hz}$ | 1,000 |
| Acceleration/ <br> deceleration rate for <br> home-seeking | Sets the acceleration/deceleration rate or <br> acceleration/deceleration time for return-to-home <br> operation. | 1 to $1,000,000$ <br> $(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or <br> $1=0.001 \mathrm{~s})$ | 30,000 |
| Starting speed for <br> home-seeking | Sets the starting speed for return-to-home <br> operation. | 1 to 1,000,000 Hz | 100 |
| Position offset for <br> home-seeking | Sets the amount of offset from mechanical home. | $-8,388,608$ to <br> $8,388,607$ step | 0 |
| Starting direction for <br> home-seeking | Sets the starting direction for home detection. | $0:$ Negative direction <br> $1:$ Positive direction | 1 |
| SLIT detection with <br> home-seeking | Sets whether or not to concurrently use the SLIT <br> input for return-to-home operation. | $0:$ Disable <br> $1:$ Enable | 0 |
| TIM signal detection <br> with home-seeking | Sets whether or not to concurrently use the TIM <br> signal for return-to-home operation. | $0:$ Disable <br> $1:$ Enable | 0 |


| Parameter name | Description | Setting range | Initial value |
| :--- | :--- | :---: | :---: |
| Backward steps in <br> 2sensor mode home- <br> seeking | Set the travel amount after pulling out of the limit <br> sensor in 2-sensor mode return-to-home <br> operation. | 1 to 32,767 step | 200 |

## +JOG input, -JOG input

These signals start the JOG operation. Turn the +JOG signal to ON, to perform JOG operation in the positive direction. Turn the -JOG signal to ON, to perform JOG operation in the negative direction.
See p. 42 for JOG operation.

## Related parameters

| Parameter name | Description | Setting range | Initial value |
| :--- | :--- | :--- | :---: |
| JOG travel amount | Sets the travel amount for JOG operation. | 1 to $8,388,607 \mathrm{step}$ | 1 |
| JOG operating speed | Sets the operating speed for JOG operation. | 1 to $1,000,000 \mathrm{~Hz}$ | 1,000 |
| Acceleration/deceleration <br> rate of JOG | Sets the acceleration/deceleration rate or <br> acceleration/deceleration time for JOG <br> operation. | 1 to $1,000,000$ <br> $(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or <br> $1=0.001 \mathrm{~s})$ | 30,000 |
| JOG starting speed | Sets the starting speed for JOG operation. | 0 to $1,000,000 \mathrm{~Hz}$ | 100 |

## AWO input

When the AWO input is turned ON, the motor current will be cut off. The motor will lose its holding torque, and the output shaft can be turned with manually.

Note Do not turn the AWO input ON when driving a vertical load. Since the motor loses its holding torque, the load may drop.

## ALM-RST input

When an alarm generates, the ALM output will turn OFF and the motor will stop. When the ALM-RST input is turned from OFF to ON, the ALM output will turn ON and the alarm will be reset. (The alarm will be reset at the ON edge of the ALM-RST input.) Always reset an alarm after removing the cause of the alarm and after ensuring safety. Note that some alarms cannot be reset with the ALM-RST input. See p. 123 for alarm descriptions.

## P-PRESET input

This is a signal for the command position preset. When the P-PRESET input is turned from OFF to ON, the command position is set as the value of the "preset position" parameter. (Effective at ON-edge)
However, the preset will not execute in the following conditions.

- When an alarm is present
- When the motor is operating

Related parameter

| Parameter name | Description | Setting range | Initial value |
| :--- | :---: | :---: | :---: |
| Preset position | Sets the preset position. | $-8,388,608$ to $8,388,607$ step | 0 |

## HMI input

When the HMI input is turned ON, the function limitation of the MEXEO2 or OPX-2A will be released. When the HMI input is turned OFF, the function limitation will be imposed.

- I/O test
- Test operation
- Teaching
- Download the parameters
- Initialize the parameters

Note If the HMI input is not assigned to the input terminal, the HMI input will always become ON (function limitation release). When assigning to both direct I/O and network I/O, the function will be executed when both of them are set to ON .

## - +LS input, -LS input

These signals are input from the applicable limit sensors. The + LS input is for the + side sensor and the $-L S$ input is for the -side sensor.
Return-to-home operation : Operates according to the return-to-home sequence when detecting +LS input or -LS input.
Any other operation : Detect the hardware overtravel and stop the motor. See p. 46 for hardware overtravel.
Related parameters

| Parameter name | Description | Setting range | Initial value |
| :---: | :--- | :--- | :---: |
| Hardware overtravel | Sets whether to enable or disable hardware <br> overtravel detection using $\pm$ LS inputs. | 0: Disable <br> $1:$ Enable | 1 |
| Overtravel action | Sets the motor stop action to take place upon the <br> occurrence of overtravel. | 0: Immediate stop <br> $1:$ Deceleration stop | 0 |

## HOMES input

This is an input signal from the HOME sensor. The mechanical home position is detected when using 3-sensor mode return-to-home operation. See p. 42 for return-to-home operation.

## - SLIT input

Connect when detecting the home position using a slit disk etc. When detecting the home, use of the SLIT input in addition to the HOMES will increase the accuracy of home detection.
See p. 42 for return-to-home operation.

## 9-4 Output signals

The driver outputs signals in the photocoupler/open-collector output mode or line driver output mode. The signal state represents the "ON: Carrying current" or "OFF: Not carrying current" state of the internal photocoupler rather than the voltage level of the signal.

■ Internal output circuit


## - ALM output

When an alarm generates, the ALM output will turn OFF. At the same time, the ALM LED of the driver will blink and the motor current will be cut off and stop. The ALM output is normally closed.
See p. 123 for alarm descriptions.

## Related parameters

| Parameter name | Description | Setting range | Initial value |
| :--- | :--- | :--- | :---: |
| Return-to-home <br> incomplete alarm | Sets the alarm signal status: When the positioning <br> operation is started while the position origin has not <br> been set, selects whether the alarm generates or not. | 0: Disable <br> $1:$ Enable | 0 |
| Communication <br> timeout | Sets the condition in which a communication timeout <br> occurs in RS-485 communication. | 0: Not monitored <br> 0 to 10,000 ms | 0 |
| Communication <br> error alarm | Sets the condition in which a RS-485 communication <br> error alarm generates. A communication error alarm <br> generates after a RS-485 communication error has <br> occurred by the number of times set here. | 1 to 10 times | 3 |

## WNG output

When a warning generates, the WNG output turns ON. See p. 126 for warning descriptions.

## Related parameters

| Parameter name | Description | Setting range | Initial value |
| :---: | :--- | :--- | :---: |
| Overheat warning | Sets the temperature at which a main circuit <br> overheat warning generates. | 40 to $80^{\circ} \mathrm{C}$ <br> $\left(104\right.$ to $\left.176^{\circ} \mathrm{F}\right)$ | 80 |
| Overvoltage warning | Sets the voltage at which an overvoltage warning <br> generates. | 150 to $420(1=0.1 \mathrm{~V})$ | 420 |
| Undervoltage warning | Sets the voltage at which an undervoltage warning <br> generates. | 150 to $420(1=0.1 \mathrm{~V})$ | 180 |

## - READY output

When the driver becomes ready, the READY output turns ON. Input operating commands after the READY output has turned ON. The READY output turns ON when all of the following conditions are satisfied.

- All inputs which start operation are OFF
- The FREE input is OFF *
- The AWO input is OFF
- The STOP input is OFF
- An alarm is not present.
- The motor is not operating.
- Test function, downloading or teaching function was not performed using the MEXEO2.
- Test operation, downloading, initializing or teaching function was not performed using the OPX-2A.
- Configuration commands, all data initialization commands and "batch non-volatile memory read" commands are not executed via RS-485 communication.
* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.

■ HOME-P output
The HOME-P output turns ON corresponding to the setting of the "HOME-P function selection" parameter.
Related parameter

| Parameter name | Description | Setting range | Initial value |
| :--- | :--- | :--- | :---: |
| HOME-P function <br> selection | Selects the HOME-P output function. | 0 : Home output <br> $1:$ Return-to-home complete output | 0 |

- When "HOME-P function selection" parameter is set to "home output":

When the command position is in the home-position while the MOVE output is OFF, the HOME-P output will turn ON. However, the HOME-P output remains OFF when the position origin for the motor has not been set.

- When "HOME-P function selection" parameter is set to "return-to-home complete output":

Regardless of the command position, if the position origin for the motor is set, the HOME-P output will turn ON. Therefore, it turns ON after completing the return-to-home operation or preset. Once the HOME-P output turns ON, it will not turn OFF until the motor has moved from the position origin.

See p. 47 for setting the position origin.

## MOVE output

The MOVE output turns ON while the motor is operating.
Related parameter

| Parameter name | Description | Setting range | Initial value |
| :--- | :---: | :---: | :---: |
| Minimum ON time for <br> MOVE output | Sets the minimum ON time for MOVE output. | 0 to 255 ms | 0 |

## - AREA1 output to AREA3 output

The AREA output turns ON when the motor is inside the area set by the parameters. It turns ON when the motor is inside the area even when the motor stops.

## Related parameters

| Parameter name | Description | Setting range | Initial value |
| :---: | :---: | :---: | :---: |
| AREA1 positive direction position | Sets the AREA1 positive direction position. | $\begin{aligned} & -8,388,608 \text { to } \\ & 8,388,607 \text { step } \end{aligned}$ | 0 |
| AREA1 negative direction position | Sets the AREA1 negative direction position. |  |  |
| AREA2 positive direction position | Sets the AREA2 positive direction position. |  |  |
| AREA2 negative direction position | Sets the AREA2 negative direction position. |  |  |
| AREA3 positive direction position | Sets the AREA3 positive direction position. |  |  |
| AREA3 negative direction position | Sets the AREA3 negative direction position. |  |  |

- When the "AREA positive direction position" parameter $\leq$ "AREA negative direction position" parameter
To turn the AREA output ON:
Motor position $\leq$ AREA positive direction position, or AREA negative direction position $\leq$ Motor position

- When the "AREA positive direction position" parameter $\geq$ "AREA negative direction position" parameter
To turn the AREA output ON:
AREA negative direction position $\leq$ Motor position $\leq$ AREA positive direction position

- When the "AREA positive direction position" parameter ="AREA negative direction position" parameter
To turn the AREA output ON: Motor position = AREA negative direction position $=$ AREA positive direction position
Note The motor position is the command position when turning the AREA1 to AREA3 output ON.


## TIM output

The TIM output will turn ON every time the motor output shaft rotates by $7.2^{\circ}$. If the command speed is faster than 500 Hz , TIM output will not be output correctly.


Note When the TIM output is used, set the resolution to be an integral multiple of 50 .

## - S-BSY output

This output is turned ON when the motor is in internal processing state. The motor will be in internal processing state at the following condition.

- The maintenance command is in progress via RS-485 communication.


## Response output

The response output is the output signal that shows the ON/OFF status corresponding to the input signals.
The tables show the correspondence between the input signals and output signals.

| Input signal | Output signal |
| :---: | :---: |
| FWD | FWD_R |
| RVS | RVS_R |
| HOME | HOME_R |
| START | START_R |
| SSTART | SSTART_R |
| +JOG | +JOG_R |
| -JOG | -JOG_R |
| MSO | MSO_R |
| MS1 | MS1_R |
| MS2 | MS2_R |
| MS3 | MS3_R |
| MS4 | MS4_R |
| MS5 | MS5_R |


| Input signal | Output signal |
| :---: | :---: |
| FREE* | FREE_R* |
| AWO | AWO_R |
| STOP | STOP_R |
| M0 | M0_R |
| M1 | M1_R |
| M2 | M2_R |
| M3 | M3_R |
| M4 | M4_R |
| M5 | M5_R |
| +LS | +LS_R |
| -LS | -LS_R |
| HOMES | HOMES_R |
| SLIT | SLIT_R |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.

Note The response output is the output signal to return the status of the input signal. Therefore, the output signals corresponding to the input signals for motor operation (START_R output etc.) do not show the movement of the motor itself.

## 9-5 General signals (RO to R15)

R0 to R15 are general signals that enable control via RS-485 communication.
Using R0 to R15, I/O signals for the external device can be controlled by the master device via the motor. Direct I/O of the driver can be used as an I/O unit.
See following example for setting of the general signals.

- When outputting the signals from the master device to the external device

Assign the general signal RO to the OUTO output and NET-INO.
When setting the NET-INO to 1 , the OUTO output turns ON. When setting the NET-INO to 0 , the OUTO output turns OFF.

- When inputting the output of the external device to the master device

Assign the general signal R1 to the IN3 input and NET-OUT15.
When turning the IN3 input ON by the external device, the NET-OUT15 becomes 1. When turning the IN3 input OFF, the NET-OUT15 becomes 0 .
The logic level of the IN3 input can be set using "IN3 logic level setting" parameter.


## 10 Operation

This chapter explains the types of operation and timing charts.

## 10-1 Positioning operation

Positioning operation is an operation in which motor operating speed, position (distance) and other items are set as operation data and then executed. When the positioning operation is executed, the motor begins at the starting speed and accelerates until the operating speed is reached. Then, once the operating speed is reached, that speed is maintained. The motor decelerates when the stopping position approaches, and finally comes to a stop.


The acceleration/deceleration in the positioning operation can be set as follows using the "acceleration/deceleration type" parameter:

- Separate :The acceleration/deceleration set under the applicable operation data No. will be followed.

The acceleration/deceleration in linked-motion operation corresponds to the acceleration/deceleration specified for the operation data No. with which the linked-motion operation is started.

- Common : The setting of the "common acceleration" and "common deceleration" parameter will be followed.


## Positioning modes

The following two operation modes are available:

- Absolute mode :The position (distance) from home is set [Absolute positioning].
- Incremental mode : Each motor destination becomes the starting point for the next movement. This mode is suitable when the same position (distance) is repeatedly used [Incremental positioning].
- Absolute mode

- Incremental mode



## Positioning pattern

Positioning operation can be performed in the following five patterns:

| Types of operation | Description |
| :--- | :--- |
| Single-motion operation | A single operation data set is executed. |
| Linked-motion operation | Multiple sets of operation data are linked to perform continuous positioning <br> operation. |
| Linked-motion operation 2 | Linked-motion operation is performed with the dwell time function. Dwell time <br> refers to a wait time before the next positioning operation is performed. <br> Operation data whose rotating direction is different can also be linked. |
| Sequential operation | Positioning operation is performed to the next operation data No. every time a <br> SSTART input signal is input. |
| Direct positioning operation | When any of the MSO to MS5 inputs is turned ON, the positioning operation <br> corresponding to the input data No. will perform. |

## Selecting the operation data No.

Select an operation data based on a combination of ON/OFF status of the M0 to M5 inputs.
See p. 26 for selecting the operation data No.

| Operation data No. | M5 | M4 | M3 | M2 | M1 | M0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | OFF | OFF | OFF | OFF | OFF | OFF |
| 1 | OFF | OFF | OFF | OFF | OFF | ON |
| 2 | OFF | OFF | OFF | OFF | ON | OFF |
| $\cdot$ |
| $\cdot$ |
| $\cdot$ |
| 61 | ON | ON | ON | ON | OFF | ON |
| 62 | ON | ON | ON | ON | ON | OFF |
| 63 | ON | ON | ON | ON | ON | ON |

## Single-motion operation

The positioning operation is performed only once using a single operation data set.
To perform single-motion operation, set "operating mode" to "single" using operation data.
Data Nos. 3 and 4 shows the operation profile when motion profiles are set as "single".


## ■ Linked-motion operation

When setting the "operating mode" to "link", using operation data, positioning operation based on the next data number will be performed, without stopping the motor.
A maximum of four operation data can be linked.
If operation data includes data for which "single" is set, the motor will stop after the positioning with respect to the "single" operation data is completed.
Note that only operation data of the same direction can be linked.

## Example of linked-motion operation

| Data No. | Operating mode |  |
| :---: | :---: | :---: |
| 1 | Link |  |
| 2 | Link If data No. 1 is selected, positioning will be performed continuously for Nos. 1 to 3. |  |
| 3 | Single data No. 3 is selected, single-motion operation will be performed only for No.3. |  |



Note - Multiple operation data of different directions cannot be linked. An operation data error alarm will generate during operation.

- Up to four sets of operation data can be linked. When combining the linked-motion operation and the linked-motion operation 2, make sure the total number of linked operation data sets does not exceed four. When linked-motion operation is performed with five or more sets of operation data linked together, an operation data error alarm will generate upon start of operation.
- No. 0 will not be linked even when "link" is set for data No. 63, because the operation pertaining to No. 63 will be processed independently.
- The acceleration/deceleration in linked-motion operation corresponds to the acceleration/ deceleration specified for the operation data No. with which the linked-motion operation is started.


## Linked-motion operation 2

By setting the "operation mode" of operation data to "link2," an operation data whose rotating direction is different can be linked. In this case, the system stops for the dwell time after each positioning operation, and then performs operation according to the next operation data. If operation data includes data for which "single" is set, the motor will stop after the positioning with respect to the "single" operation data is completed.

Note - Up to four sets of operation data can be linked. When combining the linked-motion operation and the linked-motion operation 2 , make sure the total number of linked operation data sets does not exceed four. When linked-motion operation is performed with five or more sets of operation data linked together, an operation data error alarm will generate upon start of operation.

- No. 0 will not be linked even when "link2" is set for data No. 63, because the operation pertaining to No. 63 will be processed independently.


## Example of linked-motion operation2

| Data No. | Operating mode | Rotating direction | Dwell time |
| :---: | :---: | :---: | :---: |
| 1 | Link2 | Positive | Set |
| 2 | Link2 | Negative | Set |
| 3 | Link2 | Positive | Not set |
| 4 | Single | Positive | N/A |



## When combining the linked-motion operation and the linked-motion operation 2

| Data No. | Operating mode | Rotating direction | Dwell time |
| :---: | :---: | :---: | :---: |
| 1 | Link2 | Positive | Set |
| 2 | Link | Negative | N/A |
| 3 | Link | Negative | N/A |
| 4 | Single | Negative | N/A |



## Sequential operation

When the "sequential positioning" value of the operation data is set to "enable", positioning operation is performed for the next operation data No. every time the SSTART input turns ON. This function is useful when multiple positioning operations must be performed sequentially, because there is no need to select each data number.
When the "sequential positioning" of operation data is executed up to the data No. set to "disable", the operation returns to the original data No. that was selected before starting the sequential operation. And the sequential operation will start again.
If the starting point for the sequential operation is changed using the M0 to M5 inputs or the MS0 to MS5 inputs, multiple sequential operations can be set.

## - How to perform the sequential operation

1. Selects the data No.(n) for the starting point for the sequential positioning and perform the positioning operation by turning the START input ON.
2. Turn the SSTART input ON.

Perform positioning operation based on data No.( $\mathrm{n}+1$ ).
3. Turn the SSTART input ON again.

Perform positioning operation based on data No.(n+2).
The operation data No. that the sequential positioning is set to disable will not perform. The positioning operation will start again after returning to the operation data No.(n).

Note - The operation data No. 0 is set to the starting point when turning the power ON.

- The operation data No. 0 is set to the starting point when the following operations are performed.

And the current operation data No. is set to " -1 ".
-When the motor power is turned ON again
-When operations other than the positioning operation are performed (return-to home operation, continuous operation, etc.)
-When an alarm is generated and reset
-When the STOP input is turned ON
-When the command turning the excitation OFF is input (when FREE * or AWO is turned ON)
-When the P-PRESET is executed
-When a configuration is executed

- When the operation function is set to "link" or "link2", set all of the linked operation data No. to the sequential positioning.

[^2]Example of sequential operation

| Data No. | Operating mode | Sequential operation |
| :---: | :---: | :---: |
| 0 | Single | Set |
| 1 | Single | Set |
| 2 | Single | Not set |
| 3 | Single | Set |
| 4 | Link | Set |
| 5 | Single | Set |
| 6 | Single | Not set |

## - Perform sequential operation after power supply is turned on

When the SSTART input is turned ON after power supply is turned on, a positioning operation is performed based on data No.O. When a SSTART input is turned ON again, a positioning operation is performed based on data No.1.
Then, when a SSTART input is turned ON again, the driver returns to No. 0 and performs a positioning operation based on data No.0, since "sequential operation" is set to "disable" for data No.2.


- When the sequential positioning operation is performed from data No. 3 to 5.

When the START input is turned ON with No. 3 selected, a positioning operation is performed based on data No.3. When the SSTART input is turned ON, positioning operations are performed based on data No. 4 and 5.
Then, when a SSTART input is turned ON again, the driver returns to No. 3 and performs a positioning operation based on data No.3, since "sequential operation" is set to "disable" for data No.6.


## Direct positioning operation

When any of the MS0 to MS5 inputs is turned ON, the positioning operation corresponding to the input data No. will be performed. Since the positioning operation is enabled by turning any of the MS0 to MS5 inputs ON, you can save the step of selecting the operation data No.

## Example of direct positioning operation

| Data No. | Operating mode | Rotating direction |
| :---: | :---: | :---: |
| 1 | Single | Positive |
| 2 | Link | Negative |
| 3 | Link | Negative |
| 4 | Single | Negative |

- Parameter

| Parameter name | Setting value |
| :---: | :---: |
| MS1 operation No. selection | 1 |
| MS2 operation No. selection | 2 |



## Stop the positioning operation

When the STOP input is turned ON, the current positioning operation stops.
The stopping mode is determined by the setting of the "STOP input action" parameter.

## 10-2 Continuous operation

The motor operates continuously while the FWD or RVS input is ON.
Operation is performed based on the FWD or RVS input and the operating speed corresponding to the selected operation data No.
When the operation data No. is changed during continuous operation, the speed will change to the speed specified by the new operation data No.
When the FWD or RVS input is turned OFF, the motor will decelerate to a stop. If the signal of the same direction is turned ON again during deceleration, the motor will accelerate and continue operating. If the FWD and RVS inputs are turned ON simultaneously, the motor will decelerate to a stop.

The acceleration/deceleration in the continuous operation can be set as follows using the "acceleration/deceleration type" parameter:
Separate: The acceleration/deceleration set under the applicable operation data No. will be followed.
Common: The setting of the "common acceleration" and "common deceleration" parameter will be followed.


■ Variable speed operation: When acceleration/deceleration is "separate"

- Acceleration/deceleration unit: $\mathrm{ms} / \mathrm{kHz}$

When accelerating


When decelerating


- Acceleration/deceleration unit: $s$

When accelerating


- Explanation of labels

VS: Starting speed (Hz)
VR1: Operating speed of operation data No. $1(\mathrm{~Hz})$
VR2: Operating speed of operation data No. $2(\mathrm{~Hz})$
TA1: Acceleration of operation data No. 1
TA2: Acceleration of operation data No. 2

- Calculation method for acceleration/deceleration rate

$$
\begin{aligned}
& \text { TAR1 }=(\text { VR1 }- \text { VS }) / \text { TA1 } \\
& \text { TAR2 }=(\text { VR2 }- \text { VS }) / \text { TA2 } \\
& \text { TDR2 }=(\text { VR2 }- \text { VS }) / \text { TD2 }
\end{aligned}
$$

When decelerating


TD2: Deceleration of operation data No. 2
TAR1: Acceleration rate of operation data No. 1 ( $\mathrm{ms} / \mathrm{kHz}$ )
TAR2: Acceleration rate of operation data No. $2(\mathrm{~ms} / \mathrm{kHz}$ )
TDR2: Deceleration rate of operation data No. $2(\mathrm{~ms} / \mathrm{kHz})$

## Variable speed operation: When acceleration/deceleration is "common"

- Acceleration/deceleration unit: $\mathrm{ms} / \mathrm{kHz}$

When accelerating


When decelerating


- Acceleration/deceleration unit: $s$

When accelerating


- Explanation of labels

VS: Starting speed (Hz)
VR1: Operating speed of operation data No. $1(\mathrm{~Hz})$
VR2: Operating speed of operation data No. $2(\mathrm{~Hz})$
TAC: Common acceleration
TDC: Common deceleration

- Calculation method for acceleration/deceleration rate

$$
\begin{aligned}
& \text { TAR1 }=(\text { VR1 }- \text { VS }) / \text { TAC } \\
& \text { TAR2 }=(\text { VR2 }- \text { VS }) / \text { TAC } \\
& \text { TDR2 }=(\text { VR2 }- \text { VS }) / \text { TDC }
\end{aligned}
$$

When decelerating


TAR1: Acceleration rate of operation data No. 1 ( $\mathrm{ms} / \mathrm{kHz}$ ) TAR2: Acceleration rate of operation data No. 2 ( $\mathrm{ms} / \mathrm{kHz}$ ) TDR1: Deceleration rate of operation data No. 1 ( $\mathrm{ms} / \mathrm{kHz}$ ) TDR2: Deceleration rate of operation data No. $2(\mathrm{~ms} / \mathrm{kHz})$

## 10-3 JOG operation

When the +JOG signal to ON, JOG operation is in the positive direction.
When the -JOG signal to ON, JOG operation is in the negative direction.


POS: JOG travel amount VR: JOG operating speed
TR: JOG acceleration/deceleration rate VS: JOG starting speed

## 10-4 Return-to-home operation

Return-to-home operation is an operation in which the reference point of positioning (mechanical home position) is detected automatically.
When a HOME is turned ON, a return-to-home operation is started in the preset direction.
When an offset from the mechanical home is set in the "position offset of home-seeking" parameter, the offset position becomes the home. This home is called the electrical home.
If the "position offset of home-seeking" parameter is "0," the mechanical home and electrical home will become the same.


Two home detection modes are available: 3-sensor mode (high-speed operation) and 2-sensor mode (constant-speed operation). The desired mode can be set using the "home-seeking mode" parameter.
The operation pattern varies depending on the starting direction and position of home detection. In the 2-sensor mode, a rectangular pattern is performed.

## Operation sequence of the 3 -sensor mode

The home is detected using the three sensors; +LS, -LS and HOMES. The ON edge of HOMES defines the home.
-- - Broken line indicates a home offset move.

| Starting position of return-to-home operation | Starting direction of return-to-home operation: Positive side | Starting direction of return-to-home operation: Negative side |
| :---: | :---: | :---: |
| -LS |  |  |
| +LS |  |  |
| HOMES |  |  |
| Between HOMES and -LS |  |  |
| Between HOMES and +LS |  |  |

## Operation sequence of the $\mathbf{2}$-sensor mode

The home is detected using +LS and -LS. When the motor pulls off of the limit sensor and both +LS and -LS turn OFF, the applicable position will be used to define the home.


* After pulling out of the limit sensor, the motor moves only the value set in the "backward steps in 2sensor mode
home-seeking" parameter. (Initial value: 200 step) home-seeking" parameter. (Initial value: 200 step)


## ■ When concurrently using the SLIT input and/or TIM signal for return-to-home operation

When detecting the home, use of the SLIT input and/or TIM signal will increase the accuracy of home detection. When concurrently using the SLIT input and TIM signal, adjust the home position so that the TIM signal can be detected while the SLIT input ON. When using the 3 -sensor mode, adjust the home position so that all signals can be detected while the HOMES input ON.

- Operation sequence for the last home-seeking of the 3-sensor mode

|  |  | --- Br | line indicates a home offs |
| :---: | :---: | :---: | :---: |
|  | Signal type | Starting direction of return-to-home operation: Positive side | Starting direction of return-to-home operation: Negative side |
|  | SLIT input |  |  |
|  | TIM signal |  |  |
| Starting speed of return-to-home | SLIT input and TIM signal |  |  |
| VS: Starting speed <br> VR: Operating speed of return-to-home <br> VL: Last speed of return-to-home <br> When VS < 500 Hz : VS <br> When VS $\geq 500 \mathrm{~Hz}: 500 \mathrm{~Hz}$ |  |  |  |

- Operation sequence for the last motion home-seeking of the 2-sensor mode

* After pulling out of the limit sensor, the motor moves only the value set in the "backward steps in 2sensor mode home-seeking" parameter. (Initial value: 200 step)


## 10-5 Test operation

Test operation is performed using the MEXE02 or OPX-2A. JOG operation and teaching function can be performed.

## JOG operation

Connection condition or operation status for the motor can be checked using JOG operation. Refer to the operating manual for each product.
Example: When performing JOG operation with the OPX-2A


## Teaching

This is a function to move the motor using the MEXE02 or OPX-2A and set the current position as the position (travel amount) of the operation data. When the position (travel amount) is set using teaching function, the "operation mode" will always be the absolute mode. The operating speed, acceleration/deceleration speed and starting speed of teaching function are same as those of JOG operation.

Note Perform teaching function when the position origin is set. See p. 47 for setting the position origin.

10-6 Stop operation

## STOP action

When the STOP input is turned ON or STOP is commanded via RS-485 communication while the motor is operating, the motor will stop. The stopping mode is determined by the setting of the "STOP input action" parameter.
For example, the operation when setting "STOP input action" parameter to "deceleration stop" is shown in the figure.


Hardware overtravel
Hardware overtravel is the function that limits the operation range by installing the limit sensor $( \pm \mathrm{LS})$ at the upper and lower limit of the operation range.
If the "hardware overtravel" parameter is set to "enable", the motor can be stopped when detecting the limit sensor.
The stopping mode is determined by the setting of "overtravel action" parameter.
The operation example when setting the "overtravel action" parameter to "immediate stop" is shown in the figure.

Related parameters


| Parameter name | Description | Setting range | Initial value |
| :--- | :--- | :--- | :---: |
| Hardware overtravel | Sets whether to enable or disable hardware <br> overtravel detection using $\pm$ LS inputs. | 0: Disable <br> $1:$ Enable | 1 |
| Overtravel action | Sets the motor action to take place upon the <br> occurrence of overtravel. | 0: Immediate stop <br> $1:$ Deceleration stop | 0 |

## Software overtravel

The software overtravel is a function that limits the range of movement via software settings.
If the "software overtravel" parameter is set to "enable", the motor can be stopped when exceeding the software limit.
The stopping mode is determined by the setting of "overtravel action" parameter.
The operation pattern shown on the right applies when an
 operation where a soft limit is to be exceeded is started.

## Note

- Software overtravel will become effective after the position origin is set. See p. 47 for setting the position origin.
- When the value of the software limit is changed while the motor is operating, the motor will stop based on the setting of "overtravel action" parameter.


## Related parameters

| Parameter name | Description | Setting range | Initial value |
| :---: | :--- | :--- | :---: |
| Software overtravel | Sets whether to enable or disable software <br> overtravel detection using soft limits. | $0:$ Disable <br> $1:$ Enable | 1 |
| Positive software limit | Sets the value of soft limit in positive direction. | $-8,388,608$ to <br> $8,388,607 ~ s t e p ~$ | $8,388,607$ |
| Negative software limit | Sets the value of soft limit in negative direction. | $-8,388,608$ to <br> $8,388,607 ~ s t e p ~$ | $-8,388,608$ |

## Escape from the limit sensor

It is possible to escape in the negative direction when detecting the positive direction limit, and possible to escape in the positive direction when detecting the negative direction limit.
The following operations can be used when escaping from the limit sensor.

| Types of operation | Limit sensors ( $\pm$ LS) | Software limit |
| :--- | :--- | :---: |
| Positioning operation | Will not operate (unable to escape) |  |
| Continuous operation <br> Return-to-home operation <br> Test operation | Allowed to operate (able to escape) | Allowed to operate (able to escape) |

## 10-7 Position coordinate management

The motor manages the position information.
The position origin will be set whenever one of the following operations is executed:

- Return-to-home operation
- P-PRESET input is turned ON

The position origin will be undefined whenever one of the following operations is executed:

- The motor's power is cycled
- The motor current is removed
- The configuration command is performed

If the "return-to-home incomplete alarm" parameter is set to "enable", positioning operations can be prohibited while the position origin has not been set. The return-to-home incomplete alarm will generate if the START input, SSTART input or the MSO to MS5 inputs are turned ON while the position origin has not been set. See p. 123 for alarm.

## Related parameter

| Parameter name | Description | Setting range | Initial value |
| :--- | :--- | :---: | :---: |
| Return-to-home <br> incomplete alarm | Sets the alarm signal status: When the positioning <br> operation is started while the position origin has not <br> been set, selects whether the alarm generates or not. | $0:$ Disable <br> $1:$ Enable | 0 |

## Wrap function

The wrap function is a function that resets the command position to 0 whenever the command position exceeds the set value by the "wrap setting range" parameter.
The command position varies in a range of " 0 to (wrap setting value-1)."
Related parameters

| Parameter name | Description | Setting range | Initial value |
| :--- | :--- | :--- | :---: |
| Wrap setting | Sets enable/disable for the wrap function. | 0: Disable <br> $1:$ Enable | 0 |
| Wrap setting range | Sets the wrap setting range. | 1 to 8,388,607 step | 500 |

Note When setting the " wrap setting" parameter to "enable", the software overtravel will be disabled. (It is disabled even when setting the "software overtravel" parameter to "enable".)

## - Example for wrap function

Example of operation when the positioning operation is performed in following conditions.

- Wrap setting range: 3,600
- Resolution: 500 P/R ("Electronic gear A" parameter=1, "Electronic gear B" parameter=1)
- Command position: 900
Position


## 10-8 Timing charts

When the power supply is turned ON


## STOP input

- When the "STOP input action" parameter is immediate stop.

* The specific time varies depending on the load, operating speed, speed filter, moving average filter and other.
- When the "STOP input action" parameter is deceleration stop.

* The specific time varies depending on the load, operating speed, speed filter, moving average filter and other.
- When the "STOP input action" parameter is immediate stop+current off.

* The specific time varies depending on the load, operating speed, speed filter, moving average filter and other.
- When the "STOP input action" parameter is deceleration stop+current off.

* The specific time varies depending on the load, operating speed, speed filter, moving average filter and other.


## AWO input



## ALM-RST input

- When an alarm generates and the motor maintains excitation

* ALM output is normally closed. It is ON during normal operation and it turns OFF when an alarm generates.
- When an alarm generates and the motor does not maintain excitation

* ALM output is normally closed. It is ON during normal operation and it turns OFF when an alarm generates.


## - P-PRESET input



## Single-motion operation (positioning operation)



## Linked-motion operation (positioning operation)



Linked-motion operation 2 (positioning operation)


* This is the value of the dwell time to be set in operation data No.1.
- Direct positioning operation



## Sequential operation



- Continuous operation



## JOG operation



Return-to-home operation


## 10-9 Operation data and parameters

The parameters required for motor operation are available in the following two types.

- Operation data
- User parameters

The parameters are saved in the RAM or non-volatile memory. The data saved in the RAM will be erased once the power is turned off. On the other hand, the parameters saved in the non-volatile memory will be retained even after the power supply is turned off.
When turning the motor power ON, the parameters saved in the non-volatile memory will be sent to the RAM. Then, the recalculation and setup for the parameters are executed in the RAM.
When a parameter is changed, the timing to update the new value varies depending on the parameter. See the following four types.

| Update timing |  | Description |
| :---: | :--- | :--- |
| A | Update immediately | Executes the recalculation and setup immediately when <br> writing the parameter. |
| B | Update after stopping the operation | Executes the recalculation and setup after stopping the <br> operation. |
| C | Update after executing the configuration | Executes the recalculation and setup after executing the <br> lonfiguration. |
| D | Update after turning the power ON again | Executes the recalculation and setup after turning the power <br> ON again. |

Note - The parameters are written in the RAM when writing via RS-485 communication.

- The non-volatile memory can be rewritten approximately 100,000 times.


## Setting the operation data

Up to 64 operation data can be set (data Nos. 0 to 63 ).

| Name | Description | Setting range | Initial value | Update (p.54) |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Position No. } 0 \\ & \text { to } \\ & \text { Position No. } 63 \end{aligned}$ | Sets the position (distance) for positioning operation. | $\begin{aligned} & -8,388,608 \text { to } \\ & +8,388,607 \text { step } \end{aligned}$ | 0 | B |
| $\begin{aligned} & \text { Operating speed No. } 0 \\ & \text { to } \\ & \text { Operating speed No. } 63 \end{aligned}$ | Sets the operating speed in positioning operation and continuous operation. | 0 to 1,000,000 Hz | 1,000 |  |
| Operation mode No. 0 to Operation mode No. 63 | Selects how to specify the position (travel amount) in positioning operation (absolute mode or incremental mode). | 0 : Incremental <br> 1: Absolute | 0 |  |
| ```Operation function No.0 to Operation function No.63``` | Sets perform positioning operation as single-motion or linked-motion operation. | 0 : Single-motion <br> 1: Linked-motion <br> 2: Linked-motion 2 | 0 |  |
| Acceleration No. 0 to Acceleration No. 63 | Sets the acceleration rate or acceleration time in positioning operation and continuous operation. *1 | $1 \text { to } 1,000,000$ |  |  |
| ```Deceleration No.0 to Deceleration No.63``` | Sets the deceleration rate or deceleration time in positioning operation and continuous operation. *1 | $1=0.001 \mathrm{~s}) * 2$ | 30,000 |  |
| Sequential positioning No. 0 to Sequential positioning No. 63 | Sets enable or disable sequential positioning operation. | 0: Disable <br> 1: Enable | 0 |  |
| Dwell time No. 0 to Dwell time No. 63 | Sets the dwell time to be used in linkedmotion operation 2. | 0 to 50,000 (1=0.001 s) | 0 |  |

*1 This item is effective when the "acceleration/deceleration type" parameter is set to "separate". If this parameter is set to "common", the values of the "common acceleration" and "common deceleration" parameters will be used (initial value: separate).
*2 Acceleration/deceleration rate ( $\mathrm{ms} / \mathrm{kHz}$ ) or acceleration/deceleration time (s) can be selected using "acceleration/ deceleration unit" parameter (initial value: acceleration/deceleration rate).

## Parameter list

The setting items for each parameter are as follows.

| I/O parameter (p.56) | - STOP input action <br> - Hardware overtravel <br> - Overtravel action <br> - AREA1 positive direction position <br> - AREA1 negative direction position <br> - AREA2 positive direction position <br> - AREA2 negative direction position <br> - AREA3 positive direction position <br> - AREA3 negative direction position | - Minimum ON time for MOVE output <br> - MSO operation No. selection <br> - MS1 operation No. selection <br> - MS2 operation No. selection <br> - MS3 operation No. selection <br> - MS4 operation No. selection <br> - MS5 operation No. selection <br> - HOME-P function selection |
| :---: | :---: | :---: |
| Motor parameter (p.57) | - RUN current <br> - STOP current <br> - Speed filter | - Moving average time <br> - Filter selection |


| Operation parameter (p.58) | - Common acceleration <br> - Common deceleration <br> - Starting speed <br> - JOG operating speed <br> - Acceleration/deceleration rate of JOG | - JOG starting speed <br> - Acceleration/deceleration type <br> - Acceleration/deceleration unit <br> - JOG travel amount |
| :---: | :---: | :---: |
| Return-to-home parameter (p.59) | - Home-seeking mode <br> - Operating speed of home-seeking <br> - Acceleration/deceleration of homeseeking <br> - Starting speed of home-seeking <br> - Position offset of home-seeking | - Starting direction of home-seeking <br> - SLIT detection with home-seeking <br> - TIM signal detection with homeseeking <br> - Backward steps in 2 sensor mode home-seeking |
| Alarm/warning parameter (p.60) | - Return-to-home incomplete alarm <br> - Overheat warning | - Overvoltage warning <br> - Undervoltage warning |
| Coordination parameter (p.60) | - Electronic gear A <br> - Electronic gear B <br> - Motor rotation direction <br> - Software overtravel | - Positive software limit <br> - Negative software limit <br> - Preset position <br> - Wrap setting <br> - Wrap setting range |
| Common parameter (p.61) | - Data setter speed display <br> - Data setter edit |  |
| I/O function parameter (p.61) | - INO to IN3 input function selection <br> - INO to IN3 input logic level setting <br> - OUTO, OUT1 output function selection |  |
| I/O function [RS-485] parameter (p.62) | - NET-IN0 to NET-IN15 input function selection <br> - NET-OUTO to NET-OUT15 output function selection |  |
| Communication parameter (p.63) | - Communication timeout <br> - Communication error alarm <br> - Communication parity | - Communication stop bit <br> - Transmission waiting time |

## I/O parameter

| Name | Description | Setting range | Initial value | Update <br> (p.54) |
| :--- | :--- | :--- | :---: | :---: |
| STOP input action | Sets how the motor should stop when <br> a STOP input is turned ON. | 0: Immediate stop <br> 1: Deceleration stop <br> 2: Immediate stop+Current OFF <br> 3: Deceleration stop+Current OFF | 1 |  |
| Hardware overtravel | Sets whether to enable or disable <br> hardware overtravel detection using <br> $\pm$ LS inputs. | 0: Disable <br> 1: Enable | 1 |  |
| Overtravel action | Sets the motor action to take place <br> upon the occurrence of overtravel. | 0: Immediate stop <br> 1: Deceleration stop |  |  |
| AREA1 positive <br> direction position | Sets the position of AREA1 positive <br> direction. |  | 0 |  |
| AREA1 negative <br> direction position | Sets the position of AREA1 negative <br> direction. |  |  |  |
| AREA2 positive <br> direction position | Sets the position of AREA2 positive <br> direction. | A |  |  |
| AREA2 negative <br> direction position | Sets the position of AREA2 negative <br> direction. | $-8,388,608$ to 8,388,607 step | 0 |  |
| AREA3 positive <br> direction position | Sets the position of AREA3 positive <br> direction. |  |  |  |
| AREA3 negative <br> direction position | Sets the position of AREA3 negative <br> direction. |  |  |  |


| Name | Description | Setting range | Initial value | Update (p.54) |
| :---: | :---: | :---: | :---: | :---: |
| Minimum ON time for MOVE output | Sets the minimum time during which the MOVE output remains ON. | 0 to 255 ms | 0 | A |
| MSO operation No. selection | Sets the operation data No. corresponding to MS0 input. | 0 to 63 | 0 | B |
| MS1 operation No. selection | Sets the operation data No. corresponding to MS1 input. |  | 1 |  |
| MS2 operation No. selection | Sets the operation data No. corresponding to MS2 input. |  | 2 |  |
| MS3 operation No. selection | Sets the operation data No. corresponding to MS3 input. |  | 3 |  |
| MS4 operation No. selection | Sets the operation data No. corresponding to MS4 input. |  | 4 |  |
| MS5 operation No. selection | Sets the operation data No. corresponding to MS5 input. |  | 5 |  |
| HOME-P function selection | Sets the timing to output the HOME-P output. | 0 : Home output <br> 1: Return-to-home complete output | 0 | A |

## ■ Motor parameter

| Name | Description | Setting range | Initial value | Update <br> (p.54) |
| :--- | :--- | :--- | :---: | :---: |
| RUN current | Sets the motor operating current based on the <br> rated current being $100 \%$. | 0 to $1,000(1=0.1 \%)$ | 1,000 |  |
| STOP current | Sets the motor standstill current as a <br> percentage of the rated current, based on the <br> rated current being $100 \%$. | 0 to $500(1=0.1 \%)$ | 500 | A |
| Speed filter | Adjusts the motor response. | 0 to 200 ms | 1 | B |
| Moving average time | Sets the time constant for the moving average <br> filter. | 0 to 200 ms | 1 |  |
| Filter selection | Set either speed filter or moving average filter. | $0:$ Speed filter <br> $1:$ Moving average filter | 0 | C |

Note The maximum driver operating current can be changed using the "RUN current" parameter. If the load is small and there is extra torque, setting the operating current lower may suppress the increases in motor temperature. Excessively low operating current may cause a problem in starting the motor or holding the load in position. Do not reduce the current any more than is necessary.

## - Speed filter

When setting the "filter selection" parameter to " 0 : Speed filter," the speed filter will be effective.
The motor response can be adjusted.
When setting a higher value for the speed filter, you can achieve lower vibration at low speed operation or smoother operation when starting/stopping of the motor. However, if this setting is too high, synchronization performance is decreased. When setting the value of the "speed filter" parameter to " 0 ," this function will be invalid.
Set a suitable value based on the load or application.

When the "speed filter" parameter
is set to 0 ms .


Setting speed

Motor speed
MOVE output

When the "speed filter" parameter


## - Moving average filter

When setting the "filter selection" parameter to "1: Moving average filter," the moving average filter will be effective. The motor response can be adjusted.
The positioning time can be shortened by suppressing the residual vibration for the positioning operation.
Optimum value for the "moving average time" parameter varies depending on the load or operation condition. When setting the value of the "moving average time" parameter to " 0 ," this function will be invalid.
Set a suitable value based on the load or application.


Operation parameter

| Name | Description | Setting range | Initial value | Update (p.54) |
| :---: | :---: | :---: | :---: | :---: |
| Common acceleration | Sets the common acceleration rate or common acceleration time in positioning operation and continuous operation. | $\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } \\ & 1=0.001 \mathrm{~s}) * 1 * 2 \end{aligned}$ | 30,000 | B |
| Common deceleration | Sets the common deceleration rate or common deceleration time in positioning operation and continuous operation. |  |  |  |
| Starting speed | Sets the starting speed in positioning operation and continuous operation. The motor will operate at the starting speed if the operating speed is below the starting speed. | 0 to $1,000,000 \mathrm{~Hz}$ | 100 |  |
| JOG operating speed | Sets the operating speed for JOG operation. | 1 to 1,000,000 Hz | 1,000 |  |
| Acceleration/deceleration rate of JOG | Sets the acceleration/deceleration rate or acceleration/deceleration time for JOG operation. | $\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } \\ & 1=0.001 \mathrm{~s}) * 1 * 2 \end{aligned}$ | 30,000 |  |
| JOG starting speed | Sets the starting speed for JOG operation. | 0 to $1,000,000 \mathrm{~Hz}$ | 100 |  |
| Acceleration/deceleration type | Sets whether to use the common acceleration/ deceleration or the acceleration/deceleration specified for the operation data. | 0 : Common 1: Separate | 1 |  |
| Acceleration/deceleration unit | Sets the acceleration/ deceleration unit. | $\begin{array}{\|l\|} \hline 0: \mathrm{ms} / \mathrm{kHz} \\ 1: \mathrm{s} \end{array}$ | 0 | C |
| JOG travel amount | Sets the travel amount for JOG operation. | 1 to 8,388,607 step | 1 | B |

[^3]
## - Acceleration/deceleration rate and acceleration/deceleration time

## Acceleration/deceleration unit

Set the acceleration/deceleration unit using the "acceleration/deceleration unit" parameter.
Acceleration/deceleration rate ( $\mathrm{ms} / \mathrm{kHz}$ ) or acceleration/deceleration time (s) can be set.

- Acceleration/deceleration unit: ms/kHz
- Acceleration/deceleration unit: s

Speed [Hz]


## Common setting and separate setting of the acceleration/deceleration

The acceleration/deceleration for positioning operation or continuous operation can be set as follows using the "acceleration/deceleration type" parameter:
Separate: The acceleration/deceleration set under the applicable operation data No. will be followed.
Common: The setting of the "common acceleration" and "common deceleration" parameter will be followed.
Note - When performing linked operation, the acceleration/deceleration for the starting linked operation data No. is applied even when the "acceleration/deceleration type" parameter is set to "separate".

- See p. 40 for the acceleration/deceleration when performing variable speed operation.


## Return-to-home parameter

| Name | Description | Setting range | Initial value |
| :--- | :--- | :--- | :--- |
| Update <br> $(p .54)$ |  |  |  |
| Home-seeking mode | Sets the mode for return-to-home <br> operation. | $0: 2$-sensor mode <br> $1: 3$-sensor mode | 1 |
| Operating speed of home- <br> seeking | Sets the operating speed for return-to- <br> home operation. | 1 to 1,000,000 Hz | 1,000 |
| Acceleration/deceleration <br> of home-seeking | Sets the acceleration/ deceleration rate or <br> acceleration/deceleration time for return- <br> to-home operation. | 1 to $1,000,000$ <br> $(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or <br> $1=0.001 \mathrm{~s}) *$ | 30,000 |
| Starting speed of home- <br> seeking | Sets the starting speed for return-to-home <br> operation. | 1 to $1,000,000 \mathrm{~Hz}$ | 100 |
| Position offset of home- <br> seeking | Sets the amount of offset from mechanical <br> home. | $-8,388,608$ to <br> $8,388,607$ step | 0 |
| Starting direction of home- <br> seeking | Sets the starting direction for home <br> detection. | $0:$ Negative direction <br> $1:$ Positive direction | 1 |
| SLIT detection with home- <br> seeking | Sets whether or not to concurrently use the <br> SLIT input for return-to-home operation. | $0:$ Disable <br> $1:$ Enable | B |
| TIM signal detection with <br> home-seeking | Sets whether or not to concurrently use the <br> TIM signal for return-to-home operation. | $0:$ Disable <br> $1:$ Enable | 0 |
| Backward steps in 2sensor <br> mode home-seeking | Sets the travel amount after pulling out of <br> the limit sensor in 2-sensor mode return- <br> to-home operation. | 1 to 32,767 step | 200 |

* Acceleration/deceleration rate ( $\mathrm{ms} / \mathrm{kHz}$ ) or acceleration/deceleration time (s) can be selected using "acceleration/deceleration unit" parameter. (initial value: acceleration/deceleration rate).

Alarm/warning parameter

| Name | Description | Setting range | Initial value | Update <br> $(p .54)$ |
| :--- | :--- | :--- | :---: | :---: |
| Return-to-home incomplete <br> alarm | Sets enable/disable for the return-to-home <br> incomplete alarm. | $0:$ Disable <br> $1:$ Enable | 0 | C |
| Overheat warning | Sets the temperature at which a main circuit <br> overheat warning generates. | 40 to $80^{\circ} \mathrm{C}$ <br> $\left(104\right.$ to $\left.176^{\circ} \mathrm{F}\right)$ | 80 |  |
| Overvoltage warning | Sets the voltage at which an overvoltage warning <br> generates. | 150 to 420 <br> $(1=0.1 \mathrm{~V})$ | 420 |  |
| Undervoltage warning | Sets the voltage at which an undervoltage warning <br> generates. | 150 to 420 <br> $(1=0.1 \mathrm{~V})$ | 180 |  |

## - Coordination parameter

| Name | Description | Setting range | Initial valueUpdate <br> (p.54) |  |
| :--- | :--- | :--- | :---: | :---: |
| Electronic gear A | Sets the denominator of electric gear. | 1 to 65,535 | 1 |  |
| Electronic gear B | Sets the numerator of electric gear. | 1 to 65,535 | 1 |  |
| Motor rotation direction | Sets the rotation direction of motor output <br> shaft. | $0:$ Positive direction=CCW <br> $1:$ Positive direction=CW | 1 |  |
| Software overtravel | Sets whether to enable or disable software <br> overtravel detection using soft limits. | $0:$ Disable <br> $1:$ Enable |  |  |
| Positive software limit | Sets the value of soft limit in positive <br> direction. | $-8,388,608$ to <br> $8,388,607$ step | 1 |  |
| Negative software limit | Sets the value of soft limit in negative <br> direction. | $-8,388,608$ to <br> $8,388,607$ step | $8,388,607$ |  |
| Preset position | Sets the preset position. | $-8,388,608$ to <br> $8,388,607$ step | $-8,388,608$ |  |
| Wrap setting | Sets enable/disable for the wrap function. | $0:$ Disable <br> $1:$ Enable | 0 | 0 |
| Wrap setting range | Sets the wrap setting range. | 1 to 8,388,607 step | 5 | C |

## - Resolution

When the "electronic gear A" and "electronic gear B" parameters are set, the resolution per one rotation of the motor output shaft can be set. Note that the calculated value must fall within the setting range specified below:

## Resolution setting range: 500 to 125,000 P/R

Resolution $=500 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}$

Note - If the value outside of the setting range is set, the "electronic gear setting error warning" will generate. If the power is cycled or the configuration is executed while the "electronic gear setting error warning" is present, an "electronic gear setting error alarm" will generate.

- When the TIM output is used, set the resolution to be an integral multiple of 50 .


## Calculation of electronic gear $A$ and $B$

Calculation of electronic gear $A$ and $B$ is explained with examples of a ball screw and rotary table.

- Example: Ball screw

Ball screw lead $\quad: 10 \mathrm{~mm}$ (0.394 in.)
Minimum travel amount : 0.01 mm ( 0.000394 in .)
Gear ratio : 1 (No speed reduction mechanism between the motor and ball screw)
Resolution $=500 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{\text { Ball screw lead }}{\text { Minimum travel amount }} \times$ Gear ratio
In this example: Resolution $=500 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{10 \mathrm{~mm}}{0.01 \mathrm{~mm}} \times 1$
Result: $\frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{10}{5}$
Therefore, the electronic gear $A$ and $B$ are 5 and 10 respectively, and the resolution will be $1,000 \mathrm{P} / \mathrm{R}$.

- Example: Rotary table

Step angle per one rotation : $360^{\circ}$
Minimum step angle $\quad: 0.01^{\circ}$
Gear ratio :7.2 [Using the geared motor (gear ratio 7.2:1)]
Resolution $=500 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{\text { Step angle per one rotation }}{\text { Minimum travel amount }} \times$ Gear ratio
In this example: Resolution $=500 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{360^{\circ}}{0.01^{\circ}} \times \frac{1}{7.2}$
Result: $\frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{360}{36}$

Therefore, the electronic gear $A$ and $B$ are 36 and 360 respectively, and the resolution will be 5,000 P/R.

## Common parameter

| Name | Description | Setting range | Initial value | Update <br> (p.54) |
| :--- | :--- | :--- | :---: | :---: |
| Data setter speed display | Sets the display method of the speed monitor <br> for the OPX-2A. | $0:$ Signed <br> $1:$ Absolute value | 0 |  |
| Data setter edit | Sets whether it is possible to edit using the <br> OPX-2A. | 0: Disable <br> $1:$ Enable | 1 | A |

## ■ I/O function parameter

| Name | Description | Setting range | Initial value | Update <br> (p.54) |
| :---: | :---: | :---: | :---: | :---: |
| IN0 input function selection | Sets the function of input terminals INO to IN3. | See table next. | 60: +LS | C |
| IN1 input function selection |  |  | 61:-LS |  |
| IN2 input function selection |  |  | 62: HOMES |  |
| IN3 input function selection |  |  | 18: STOP |  |
| INO input logic level setting | Sets the INO to IN3 input logic. | 0 : Normally open <br> 1: Normally closed | 0 |  |
| IN1 input logic level setting |  |  |  |  |
| IN2 input logic level setting |  |  |  |  |
| IN3 input logic level setting |  |  |  |  |
| OUTO output function selection | Sets the function of output terminals OUTO and OUT1. | See table next. | 65: ALM |  |
| OUT1 output function selection |  |  | 67: READY |  |

- Setting range for IN input function selection

| 0: Not used | 8: MS0 | 18: STOP | 36: R4 | 44: R12 | 52: M4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1: FWD | 9: MS1 | 24: ALM-RST | 37: R5 | 45: R13 | 53: M5 |
| 2: RVS | 10: MS2 | 25: P-PRESET | 38: R6 | 46: R14 | 60: +LS |
| 3: HOME | 11: MS3 | 27: HMI | 39: R7 | 47: R15 | 61: -LS |
| 4: START | 12: MS4 | 32: R0 | 40: R8 | 48: M0 | 62: HOMES |
| 5: SSTART | 13: MS5 | 33: R1 | $41:$ R9 | 49: M1 | 63: SLIT |
| 6: +JOG | 16: FREE * | 34: R2 | 42: R10 | 50: M2 |  |
| 7: -JOG | 17: AWO | 35: R3 | 43: R11 | 51: M3 |  |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.
- Setting range for OUT output function selection

| 0: Not used | 8: MSO_R | 32: R0 | 41: R9 | 50: M2_R | 66: WNG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1:FWD_R | 9: MS1_R | 33: R1 | 42: R10 | 51: M3_R | 67: READY |
| 2: RVS_R | 10: MS2_R | 34: R2 | 43: R11 | 52: M4_R | 68: MOVE |
| 3: HOME_R | 11:MS3_R | 35: R3 | 44: R12 | 53: M5_R | 70: HOME-P |
| 4: START_R | 12: MS4_R | 36: R4 | 45: R13 | 60: +LS_R | 72: TIM |
| 5: SSTART_R | 13: MS5_R | 37: R5 | 46: R14 | 61: -LS_R | 73: AREA1 |
| 6: +JOG_R | 16: FREE_R * | 38: R6 | 47: R15 | 62: HOMES_R | 74: AREA2 |
| 7: -JOG_R | 17: AWO_R | 39: R7 | 48: MO_R | 63: SLIT_R | 75: AREA3 |
|  | 18: STOP_R | 40: R8 | 49: M1_R | 65: ALM | 80: S-BSY |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.


## ■ I/O function parameter [RS-485]

| Name | Description | Setting range | Initial value |
| :--- | :--- | :--- | :--- | :--- | Update | (p.54) |
| :--- |


| Name | Description | Setting range | Initial value | Update (p.54) |
| :---: | :---: | :---: | :---: | :---: |
| NET-OUT8 output function selection | Sets the function of NET-OUT8 and NET-OUT15. | See table next. | 80: S-BSY | C |
| NET-OUT9 output function selection |  |  | 73: AREA1 |  |
| NET-OUT10 output function selection |  |  | 74: AREA2 |  |
| NET-OUT11 output function selection |  |  | 75: AREA3 |  |
| NET-OUT12 output function selection |  |  | 72: TIM |  |
| NET-OUT13 output function selection |  |  | 68: MOVE |  |
| NET-OUT14 output function selection |  |  | 0: Not used |  |
| NET-OUT15 output function selection |  |  | 0: Not used |  |

- Setting range for NET-IN input function selection

| 0: Not used | 7: -JOG | 16: FREE * | 33: R1 | 40: R8 | 47: R15 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1: FWD | 8: MS0 | 17: AWO | $34:$ R2 | 41: R9 | 48: M0 |
| 2: RVS | 9: MS1 | 18: STOP | $35:$ R3 | 42: R10 | 49: M1 |
| 3: HOME | 10: MS2 | 24: ALM-RST | $36:$ R4 | 43: R11 | 50: M2 |
| 4: START | 11: MS3 | 25: P-PRESET | $37:$ R5 | 44: R12 | 51: M3 |
| 5: SSTART | 12: MS4 | 27: HMI | $38:$ R6 | 45: R13 | 52: M4 |
| 6: +JOG | 13: MS5 | 32: R0 | 39: R7 | 46: R14 | 53: M5 |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.
- Setting range for NET-OUT output function selection

| 0: Not used | 8: MSO_R | 32: R0 | 41: R9 | 50: M2_R | 66: WNG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1:FWD_R | 9: MS1_R | 33: R1 | 42: R10 | 51: M3_R | 67: READY |
| 2: RVS_R | 10: MS2_R | 34: R2 | 43: R11 | 52: M4_R | 68: MOVE |
| 3: HOME_R | 11:MS3_R | 35: R3 | 44: R12 | 53: M5_R | 70: HOME-P |
| 4: START_R | 12: MS4_R | 36: R4 | 45: R13 | 60: +LS_R | 72: TIM |
| 5: SSTART_R | 13: MS5_R | 37: R5 | 46: R14 | 61:-LS_R | 73: AREA1 |
| 6: +JOG_R | 16: FREE_R * | 38: R6 | 47: R15 | 62: HOMES_R | 74: AREA2 |
| 7: -JOG_R | 17: AWO_R | 39: R7 | 48: MO_R | 63: SLIT_R | 75: AREA3 |
|  | 18: STOP_R | 40: R8 | 49: M1_R | 65: ALM | 80: S-BSY |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.


## Communication parameter

| Name | Description | Setting range | Initial value | Update <br> $(p .54)$ |
| :--- | :--- | :--- | :---: | :---: |
| Communication timeout | Sets the condition in which a <br> communication timeout occurs in RS-485 <br> communication. | $0:$ Not monitored <br> 1 to 10,000 ms | 0 | A |

## 11 Method of control via I/O

The following explains how to set operation data and parameters using the MEXE02 or OPX-2A or via RS-485 communication, and also explains how to control the operation with I/O.
See each operating manual for the detailed setting method of the MEXEO2 or OPX-2A.

## 11-1 Guidance

If you are new to the PKA Series, read this section to understand the operating methods along with the operation flow.

Note Before operating the motor, check the condition of the surrounding area to ensure safety.

STEP 1 Check the installation and connection


STEP 2 Turn on the power and set operation data and parameters.


## STEP 3 Cycle the power

The "IN3 input function selection" parameter will be enabled after the power is cycled.

## STEP 4 Operate the motor



## STEP 5 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is the STOP input OFF?
- Is any alarm present?
- Are the power supply connected securely?

For details on I/O signals, refer to p.18.

## 12 Method of control via Modbus protocol

The following explains how to implement control from a programmable controller via RS-485 communication.
The protocol for the RS-485 communication is the Modbus protocol.
The Modbus protocol is simple and its specification is open to the public, so this protocol is used widely in industrial applications. Modbus communication is based on the single-master/multiple-slave method. Only the master can issue a query (command). Each slave executes the requested process and returns a response message.

## 12-1 Guidance

If you are new to the PKA Series, read this section to understand the operating methods along with the operation flow.

Note
Before operating the motor, check the condition of the surrounding area to ensure safety.

## STEP 1 Check the installation and connection



RS-485 communication
cable connection

## STEP 2 Set the switches



## STEP 3 Turn on the power and set the parameters



## STEP 4 Cycle the power

Communication parameters will be enabled after the power is cycled. If you have changed any of the communication parameters, be sure to cycle the power.

## STEP 5 Operate the motor



Master device

## STEP 6 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present?
- Are the power supply and RS-485 communication cable connected securely?
- Are the slave address, transmission rate and termination resistor set correctly?
- Is the master device setting same as parameters of "communication parity", "communication stop bit" and "transmission waiting time"?
- Is the C-ERR LED lit?
- Is the C-DAT LED lit?

For more detailed settings and functions, refer to the following pages.

## 12-2 Communication specifications

| Electrical <br> characteristics | In conformance with EIA-485 <br> Use a twisted pair cable (TIA/EIA-568B CAT5e or higher is recommended) and keep the <br> total wiring distance including extension to 50 m (164 ft.) or less. |
| :--- | :--- |
| Transmission mode | Half duplex |
| Transmission rate | Selectable from 9,600 bps, $19,200 \mathrm{bps}, 38,400 \mathrm{bps}, 57,600$ bps and 115,200 bps. |
| Physical layer | Asynchronous mode (data: 8 bits, stop bit: $1 \mathrm{bit} / 2$ bits, parity: none/even number/odd <br> number) |
| Protocol | Modbus RTU mode |
| Connection pattern | Up to 31 drivers can be connected to one programmable controller (master device). |

## Connection example



Internal input circuit


## 12-3 Setting the switches



Note
Be sure to turn off the motor power before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the motor power is cycled.

## Setting the connection device

Set the connection device of RS-485 communication using the function setting switch SW1-No.4. Set to ON when controlling via Modbus protocol.

## Factory setting OFF (Network converter)

| SW1-No.4 | Connection device |
| :---: | :--- |
| ON | General purpose master device <br> (Modbus protocol) |
| OFF | Network converter |

## Address number (slave address)

Set the address number (slave address) using the address number setting switch (SW2) and SW1-No. 3 of the function setting switch. Make sure each address number (slave address) you set for each driver is unique.
Address number (slave address) 0 is reserved for broadcasting, so do not use this address.
Factory setting SW1-No.3: OFF, SW2: 0 (Address number 0)

| SW1-No.3 | SW2 | Address number <br> (slave address) |
| :---: | :---: | :---: |
|  | 0 | Not used |
|  | 1 | 1 |
|  | 2 | 2 |
|  | 3 | 3 |
|  | 4 | 4 |
|  | 5 | 5 |
|  | 6 | 6 |
|  | 7 | 7 |
|  | 9 | 8 |
|  | A | 9 |
|  | B | 10 |
|  | C | 11 |
|  | D | 12 |
|  | E | 13 |
|  | F | 14 |


| SW1-No. 3 | SW2 | Address number (slave address) |
| :---: | :---: | :---: |
| ON | 0 | 16 |
|  | 1 | 17 |
|  | 2 | 18 |
|  | 3 | 19 |
|  | 4 | 20 |
|  | 5 | 21 |
|  | 6 | 22 |
|  | 7 | 23 |
|  | 8 | 24 |
|  | 9 | 25 |
|  | A | 26 |
|  | B | 27 |
|  | C | 28 |
|  | D | 29 |
|  | E | 30 |
|  | F | 31 |

## Transmission rate

Set the transmission rate using transmission rate setting switch (SW3).
The transmission rate to be set should be the same as the transmission rate of the master device.

Factory setting 7 (625,000 bps)

| SW3 | Transmission rate |
| :---: | :---: |
| 0 | $9,600 \mathrm{bps}$ |
| 1 | $19,200 \mathrm{bps}$ |
| 2 | $38,400 \mathrm{bps}$ |


| SW3 | Transmission rate |
| :---: | :---: |
| 3 | $57,600 \mathrm{bps}$ |
| 4 | $115,200 \mathrm{bps}$ |
| 5 to F | Not used |

Note Do not set SW3 to positions 5 to F. The factory setting " 7 " is the transmission rate for when connecting to the network converter.

## Termination resistor

Use a termination resistor for the motor located farthest away (positioned at the end) from the programmable controller (master device).
Turn SW1-No. 1 and No. 2 of the function setting switch ON to set the termination resistor for RS-485 communication (120 $\Omega$ ).

## Factory setting No. 1 and No.2: Both OFF

 (termination resistor disabled)
## 12-4 Communication mode

Modbus protocol communication is based on the single-master/multiple-slave method. Under this protocol, messages are sent in one of two methods.

## Unicast mode

The master sends a command to only one slave.
The slave executes the process and returns a response.


## Broadcast mode

If slave address 0 is specified on the master, the master can send a command to all slaves. Each slave executes the process, but does not return a response.


## 12-5 Communication timing



| Character | Name | Description |
| :---: | :--- | :--- |
| Tb1 | Communication timeout | Intervals between received messages are monitored. If no message <br> could be received after the time set in the "communication timeout" <br> parameter, a communication timeout alarm generates. |
| Tb2 | Transmission waiting time | The time after the slave switches its communication line to the <br> transmission mode upon receiving a query from the master, until it <br> starts sending a response. Sets using the "transmission waiting time" <br> parameter. The actual transmission waiting time corresponds to the <br> silent interval (C3.5) + processing time + transmission waiting time <br> (Tb2: 10 ms). |
| Tb3 | Broadcasting interval | The time until the next query is sent in broadcasting. A time <br> equivalent to or longer than the silent interval (C3.5) plus 5 ms is <br> required. |
| C3.5 | Silent interval | Be sure to provide a waiting time of 3.5 characters or more. If this <br> waiting time is less than 3.5 characters long, the driver cannot <br> respond. The silent interval should be 1.75 ms or more when the <br> transmission rate is 19200 bps or more. |

## 12-6 Message

The message format is shown below.

| Master | Query | lave |
| :---: | :---: | :---: |
| Slave address | Response | Slave address |
| Function code |  | Function code |
| Data |  | Data |
| Error check |  | Error check |

- Query

The query message structure is shown below.

| Slave address | Function code | Data | Error check |
| :---: | :---: | :---: | :---: |
| 8 bits | 8 bits | $\mathrm{N} \times 8$ bits | 16 bits |

- Slave address

Specify the slave address (unicast mode).
If the slave address is set to 0 , the master can send a query to all slaves (broadcast mode).

- Function code

The function codes and message lengths supported by the PKA Series are as follows.

| Function code | Description | Broadcast |
| :---: | :--- | :---: |
| 03 h | Read from a holding register(s). | Impossible |
| 06 h | Write to a holding register. | Possible |
| 08 h | Perform diagnosis. | Impossible |
| 10 h | Write to multiple holding registers. | Possible |

- Data

Set data associated with the selected function code. The specific data length varies depending on the function code.

## - Error check

In the Modbus RTU mode, error checks are based on the CRC-16 method. The slave calculates a CRC-16 of each received message and compares the result against the error check value included in the message. If the calculated CRC-16 value matches the error check value, the slave determines that the message is normal.

## CRC-16 calculation method

1. Calculate an exclusive-OR (XOR) value of the default value of FFFFh and slave address ( 8 bits).
2. Shift the result of step 1 to the right by 1 bit. Repeat this shift until the overflow bit becomes "1."
3. Upon obtaining " 1 " as the overflow bit, calculate an XOR of the result of step 2 and A001h.
4. Repeat steps 2 and 3 until a shift is performed eight times.
5. Calculate an XOR of the result of step 4 and function code (8 bits).
6. Repeat steps 2 to 4 for all bytes.

The final result gives the result of CRC-16 calculation.

## - Response

Slave-returned responses are classified into three types: normal response, no response, and exception response. The response message structure is the same as the command message structure.

| Slave address | Function code | Data | Error check |
| :---: | :---: | :---: | :---: |
| 8 bits | 8 bits | $\mathrm{N} \times 8$ bits | 16 bits |

## - Normal response

Upon receiving a query from the master, the slave executes the requested process and returns a response.

- No response

The slave may not return a response to a query sent by the master. This condition is referred to as "No response." The causes of no response are explained below.

## Transmission error

The slave discards the query and does not return a response if any of the following transmission errors is detected.

| Cause of transmission error | Description |
| :--- | :--- |
| Framing error | Stop bit 0 was detected. |
| Parity error | A mismatch with the specified parity was detected. |
| Mismatched CRC | The calculated value of CRC-16 was found not matching the error check value. |
| Invalid message length | The message length exceeded 256 bytes. |

Other than transmission error
A response may not be returned without any transmission error being detected.

| Cause | Description |
| :--- | :--- |
| Broadcast | If the query was broadcast, the slave executes the requested process but does <br> not return a response. |
| Mismatched slave address | The slave address in the query was found not matching the slave address of the <br> motor. |

## - Exception response

An exception response is returned if the slave cannot execute the process requested by the query. Appended to this response is an exception code indicating why the process cannot be executed. The message structure of exception response is as follows.

| Slave address | Function code | Exception code | Error check |
| :---: | :---: | :---: | :---: |
| 8 bits | 8 bits | 8 bits | 16 bits |

## Function code

The function code in the exception response is a sum of the function code in the query and 80 h .
Example) query: $03 \mathrm{~h} \rightarrow$ Exception response: 83 h

## Example of exception response

| Master |  |  |  | Slave |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slave address |  | 01h |  | Slave address |  | 01h |
| Function code |  | 06h |  | Function code |  | 86h |
| Data | Register address (upper) | 02h |  | Data | Exception code | 04h |
|  | Register address (lower) | 1Eh |  | Error | heck (lower) | 02h |
|  | Value written (upper) | FFh |  | Error | heck (upper) | 61h |
|  | Value written (lower) | FFh |  |  |  |  |
| Error check (lower) |  | E9h |  |  |  |  |
| Error check (upper) |  | C4h |  |  |  |  |

## Exception code

This code indicates why the process cannot be executed.

| Exception <br> code | Communication <br> error code | Cause | Description |
| :---: | :---: | :--- | :--- |

## 12-7 Function code

## ■ Reading from a holding register(s) (03h)

This function code is used to read a register (16 bits). Up to 16 successive registers ( $16 \times 16$ bits) can be read. Read the upper and lower data at the same time. If they are not read at the same time, the value may be invalid. If multiple holding registers are read, they are read in order of register addresses.

- Example of read

Read operation data for positions Nos. 1 and 2 of slave address 1.

| Description | Register address | Value read | Corresponding decimal |
| :--- | :---: | :---: | :---: |
| Operation data position No. 1 (upper) | 0402 h | 0000 h | 10,000 |
| Operation data position No. 1 (lower) | 0403 h | 2710 h |  |
| Operation data position No.2 (upper) | 0404 h | FFFFh | $-10,000$ |
| Operation data position No.2 (lower) | 0405 h | D8F0h |  |

- Query

| Field name |  | Data | Description |
| :---: | :---: | :---: | :---: |
| Slave address |  | 01h | Slave address 1 |
| Function code |  | 03h | Reading from a holding register(s) |
| Data | Register address (upper) | 04h | Register address to start reading from |
|  | Register address (lower) | 02h |  |
|  | Number of registers (upper) | 00h | Number of registers to be read from the starting register address (four registers=0004h) |
|  | Number of registers (lower) | 04h |  |
| Error check (lower) |  | E4h | Calculation result of CRC-16 |
| Error check (upper) |  | F9h |  |

- Response

| Field name |  | Data | Description |
| :---: | :---: | :---: | :---: |
| Slave address |  | 01h | Same as query |
| Function code |  | 03h | Same as query |
| Data | Number of data bytes | 08h | Twice the number of registers in the query |
|  | Value read from register address (upper) | 00h | Value read from register address 0402h |
|  | Value read from register address (lower) | 00h |  |
|  | Value read from register address+1 (upper) | 27h | Value read from register address 0403h |
|  | Value read from register address+1 (lower) | 10h |  |
|  | Value read from register address+2 (upper) | FFh | Value read from register address 0404h |
|  | Value read from register address+2 (lower) | FFh |  |
|  | Value read from register address+3 (upper) | D8h | Value read from register address 0405h |
|  | Value read from register address+3 (lower) | FOh |  |
| Error check (lower) |  | 08h | Calculation result of CRC-16 |
| Error check (upper) |  | A3h |  |

## - Writing to a holding register (06h)

This function code is used to write data to a specified register address.
However, since the result combining the upper and lower may be outside the data range, write the upper and lower at the same time using the "multiple holding registers (10h)."

## Example of write

Write 80 (50h) as speed filter to slave address 2.

| Description | Register address | Value write | Corresponding decimal |
| :---: | :---: | :---: | :---: |
| Speed filter | 024Bh | 50 h | 80 |

- Query

| Field name |  | Data | Description |
| :---: | :---: | :---: | :---: |
| Slave address |  | 02h | Slave address 2 |
| Function code |  | 06h | Writing to a holding register |
| Data | Register address (upper) | 02h | Register address to be written |
|  | Register address (lower) | 4Bh |  |
|  | Value write (upper) | 00h | Value written to the register address |
|  | Value write (lower) | 50h |  |
| Error check (lower) |  | F8h | Calculation result of CRC-16 |
| Error check (upper) |  | 6Bh |  |

- Response

| Field name |  | Data | Description |
| :---: | :---: | :---: | :---: |
| Slave address |  | 02h | Same as query |
| Function code |  | 06h | Same as query |
| Data | Register address (upper) | 02h | Same as query |
|  | Register address (lower) | 4Bh |  |
|  | Value write (upper) | 00h | Same as query |
|  | Value write (lower) | 50h |  |
| Error check (lower) |  | F8h | Calculation result of CRC-16 |
| Error check (upper) |  | 6Bh |  |

## - Diagnosis (08h)

This function code is used to diagnose the communication between the master and slave. Arbitrary data is sent and the returned data is used to determine whether the communication is normal. 00h (reply to query) is the only subfunction supported by this function code.

- Example of diagnosis

Send arbitrary data (1234h) to the slave 3.

- Query

| Field name |  | Data | Description |
| :---: | :---: | :---: | :---: |
| Slave address |  | 03h | Slave address 3 |
| Function code |  | 08h | Diagnosis |
| Data | Sub-function code (upper) | 00h | Return the query data |
|  | Sub-function code (lower) | 00h |  |
|  | Data value (upper) | 12h | Arbitrary data (1234h) |
|  | Data value (lower) | 34h |  |
| Error check (lower) |  | ECh | Calculation result of CRC-16 |
| Error check (upper) |  | 9Eh |  |

- Response

| Field name |  | Data | Description |
| :---: | :---: | :---: | :---: |
| Slave address |  | 03h | Same as query |
| Function code |  | 08h | Same as query |
| Data | Sub-function code (upper) | 00h | Same as query |
|  | Sub-function code (lower) | 00h |  |
|  | Data value (upper) | 12h | Same as query |
|  | Data value (lower) | 34h |  |
| Error check (lower) |  | ECh | Calculation result of CRC-16 |
| Error check (upper) |  | 9Eh |  |

## ■ Writing to multiple holding registers (10h)

This function code is used to write data to multiple successive registers. Up to 16 registers can be written. Write the data to the upper and lower at the same time. If not, an invalid value may be written.
Registers are written in order of register addresses. Note that even when an exception response is returned because some data is invalid as being outside the specified range, etc., other data may have been written properly.

## - Example of write

Set the following data as acceleration Nos. 2 to 4 as part of operation data at slave address 4 .

| Description | Register address | Value written | Corresponding decimal |
| :---: | :---: | :---: | :---: |
| Operation data acceleration No. 2 (upper) | 0604h | 0000h | 10,000 |
| Operation data acceleration No. 2 (lower) | 0605h | 2710h |  |
| Operation data acceleration No. 3 (upper) | 0606h | 0000h | 20,000 |
| Operation data acceleration No. 3 (lower) | 0607h | 4E20h |  |
| Operation data acceleration No. 4 (upper) | 0608h | 0007h | 500,000 |
| Operation data acceleration No. 4 (lower) | 0609h | A120h |  |

- Query

| Field name |  | Data | Description |
| :---: | :---: | :---: | :---: |
| Slave address |  | 04h | Slave address 4 |
| Function code |  | 10h | Writing to multiple holding registers |
| Data | Register address (upper) | 06h | Register address to start writing from |
|  | Register address (lower) | 04h |  |
|  | Number of registers (upper) | 00h | Number of registers to be written from the starting register address (six registers=0006h) |
|  | Number of registers (lower) | 06h |  |
|  | Number of data bytes | 0Ch | Twice the number of registers in the command |
|  | Value written to register address (upper) | 00h | Value written to register address 0604h |
|  | Value written to register address (lower) | 00h |  |
|  | Value written to register address+1 (upper) | 27h | Value written to register address 0605h |
|  | Value written to register address+1 (lower) | 10h |  |
|  | Value written to register address+2 (upper) | 00h | Value written to register address 0606h |
|  | Value written to register address+2 (lower) | 00h |  |
|  | Value written to register address+3 (upper) | 4Eh | Value written to register address 0607h |
|  | Value written to register address+3 (lower) | 20h |  |
|  | Value written to register address+4 (upper) | 00h | Value written to register address 0608h |
|  | Value written to register address+4 (lower) | 07h |  |
|  | Value written to register address+5 (upper) | A1h | Value written to register address 0609h |
|  | Value written to register address+5 (lower) | 20h |  |
| Error check (lower) |  | 1Dh | Calculation result of CRC-16 |
| Error check (upper) |  | A9h |  |

- Response

| Field name |  | Data | Description |
| :--- | :--- | :---: | :--- |
| Slave address |  | 04 h | Same as query |
| Function code | 10 h | Same as query |  |
|  | Register address (upper) | 06 h | Same as query |
|  | Register address (lower) | 04 h |  |
|  | Number of registers (upper) | 00 h | Same as query |
|  | Number of registers (lower) | 06 h |  |
| Error check (lower) |  | 01 h | Calculation result of CRC-16 |
| Error check (upper) |  |  |  |

## 12-8 Setting of RS-485 communication

Set parameters required RS-485 communication first.

## Parameters set with the MEXEO2 or OPX-2A

Set the following parameters using the MEXEO2 or OPX-2A since they cannot be set via RS-485 communication.

| Parameter name | Setting range | Initial value | Description |
| :---: | :--- | :---: | :--- |
| Communication parity | 0: None <br> 1: Even number <br> 2: Odd number | 1 | Sets the parity for RS-485 communication. |
| Communication stop bit | $0: 1$ bit <br> $1: 2$ bits | 0 | Sets the stop bit for RS-485 <br> communication. |
| Transmission waiting time | 0 to $10,000(\times 0.1 \mathrm{~ms})$ | 100 | Sets the transmission waiting time for <br> RS-485 communication. |

## Parameters set with the MEXE02, OPX-2A or via RS-485 communication

Set the following parameters using the MEXE02, OPX-2A or via RS-485 communication.

| Parameter name | Setting range | Initial value | Description |
| :--- | :---: | :---: | :---: |
| Communication <br> timeout | $0:$ Not monitored <br> 0 to $10,000 \mathrm{~ms}$ | 0 | Sets the condition in which a communication timeout <br> occurs in RS-485 communication. |
| Communication <br> error alarm | 1 to 10 times | 3 | Sets the condition in which a RS-485 communication <br> error alarm generates. A communication error alarm <br> generates after a RS-485 communication error has <br> occurred by the number of times set here. |

## 12-9 Register address list

All data used by the motor is 32-bit wide. Since the register for the Modbus protocol is 16 -bit wide, one data is described by two registers. Since the address assignment is big endian, the even number addresses become the upper and the odd number addresses become the lower.

■ Operation command
Commands related to motor operation. Operation commands are not saved in the non-volatile memory.

| Register address |  | WRITE/ READ | Name | Description |
| :---: | :---: | :---: | :---: | :---: |
| Dec | Hex |  |  |  |
| 48 | 0030h | R/W | Group (upper) | Sets the address number for the group send. |
| 49 | 0031h |  | Group (lower) |  |
| 124 | 007Ch | R/W | Driver input command (upper) | Sets the input command to the driver. |
| 125 | 007Dh |  | Driver input command (lower) |  |
| 126 | 007Eh | R | Driver output command (upper) | Sets the output status of the driver. |
| 127 | 007Fh |  | Driver output command (lower) |  |

- Group (0030h, 0031h)

Multiple slaves are made into a group and a query is sent to all slaves in the group at once.
When setting a group, write to the upper and lower at the same time using "writing to multiple holding registers (10h)." See p. 93 for group details.

- Driver input command (007Ch, 007Dh)

These are the motor input signals that can be accessed via RS-485 communication. See p. 26 for each input signal.
(): Initial value

| Address (Hex) |  | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $007 C h$ | Upper | - | - | - | - | - | - | - | - |
|  | Lower | - | - | - | - | - | - | - | - |
| 007 Dh | Upper | NET-IN15 <br> (RVS) | NET-IN14 <br> (FWD) | NET-IN13 <br> $(-J O G)$ | NET-IN12 <br> (+JOG) | NET-IN11 <br> (SSTART) | NET-IN10 <br> (MS2) | NET-IN9 <br> (MS1) | NET-IN8 <br> (MSO) |
|  | Lower | NET-IN7 <br> (AWO) | NET-IN6 <br> (Not used) | NET-IN5 <br> (STOP) | NET-IN4 <br> (HOME) | NET-IN3 <br> (START) | NET-IN2 <br> (M2) | NET-IN1 <br> (M1) | NET-IN0 <br> (M0) |

- Driver output command (007Eh, 007Fh)

These are the motor output signals that can be received via RS-485 communication. See p. 30 for each output signal.
(): Initial value

| Address (Hex) |  | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 007Eh | Upper | - | - | - | - | - | - | - | - |
|  | Lower | - | - | - | - | - | - | - | - |
| 007Fh | Upper | NET-OUT15 <br> (Not used) | NET-OUT14 <br> (Not used) | NET-OUT13 (MOVE) | NET-OUT12 <br> (TIM) | NET-OUT11 <br> (AREA3) | NET-OUT10 <br> (AREA2) | NET-OUT9 (AREA1) | NET-OUT8 (S-BSY1) |
|  | Lower | NET-OUT7 <br> (ALM) | NET-OUT6 (WNG) | NET-OUT5 (READY) | NET-OUT4 <br> (HOME-P) | NET-OUT3 <br> (START_R) | NET-OUT2 <br> (M2_R) | NET-OUT1 <br> (M1_R) | NET-OUTO <br> (MO_R) |

## - Maintenance command

These commands are used to reset alarms and warnings. They are also used to execute the batch processing for the non-volatile memory. All commands can be read and written (READ/WRITE). Executes when writing from 0 to 1 .

| Register address |  | Name | Description | Setting range |
| :---: | :---: | :---: | :---: | :---: |
| Dec | Hex |  |  |  |
| 384 | 0180h | Reset alarm (upper) | Resets the alarms that are present. Some alarms cannot be reset with the "reset alarm." | 0,1 |
| 385 | 0181h | Reset alarm (lower) |  |  |
| 388 | 0184h | Clear alarm records (upper) | Clears alarm records. |  |
| 389 | 0185h | Clear alarm records (lower) |  |  |
| 390 | 0186h | Clear warning records (upper) | Clears warning records. |  |
| 391 | 0187h | Clear warning records (lower) |  |  |
| 392 | 0188h | Clear communication error records (upper) | Clears the communication error records. |  |
| 393 | 0189h | Clear communication error records (lower) |  |  |
| 394 | 018Ah | P-PRESET execute (upper) | Presets the command position. |  |
| 395 | 018Bh | P-PRESET execute (lower) | . |  |
| 396 | 018Ch | Configuration (upper) | Executes the parameter recalculation and the |  |
| 397 | 018Dh | Configuration (lower) | setup. |  |
| 398 | 018Eh | All data initialization (upper) | Resets the parameters saved in the non-volatile |  |
| 399 | 018Fh | All data initialization (lower) | memory to the initial settings. * |  |
| 400 | 0190h | Batch non-volatile memory read (upper) | Reads the parameters saved in the non-volatile memory, to the RAM. All operation data and |  |
| 401 | 0191h | Batch non-volatile memory read (lower) | parameters previously saved in the RAM are overwritten. |  |
| 402 | 0192h | Batch non-volatile memory write (upper) | Writes the parameters saved in the RAM to the non-volatile memory. The non-volatile memory can be rewritten approximately 100,000 times. |  |
| 403 | 0193h | Batch non-volatile memory write (lower) |  |  |

* Communication parity, communication stop bit and transmission waiting time are not initialized. Initialize them using the MEXEO2 or OPX-2A.
- Configuration (018Ch, 018Dh)

Configuration will be executed when all of the following conditions are satisfied:

- An alarm is not present.
- The motor is not operated.

Shows the motor status before and after executing the configuration.

| Item | Configuration is ready to execute | Configuration is executing | Configuration is completed |
| :---: | :---: | :---: | :---: |
| PWR LED | Lit | Lit | Lit |
| ALM LED | OFF | OFF | Based on the motor <br> condition. |
| Motor excitation | Excitation/no excitation | Excitation/no excitation* | Allowed |
| Output signals | Allowed | Indeterminate | Allowed |
| Input signals | Allowed | Not allowed |  |

* The motor excitation status while executing the configuration keeps the status that the configuration has started.

Note The correct monitor value may not return even when the monitor is executed via RS-485 communication while executing the configuration.

## - Monitor command

Monitor the command position, command speed, alarm and warning records, etc. All commands can be read (READ).

| Register address |  | Name | Description | Range |
| :---: | :---: | :---: | :---: | :---: |
| Dec | Hex |  |  |  |
| 128 | 0080h | Present alarm (upper) | Monitors the present alarm code. | OOh to FFh |
| 129 | 0081h | Present alarm (lower) |  |  |
| 130 | 0082h | Alarm record 1 (upper) | Monitors the alarm records 1 to 10. |  |
| 131 | 0083h | Alarm record 1 (lower) |  |  |
| 132 | 0084h | Alarm record 2 (upper) |  |  |
| 133 | 0085h | Alarm record 2 (lower) |  |  |
| 134 | 0086h | Alarm record 3 (upper) |  |  |
| 135 | 0087h | Alarm record 3 (lower) |  |  |
| 136 | 0088h | Alarm record 4 (upper) |  |  |
| 137 | 0089h | Alarm record 4 (lower) |  |  |
| 138 | 008Ah | Alarm record 5 (upper) |  |  |
| 139 | 008Bh | Alarm record 5 (lower) |  |  |
| 140 | 008Ch | Alarm record 6 (upper) |  |  |
| 141 | 008Dh | Alarm record 6 (lower) |  |  |
| 142 | 008Eh | Alarm record 7 (upper) |  |  |
| 143 | 008Fh | Alarm record 7 (lower) |  |  |
| 144 | 0090h | Alarm record 8 (upper) |  |  |
| 145 | 0091h | Alarm record 8 (lower) |  |  |
| 146 | 0092h | Alarm record 9 (upper) |  |  |
| 147 | 0093h | Alarm record 9 (lower) |  |  |
| 148 | 0094h | Alarm record 10 (upper) |  |  |
| 149 | 0095h | Alarm record 10 (lower) |  |  |
| 150 | 0096h | Present warning (upper) | Monitors the present warning code. | OOh to FFh |
| 151 | 0097h | Present warning (lower) |  |  |
| 152 | 0098h | Warning record 1 (upper) | Monitors the warning records 1 to 10. | OOh to FFh |
| 153 | 0099h | Warning record 1 (lower) |  |  |
| 154 | 009Ah | Warning record 2 (upper) |  |  |
| 155 | 009Bh | Warning record 2 (lower) |  |  |
| 156 | 009Ch | Warning record 3 (upper) |  |  |
| 157 | 009Dh | Warning record 3 (lower) |  |  |
| 158 | 009Eh | Warning record 4 (upper) |  |  |
| 159 | 009Fh | Warning record 4 (lower) |  |  |
| 160 | 00A0h | Warning record 5 (upper) |  |  |
| 161 | 00A1h | Warning record 5 (lower) |  |  |
| 162 | 00A2h | Warning record 6 (upper) |  |  |
| 163 | 00A3h | Warning record 6 (lower) |  |  |
| 164 | 00A4h | Warning record 7 (upper) |  |  |
| 165 | 00A5h | Warning record 7 (lower) |  |  |
| 166 | 00A6h | Warning record 8 (upper) |  |  |
| 167 | 00A7h | Warning record 8 (lower) |  |  |
| 168 | 00A8h | Warning record 9 (upper) |  |  |
| 169 | 00A9h | Warning record 9 (lower) |  |  |
| 170 | 00AAh | Warning record 10 (upper) |  |  |
| 171 | 00ABh | Warning record 10 (lower) |  |  |


| Register address |  | Name | Description | Range |
| :---: | :---: | :---: | :---: | :---: |
| Dec | Hex |  |  |  |
| 172 | 00ACh | Communication error code (upper) | Monitors the last received communication error code. | 00h to FFh |
| 173 | 00ADh | Communication error code (lower) |  |  |
| 174 | 00AEh | Communication error code record 1 (upper) | Monitors the communication error records 1 to 10 that have occurred in the past. | 00h to FFh |
| 175 | 00AFh | Communication error code record 1 (lower) |  |  |
| 176 | 00B0h | Communication error code record 2 (upper) |  |  |
| 177 | 00B1h | Communication error code record 2 (lower) |  |  |
| 178 | 00B2h | Communication error code record 3 (upper) |  |  |
| 179 | 00B3h | Communication error code record 3 (lower) |  |  |
| 180 | 00B4h | Communication error code record 4 (upper) |  |  |
| 181 | 00B5h | Communication error code record 4 (lower) |  |  |
| 182 | 00B6h | Communication error code record 5 (upper) |  |  |
| 183 | 00B7h | Communication error code record 5 (lower) |  |  |
| 184 | 00B8h | Communication error code record 6 (upper) |  |  |
| 185 | 00B9h | Communication error code record 6 (lower) |  |  |
| 186 | 00BAh | Communication error code record 7 (upper) |  |  |
| 187 | 00BBh | Communication error code record 7 (lower) |  |  |
| 188 | 00BCh | Communication error code record 8 (upper) |  |  |
| 189 | 00BDh | Communication error code record 8 (lower) |  |  |
| 190 | O0BEh | Communication error code record 9 (upper) |  |  |
| 191 | 00BFh | Communication error code record 9 (lower) |  |  |
| 192 | 00C0h | Communication error code record 10 (upper) |  |  |
| 193 | 00C1h | Communication error code record 10 (lower) |  |  |
| 194 | 00C2h | Present selected data No. (upper) | Monitors the operation data No. currently selected. | 0 to 63 |
| 195 | 00C3h | Present selected data No. (lower) |  |  |
| 196 | 00C4h | Present operation data No. (upper) | Monitors the operation data No. corresponding to the data used in the current positioning operation. This address is used in linked-motion operation and sequential operation. While the motor is stopped, the last used operation data number is indicated. " -1 " is indicated until the positioning operation is performed after turning the power ON. | -1 to 63 |
| 197 | 00C5h | Present operation data No. (lower) |  |  |


| Register address |  | Name | Description | Range |
| :---: | :---: | :---: | :---: | :---: |
| Dec | Hex |  |  |  |
| 198 | 00C6h | Command position (upper) | Monitors the command position. | $\begin{aligned} & -2,147,483,648 \text { to } \\ & 2,147,483,647 \text { step } \end{aligned}$ |
| 199 | 00C7h | Command position (lower) |  |  |
| 200 | 00C8h | Command speed (upper) | Monitors the current command speed. (r/min) | $\begin{aligned} & \text {-9,600 to }+9,600 \mathrm{r} / \mathrm{min} \\ & \text { +: Forward } \\ & \text {-: Reverse } \\ & 0 \text { : Stop } \end{aligned}$ |
| 201 | 00C9h | Command speed (lower) |  |  |
| 202 | 00CAh | Command speed (upper) | Monitors the current command speed.$(\mathrm{Hz})$ | $\begin{aligned} & -1,000,000 \text { to } \\ & +1,000,000 \mathrm{~Hz} \end{aligned}$ |
| 203 | 00CBh | Command speed (lower) |  |  |
| 210 | 00D2h | Remaining dwell time (upper) | Monitors how much of the dwell time used in the linked-motion operation 2 remains. | 0 to 50,000 ms |
| 211 | 00D3h | Remaining dwell time (lower) |  |  |
| 212 | 00D4h | Direct I/O status (upper) | Monitors the each direct I/O signal. | See table next. |
| 213 | 00D5h | Direct I/O status (lower) |  |  |

- Direct I/O status (00D4h, 00D5h)

| Register address (Hex) |  | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00D4h | Upper | - | - | - | - | - | - | - | - |
|  | Lower | - | - | - | - | - | - | OUT1 | OUTO |
| 00D5h | Upper | - | - | - | - | - | - | IN3 | IN2 |
|  | Lower | IN1 | INO | - | - | - | - | - | - |

## - Parameter R/W command

Write or read parameters. All commands can be read and written (READ/WRITE).
The parameters required for motor operation are available in the following two types.

- Operation data
- User parameters

Parameters set via RS-485 communication are saved in the driver's RAM. The data saved in the RAM will be erased once the power is turned off. On the other hand, the parameters saved in the non-volatile memory will be retained even after the power supply is turned off. See "Maintenance command" on p. 80 for writing the parameters saved in the RAM to the non-volatile memory.
When turning the motor power ON, the parameters saved in the non-volatile memory will be sent to the RAM. Then, the recalculation and setup for the parameters are executed in the RAM.

Note The non-volatile memory can be rewritten approximately 100,000 times.
When a parameter is changed, the timing to update the new value varies depending on the parameter. See the following three types.

| Update timing |  | Description |
| :---: | :--- | :--- |
| A | Update immediately | Executes the recalculation and setup immediately when writing the <br> parameter. |
| B | Update after stopping the <br> operation | Executes the recalculation and setup after stopping the operation. |
| C | Update after executing the <br> configuration | Executes the recalculation and setup after executing the configuration. |

## - Operation data

| Register address |  | Name | Description | Setting range | Initial value | Update (p.83) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec | Hex |  |  |  |  |  |
| $\begin{gathered} 1024 \\ 1025 \\ \text { to } \\ 1150 \\ 1151 \end{gathered}$ | 0400h 0401h to 047Eh 047Fh | Position No. 0 (upper) <br> Position No. 0 (lower) to <br> Position No. 63 (upper) <br> Position No. 63 (lower) | Sets the position (distance) for positioning operation. | $\begin{array}{\|l} -8,388,608 \text { to } \\ 8,388,607 \text { step } \end{array}$ | 0 |  |
| $\begin{gathered} 1152 \\ 1153 \\ \text { to } \\ 1278 \\ 1279 \end{gathered}$ | 0480h 0481h to 04FEh 04FFh | Operating speed No. 0 (upper) Operating speed No. 0 (lower) to <br> Operating speed No. 63 (upper) Operating speed No. 63 (lower) | Sets the operating speed in positioning operation and continuous operation. | 0 to 1,000,000 Hz | 1,000 |  |
| $\begin{gathered} 1280 \\ 1281 \\ \text { to } \\ 1406 \\ 1407 \end{gathered}$ | $\begin{aligned} & \text { 0500h } \\ & \text { 0501h } \\ & \text { to } \\ & \text { 057Eh } \\ & \text { 057Fh } \end{aligned}$ | Operation mode No. 0 (upper) Operation mode No. 0 (lower) to <br> Operation mode No. 63 (upper) Operation mode No. 63 (lower) | Selects how to specify the position (travel amount) in positioning operation (absolute mode or incremental mode). | 0 : Incremental <br> 1: Absolute | 0 |  |
| $\begin{gathered} 1408 \\ 1409 \\ \text { to } \\ 1534 \\ 1535 \end{gathered}$ | $\begin{aligned} & \text { 0580h } \\ & \text { 0581h } \\ & \text { to } \\ & \text { 05FEh } \\ & \text { 05FFh } \end{aligned}$ | Operation function No. 0 (upper) Operation function No. 0 (lower) to <br> Operation function No. 63 (upper) Operation function No. 63 (lower) | Sets perform positioning operation as single-motion or linked-motion operation. | 0 : Single-motion <br> 1: Linked-motion <br> 2: Linked-motion 2 | 0 |  |
| $\begin{gathered} 1536 \\ 1537 \\ \text { to } \\ 1662 \\ 1663 \end{gathered}$ | $\begin{aligned} & \text { 0600h } \\ & 0601 \mathrm{~h} \\ & \text { to } \\ & 067 \mathrm{Eh} \\ & \text { 067Fh } \end{aligned}$ | Acceleration No. 0 (upper) <br> Acceleration No. 0 (lower) <br> to <br> Acceleration No. 63 (upper) <br> Acceleration No. 63 (lower) | Sets the acceleration rate or acceleration time in positioning operation and continuous operation. *1 | $1 \text { to } 1,000,000$ |  |  |
| $\begin{gathered} 1664 \\ 1665 \\ \text { to } \\ 1790 \\ 1791 \end{gathered}$ | $\begin{aligned} & \text { 0680h } \\ & \text { 0681h } \\ & \text { to } \\ & \text { O6FEh } \\ & \text { 06FFh } \end{aligned}$ | Deceleration No. 0 (upper) <br> Deceleration No. 0 (lower) to <br> Deceleration No. 63 (upper) <br> Deceleration No. 63 (lower) | Sets the deceleration rate or deceleration time in positioning operation and continuous operation. *1 |  | 30,000 |  |
| $\begin{gathered} 1920 \\ 1921 \\ \text { to } \\ 2046 \\ 2047 \end{gathered}$ | $\begin{gathered} \text { 0780h } \\ \text { 0781h } \\ \text { to } \\ \text { 07FEh } \\ \text { 07FFh } \end{gathered}$ | Sequential positioning No. 0 (upper) Sequential positioning No. 0 (lower) to <br> Sequential positioning No. 63 (upper) <br> Sequential positioning No. 63 (lower) | Sets enable or disable sequential positioning operation. | 0: Disable <br> 1: Enable | 0 |  |
| $\begin{gathered} 2048 \\ 2049 \\ \text { to } \\ 2174 \\ 2175 \end{gathered}$ | $\begin{aligned} & \text { 0800h } \\ & \text { 0801h } \\ & \text { to } \\ & \text { 087Eh } \\ & \text { 087Fh } \end{aligned}$ | Dwell time No. 0 (upper) <br> Dwell time No. 0 (lower) to <br> Dwell time No. 63 (upper) <br> Dwell time No. 63 (lower) | Sets the dwell time to be used in linked-motion operation 2. | $\begin{array}{\|l} 0 \text { to } 50,000 \\ (1=0.001 \mathrm{~s}) \end{array}$ | 0 |  |

*1 This item is effective when the "acceleration/deceleration type" parameter is set to "separate". If this parameter is set to "common", the values of the "common acceleration" and "common deceleration" parameters will be used (initial value: separate).
*2 Acceleration/deceleration rate ( $\mathrm{ms} / \mathrm{kHz}$ ) or acceleration/deceleration time ( s ) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

## - User parameters




| Register address |  | Name | Description | Setting range | Initial value | Update (p.83) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec | Hex |  |  |  |  |  |
| 710 | 02C6h | Starting speed of homeseeking (upper) | Sets the starting speed for return-to-home operation. | 1 to 1,000,000 Hz | 100 | B |
| 711 | 02C7h | Starting speed of homeseeking (lower) |  |  |  |  |
| 712 | 02C8h | Position offset of homeseeking (upper) | Sets the amount of offset from mechanical home. | $\begin{aligned} & -8,388,608 \text { to } \\ & 8,388,607 \text { step } \end{aligned}$ | 0 |  |
| 713 | 02C9h | Position offset of homeseeking (lower) |  |  |  |  |
| 714 | 02CAh | Starting direction of home-seeking (upper) | Sets the starting direction for home detection. | 0 : Negative direction 1: Positive direction | 1 |  |
| 715 | 02CBh | Starting direction of home-seeking (lower) |  |  |  |  |
| 716 | 02CCh | SLIT detection with homeseeking (upper) | Sets whether or not to concurrently use the SLIT input for return-to-home operation. | 0: Disable <br> 1: Enable | 0 |  |
| 717 | 02CDh | SLIT detection with homeseeking (lower) |  |  |  |  |
| 718 | 02CEh | TIM signal detection with home-seeking (upper) | Sets whether or not to concurrently use the TIM signal for return-to-home operation. | 0: Disable <br> 1: Enable | 0 |  |
| 719 | 02CFh | TIM signal detection with home-seeking (lower) |  |  |  |  |
| 776 | 0308h | Return-to-home incomplete alarm (upper) | Sets enable/disable for the return-to-home incomplete alarm. |  | 0 | C |
| 777 | 0309h | Return-to-home incomplete alarm (lower) |  |  |  |  |
| 832 | 0340h | Overheat warning (upper) | Sets the temperature at which a main circuit overheat warning generates. | $\begin{aligned} & 40 \text { to } 80^{\circ} \mathrm{C} \\ & \left(104 \text { to } 176^{\circ} \mathrm{F}\right. \text { ) } \end{aligned}$ | 80 | A |
| 833 | 0341h | Overheat warning (lower) |  |  |  |  |
| 838 | 0346h | Overvoltage warning (upper) | Sets the voltage at which an overvoltage warning generates. | $\begin{aligned} & 150 \text { to } 420 \\ & (1=0.1 \mathrm{~V}) \end{aligned}$ | 420 |  |
| 839 | 0347h | Overvoltage warning (lower) |  |  |  |  |
| 840 | 0348h | Undervoltage warning (upper) | Sets the voltage at which an undervoltage warning generates. |  | 180 |  |
| 841 | 0349h | Undervoltage warning (lower) |  |  |  |  |
| 896 | 0380h | Electronic gear A (upper) | Sets the denominator of electric gear. | 1 to 65,535 | 1 | C |
| 897 | 0381h | Electronic gear A (lower) |  |  |  |  |
| 898 | 0382h | Electronic gear B (upper) | Sets the numerator of electric gear. |  | 1 |  |
| 899 | 0383h | Electronic gear B (lower) |  |  | 1 |  |
| 900 | 0384h | Motor rotation direction (upper) | Sets the rotation direction of motor output shaft. | 0 : Positive direction $=C C W$ <br> 1: Positive direction =CW | 1 |  |
| 901 | 0385h | Motor rotation direction (lower) |  |  |  |  |
| 902 | 0386h | Software overtravel (upper) | Sets whether to enable or disable software overtravel detection using soft limits. | 0: Disable <br> 1: Enable | 1 | A |
| 903 | 0387h | Software overtravel (lower) |  |  |  |  |
| 904 | 0388h | Positive software limit (upper) | Sets the value of soft limit in positive direction. | $\begin{aligned} & -8,388,608 \text { to } \\ & 8,388,607 \text { step } \end{aligned}$ | 8,388,607 |  |
| 905 | 0389h | Positive software limit (lower) |  |  |  |  |


| Register address |  | Name | Description | Setting range | Initial value | Update (p.83) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec | Hex |  |  |  |  |  |
| 906 | 038Ah | Negative software limit (upper) | Sets the value of soft limit in negative direction. | $\begin{aligned} & -8,388,608 \text { to } \\ & 8,388,607 \text { step } \end{aligned}$ | -8,388,608 | A |
| 907 | 038Bh | Negative software limit (lower) |  |  |  |  |
| 908 | 038Ch | Preset position (upper) | Sets the preset position. |  | 0 |  |
| 909 | 038Dh | Preset position (lower) |  |  |  |  |
| 910 | 038Eh | Wrap setting (upper) | Sets enable/disable for the wrap function. | 0: Disable <br> 1: Enable | 0 | C |
| 911 | 038Fh | Wrap setting (lower) |  |  |  |  |
| 912 | 0390h | Wrap setting range (upper) | Sets the wrap setting range. | 1 to 8,388,607 step | 500 |  |
| 913 | 0391h | Wrap setting range (lower) |  |  |  |  |
| 960 | 03C0h | Data setter speed display (upper) | Sets the display method of the speed monitor for the OPX-2A. | 0 : Signed <br> 1: Absolute value | 0 | A |
| 961 | 03C1h | Data setter speed display (lower) |  |  |  |  |
| 962 | 03C2h | Data setter edit (upper) | Sets whether it is possible to edit using the OPX-2A. | 0 : Disable <br> 1: Enable | 1 |  |
| 963 | 03C3h | Data setter edit (lower) |  |  |  |  |
| 4096 | 1000h | MSO operation No. selection (upper) | Sets the operation data No. corresponding to MSO input. | 0 to 63 | 0 | B |
| 4097 | 1001h | MSO operation No. selection (lower) |  |  |  |  |
| 4098 | 1002h | MS1 operation No. selection (upper) | Sets the operation data No. corresponding to MS1 input. |  | 1 |  |
| 4099 | 1003h | MS1 operation No. selection (lower) |  |  |  |  |
| 4100 | 1004h | MS2 operation No. selection (upper) | Sets the operation data No. corresponding to MS2 input. |  | 2 |  |
| 4101 | 1005h | MS2 operation No. selection (lower) |  |  |  |  |
| 4102 | 1006h | MS3 operation No. selection (upper) | Sets the operation data No. corresponding to MS3 input. |  | 3 |  |
| 4103 | 1007h | MS3 operation No. selection (lower) |  |  |  |  |
| 4104 | 1008h | MS4 operation No. selection (upper) | Sets the operation data No. corresponding to MS4 input. |  | 4 |  |
| 4105 | 1009h | MS4 operation No. selection (lower) |  |  |  |  |
| 4106 | 100Ah | MS5 operation No. selection (upper) | Sets the operation data No. corresponding to MS5 input. |  | 5 |  |
| 4107 | 100Bh | MS5 operation No. selection (lower) |  |  |  |  |
| 4108 | 100Ch | HOME-P function selection (upper) | Sets the timing to output the HOME-P output. | 0 : Home output <br> 1: Return-to-home complete output | 0 | A |
| 4109 | 100Dh | HOME-P function selection (lower) |  |  |  |  |
| 4128 | 1020h | Filter selection (upper) | Set either speed filter or moving average filter. | 0 : Speed filter <br> 1: Moving average filter | 0 | C |
| 4129 | 1021h | Filter selection (lower) |  |  |  |  |
| 4168 | 1048h | JOG travel amount (upper) | Sets the travel amount for JOG operation. | 1 to 8,388,607 step | 1 | B |
| 4169 | 1049 | JOG travel amount (lower) |  |  |  |  |





| Register address |  | Name | Description | Setting range | Initial value | Update <br> (p.83) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec | Hex |  |  |  |  |  |
| 4504 | 1198h | NET-OUT12 output function selection (upper) | Sets the function of NETOUT12 to NET-OUT15. | See table on p.93. | 72 | C |
| 4505 | 1199h | NET-OUT12 output function selection (lower) |  |  |  |  |
| 4506 | 119Ah | NET-OUT13 output function selection (upper) |  |  | 68 |  |
| 4507 | 119Bh | NET-OUT13 output function selection (lower) |  |  |  |  |
| 4508 | 119Ch | NET-OUT14 output function selection (upper) |  |  | 0 |  |
| 4509 | 119Dh | NET-OUT14 output function selection (lower) |  |  |  |  |
| 4510 | 119Eh | NET-OUT15 output function selection (upper) |  |  | 0 |  |
| 4511 | 119Fh | NET-OUT15 output function selection (lower) |  |  |  |  |
| 4608 | 1200h | Communication timeout (upper) | Sets the condition in which a communication timeout occurs in RS-485 communication. | 0 : Not monitored <br> 1 to $10,000 \mathrm{~ms}$ | 0 | A |
| 4609 | 1201h | Communication timeout (lower) |  |  |  |  |
| 4610 | 1202h | Communication error alarm (upper) | Sets the condition in which a RS-485 communication error alarm generates. <br> A communication error alarm generates after a RS-485 communication error has occurred by the number of times set here. | 1 to 10 times | 3 |  |
| 4611 | 1203h | Communication error alarm (lower) |  |  |  |  |

## Setting range for IN input function selection

| 0: Not used | 8: MS0 | 18: STOP | 36: R4 | 44: R12 | 52: M4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1: FWD | 9: MS1 | 24: ALM-RST | 37: R5 | 45: R13 | 53: M5 |
| 2: RVS | 10: MS2 | 25: P-PRESET | 38: R6 | 46: R14 | 60: +LS |
| 3: HOME | 11: MS3 | 27: HMI | 39: R7 | 47: R15 | 61: -LS |
| 4: START | 12: MS4 | 32: R0 | 40: R8 | 48: MO | 62: HOMES |
| 5: SSTART | 13: MS5 | 33: R1 | 41: R9 | 49: M1 | 63: SLIT |
| 6: +JOG | 16: FREE * | 34: R2 | 42: R10 | 50: M2 |  |
| 7:-JOG | 17: AWO | 35: R3 | 43: R11 | 51: M3 |  |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.


## Setting range for OUT output function selection

| 0: Not used | 8: MSO_R | 32: R0 | 41: R9 | 50: M2_R | 66: WNG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1:FWD_R | 9: MS1_R | 33: R1 | 42: R10 | 51: M3_R | 67: READY |
| 2: RVS_R | 10: MS2_R | 34: R2 | 43: R11 | 52: M4_R | 68: MOVE |
| 3: HOME_R | 11: MS3_R | 35: R3 | 44: R12 | 53: M5_R | 70: HOME-P |
| 4: START_R | 12: MS4_R | 36: R4 | 45: R13 | 60: +LS_R | 72: TIM |
| 5: SSTART_R | 13: MS5_R | 37: R5 | 46: R14 | 61: -LS_R | 73: AREA1 |
| 6: +JOG_R | 16: FREE_R * | 38: R6 | 47: R15 | 62: HOMES_R | 74: AREA2 |
| 7: -JOG_R | 17: AWO_R | 39: R7 | 48: MO_R | 63: SLIT_R | 75: AREA3 |
|  | 18: STOP_R | 40: R8 | 49: M1_R | 65: ALM | 80: S-BSY |

[^4]
## Setting range for NET-IN input function selection

| 0: Not used | 7: -JOG | 16: FREE * | 33: R1 | 40: R8 | 47: R15 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1: FWD | 8: MS0 | 17: AWO | 34: R2 | 41: R9 | 48: M0 |
| 2: RVS | 9: MS1 | 18: STOP | 35: R3 | 42: R10 | 49: M1 |
| 3: HOME | 10: MS2 | 24: ALM-RST | 36: R4 | 43: R11 | 50: M2 |
| 4: START | 11: MS3 | 25: P-PRESET | 37: R5 | 44: R12 | 51: M3 |
| 5: SSTART | 12: MS4 | 27: HMI | $38:$ R6 | 45: R13 | 52: M4 |
| 6: +JOG | 13: MS5 | 32: R0 | 39: R7 | 46: R14 | 53: M5 |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.

Setting range for NET-OUT output function selection

| 0: Not used | 8: MSO_R | 32: R0 | 41: R9 | 50: M2_R | 66: WNG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1:FWD_R | 9: MS1_R | 33: R1 | 42: R10 | 51: M3_R | 67: READY |
| 2: RVS_R | 10: MS2_R | 34: R2 | 43: R11 | 52: M4_R | 68: MOVE |
| 3: HOME_R | 11: MS3_R | 35: R3 | 44: R12 | 53: M5_R | 70: HOME-P |
| 4: START_R | 12: MS4_R | 36: R4 | 45: R13 | 60: +LS_R | 72: TIM |
| 5: SSTART_R | 13: MS5_R | 37: R5 | 46: R14 | 61: -LS_R | 73: AREA1 |
| 6: +JOG_R | 16: FREE_R * | 38: R6 | 47: R15 | 62: HOMES_R | 74: AREA2 |
| 7: -JOG_R | 17: AWO_R | 39: R7 | 48: M0_R | 63: SLIT_R | 75: AREA3 |
|  | 18: STOP_R | 40: R8 | 49: M1_R | 65: ALM | 80: S-BSY |

[^5]
## 12-10 Group send

Multiple slaves are made into a group and a query is sent to all slaves in the group at once.

## - Group composition

A group consists of one parent slave and child slaves and only the parent slave returns a response.

- Group address

To perform a group send, set a group address to the child slaves to be included in the group.
The child slaves to which the group address has been set can receive a query sent to the parent slave.


| Master | Query (sent to <br> the parent slave) |
| :---: | :---: |
| Child slave | Executes the <br> process but does <br> not send a response. |

## - Parent slave

No special setting is required on the parent slave to perform a group send. The address of the parent slave becomes the group address. When a query is sent to the parent slave from the master, the parent slave executes the requested process and then returns a response (same as with the unicast mode).

## - Child slave

Use a "group" command to set a group address to each child slave.
Change the group in the unicast mode.

| Register address |  | Name | Description | Setting range | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dec | Hex |  |  |  |  |
| 48 | 0030 h | Group (upper) | -1 : No group specification (Group send <br> is not performed) | -1 or 1 to 31 | -1 |
| 49 | 0031 h | Group (lower) | 1 to 31: Sets a group address. |  |  |

Note Since the group setting is not saved in the non-volatile memory even when the "batch non-volatile memory write" executes, the group setting will be cleared when turning the motor power OFF.

Function code to execute in a group send

| Function code | Function |
| :---: | :---: |
| 10 h | Writing to multiple holding registers |

Programmable controller


## 12-11 Detection of communication errors

This function detects abnormalities that may occur during RS-485 communication. The abnormalities that can be detected include alarms, warnings and communication errors.

## Communication errors

A communication error record will be saved in the RAM. You can check the communication errors using the "communication error record" command via RS-485 communication.

Note The communication error record will be cleared once the motor power is turned off.

| Type of communication error | Error code | Cause |
| :--- | :---: | :--- |
| RS-485 communication error | 84 h | A transmission error was detected. See "Transmission error" on <br> p.73. |
| Command not yet defined | 88 h | An exception response (exception code 01h, 02h) was <br> detected. See p.74. |
| Execution disable due to user I/F <br> communication in progress | 89 h | An exception response (exception code 04h) was detected. |
| Non-volatile memory processing in <br> progress | 8 Ah | Se. | | Outside setting range |
| :--- |

## Alarms and warnings

When an alarm generates, the ALM output will turn OFF and the motor will stop. At the same time, the ALM LED will start blinking.
When a warning generates, the WNG output will turn ON. The motor will continue to operate. Once the cause of the warning is removed, the WNG output will turn OFF automatically.

Note You can also clear the warning records by turning off the motor power.

- Communication switch setting error

When setting the transmission rate setting switch (SW3) to positions 8 to $F$, the transmission rate setting switch error will occur.

- RS-485 communication error (84h)

The table shows the relationship between alarms and warnings when an RS-485 communication error occurs.

| Description of error | Description |
| :---: | :--- |
| Warning | A warning generates when one RS-485 communication error (84h) has been detected. <br> If normal reception occurs while the warning is present, the warning will be reset <br> automatically. |
| Alarm | An alarm generates when a RS-485 communication error (84h) has been detected <br> consecutively by the number of times set in the "communication error alarm" parameter. |

- RS-485 communication timeout (85h)

If communication is not established with the master after an elapse of the time set by the "communication timeout" parameter, a RS-485 communication timeout alarm will generate.

## 12-12 Timing charts

## Communication start



* Tb2 (transmission waiting time) + C3.5 (silent interval) + command processing time


## - Operation start


*1 A message including a query to start operation via RS-485 communication.
*2 Tb2 (transmission waiting time) + C3.5 (silent interval) + command processing time
*3 C3.5 (silent interval) +4 ms or less

## Operation stop, speed change


*1 A message including a query to stop operation and another to change the speed via RS-485 communication.
*2 Tb2 (transmission waiting time) + C3.5 (silent interval) + command processing time
*3 C3.5 (silent interval) + command processing time
*4 The deceleration method to be applied at the time of stopping varies according to the value set by the "STOP input action" parameter.

## - General signals


*1 A message including a query for remote output via RS-485 communication.
*2 Tb2 (transmission waiting time) + C3.5 (silent interval) + command processing time
*3 C3.5 (silent interval) +4 ms or less

## Configuration


*1 A message including a query for configuration via RS-485 communication.
*2 Tb2 (transmission waiting time) + C3.5 (silent interval) + command processing time
*3 C3.5 (silent interval) +1 s or less

## 13 Method of control via Network converter

The following explains how to control the PKA Series with CC-Link communication or MECHATROLINK communication via the network converter.

## 13-1 Setting the PKA Series switches

When using the PKA Series in combination with the network converter, set the switches before use.


Note Be sure to turn off the motor power before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the driver power is cycled.

## Setting the connection device

Set the connection device of RS-485 communication using the function setting switch SW1-No.4. Turn this switch OFF when controlling via the network converter.

Factory setting OFF (Network converter)

## Address number (slave address)

Set the address number (slave address) using the address number setting switch (SW2) and SW1-No. 3 of the function setting switch. Make sure each address number (slave address) you set for each driver is unique.

Factory setting SW1-No.3: OFF, SW2: 0 (Address number 0)

| SW1-No. 3 | SW2 | Address number (slave address) |
| :---: | :---: | :---: |
| OFF | 0 | 0 |
|  | 1 | 1 |
|  | 2 | 2 |
|  | 3 | 3 |
|  | 4 | 4 |
|  | 5 | 5 |
|  | 6 | 6 |
|  | 7 | 7 |
|  | 8 | 8 |
|  | 9 | 9 |
|  | A | 10 |
|  | B | 11 |
|  | C | 12 |
|  | D | 13 |
|  | E | 14 |
|  | F | 15 |


| SW1-No.3 | SW2 | Address number <br> (slave address) |
| :---: | :---: | :---: |
|  | 0 | 16 |
|  | 1 | 17 |
|  | 2 | 18 |
|  | 3 | 19 |
|  | 4 | 20 |
|  | 5 | 21 |
|  | 7 | 22 |
|  | 7 | 23 |
|  | 9 | 24 |
|  | A | 25 |
|  | B | 26 |
|  | C | 27 |
|  | D | 28 |
|  | E | 29 |
|  | F | 30 |

## Transmission rate

Set the transmission rate to 625,000 bps using the transmission rate setting switch (SW3).
Factory setting 7 (625,000 bps)

## - Termination resistor

Use a termination resistor for the motor located farthest away (positioned at the end) from the programmable controller (master device).
Turn SW1-No. 1 and No. 2 of the function setting switch ON to set the termination resistor for RS-485 communication (120 $\Omega$ ).

| SW1-No.1, No.2 | Termination resistor <br> $(120 \Omega)$ |
| :---: | :---: |
| OFF | Disabled |
| ON | Enabled |

## Factory setting No. 1 and No.2: Both OFF (termination resistor disabled)

## 13-2 When using the motor with CC-Link communication

See the following explanation when using the PKA Series in combination with the network converter NETC01-CC, via CC-Link communication.

Guidance
If you are new to the PKA Series, read this section to understand the operating methods along with the operation flow.

Note - Before operating the motor, check the condition of the surrounding area to ensure safety.

- See the network converter NETC01-CC OPERATING MANUAL for how to set the parameter.


## STEP 1 <br> Set the transmission rate, station address and address number.

## Using the switches

- Setting condition of PKA Series
- Address number of the PKA Series: 0
- RS-485 transmission rate: 625 kbps
- Connection device of RS-485 communication: Network converter
- Setting condition of NETC01-CC
- CC-Link station number: 1
- RS-485 transmission rate: 625 kbps
- CC-Link transmission rate: Same as the master station
- Operation mode: 6 axes connection mode


■ Using the parameter

1. Set the "connection (address number 0) (1D80h)" parameter of the NETC01-CC to"1: Enable."
2. Execute the "batch non-volatile memory write (3E85h)" of the NETC01-CC.
3. Cycle the NETC01-CC power.

Note
"Connection" parameters will be enabled after the power is cycled.

## STEP 2 Check the termination resistor



## STEP 3 Turn on the power and check the setting



- When ERR (red) of the PKA Series or C-ERR (red) of the NETC01-CC is lit: Check the transmission rate or address number of RS-485 communication.
- When L-ERR (red) of the NETC01-CC is lit:

Check the type of the CC-Link communication error.

## STEP 4 Execute positioning operation via remote I/O of CC-Link communication.

1. Set the position (1200h) and operating speed (1240h) of the operation data No. 0 of the PKA Series.
2. Execute positioning operation by turning the START of the CC-Link remote I/O address number 1 to ON.

| RY (Master to NETC01-CC) |  |  |
| :---: | :---: | :---: |
| Device No. | Signal name | Initial value |
| RY0 | NET-IN0 | M0 |
| RY1 | NET-IN1 | M1 |
| RY2 | NET-IN2 | M2 |
| RY3 | NET-IN3 | START |
| RY4 | NET-IN4 | HOME |
| RY5 | NET-IN5 | STOP |
| RY6 | NET-IN6 | Not used |
| RY7 | NET-IN7 | AWO |


| RY (Master to NETC01-CC) |  |  |
| :---: | :---: | :---: |
| Device No. | Signal name | Initial value |
| RY8 | NET-IN8 | MS0 |
| RY9 | NET-IN9 | MS1 |
| RYA | NET-IN10 | MS2 |
| RYB | NET-IN11 | SSTART |
| RYC | NET-IN12 | +JOG |
| RYD | NET-IN13 | -JOG |
| RYE | NET-IN14 | FWD |
| RYF | NET-IN15 | RVS |

## STEP 5 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present in the PKA Series or NETCO1-CC?
- Are the address number, transmission rate and termination resistor set correctly?
- Is the "connection" parameter of the NETC01-CC set correctly?
- Is the ERR LED of the PKA Series or the C-ERR LED of the NETCO1-CC lit? (RS-485 communication error)
- Is the L-ERR LED of the NETC01-CC lit? (CC-Link communication error)
- Is the PKA Series motor excited? Or is the excitation setting correct?
- Are the PKA Series parameters set correctly?
- Is the STOP input of the PKA Series I/O turned ON?

For more detailed settings and functions, refer to the following pages.

## ■ Remote resistor list

Remote register is common to 6-axes connection mode and 12-axes connection mode.
"Monitor", "read and write of parameters" and "maintenance command" for the PKA Series or NETC01-CC are executed using remote register.

| RWw (Master to NETC01-CC) |  | RWr (NETC01-CC to master) |  |
| :---: | :---: | :---: | :---: |
| Address No. | Description | Address No. | Description |
| RWwn0 | Command code of monitor 0 | RWrn0 | Data of monitor 0 (lower 16 bit) |
| RWwn1 | Address number of monitor 0 | RWrn1 | Data of monitor 0 (upper 16 bit) |
| RWwn2 | Command code of monitor 1 | RWrn2 | Data of monitor 1 (lower 16 bit) |
| RWwn3 | Address number of monitor 1 | RWrn3 | Data of monitor 1 (upper 16 bit) |
| RWwn4 | Command code of monitor 2 | RWrn4 | Data of monitor 2 (lower 16 bit) |
| RWwn5 | Address number of monitor 2 | RWrn5 | Data of monitor 2 (upper 16 bit) |
| RWwn6 | Command code of monitor 3 | RWrn6 | Data of monitor 3 (lower 16 bit) |
| RWwn7 | Address number of monitor 3 | RWrn7 | Data of monitor 3 (upper 16 bit) |
| RWwn8 | Command code of monitor 4 | RWrn8 | Data of monitor 4 (lower 16 bit) |
| RWwn9 | Address number of monitor 4 | RWrn9 | Data of monitor 4 (upper 16 bit) |
| RWwnA | Command code of monitor 5 | RWrnA | Data of monitor 5 (lower 16 bit) |
| RWwnB | Address number of monitor 5 | RWrnB | Data of monitor 5 (upper 16 bit) |
| RWwnC | Command code | RWrnC | Command code response |
| RWwnD | Address number | RWrnD | Address number response |
| RWwnE | Data (lower) | RWrnE | Data (lower) |
| RWwnF | Data (upper) | RWrnF | Data (upper) |

## Assignment of remote I/O

Remote I/O assignments of the PKA Series are as follows.
"n" is an address assigned to the master station by the CC-Link station number setting.
See the network converter NETC01-CC OPERATING MANUAL for 6-axes or 12-axes mode.

## 6-axes connection mode

| Command RY (Master to NETC01-CC) |  |
| :---: | :--- |
| Device No. | Description |
| RYn7 to RYn0 | Address number "0" remote <br> RYnF to RYn8 |
| I/O input |  |


| Response RX (NETC01-CC to master) |  |
| :---: | :---: |
| Device No. | Description |
| RXn7 to RXn0 | Address number " 0 " remote I/O output |
| RXnF to RXn8 |  |
| $R X(n+1) 7$ to RX ( $n+1$ ) 0 | Address number" 1 " remote I/O output |
| $R X(n+1) F$ to $R X(n+1) 8$ |  |
| $R X(n+2) 7$ to $R X(n+2) 0$ | Address number " 2 " remote I/O output |
| $R X(n+2) F$ to $R X(n+2) 8$ |  |
| $R X(n+3) 7$ to RX (n+3) 0 | Address number " 3 " remote I/O output |
| $R X(n+3) F$ to $R X(n+3) 8$ |  |
| $R X(n+4) 7$ to RX (n+4) 0 | Address number " 4 " remote I/O output |
| $R X(n+4) F$ to RX $(n+4) 8$ |  |
| $R X(n+5) 7$ to RX (n+5) 0 | Address number " 5 " remote I/O output |
| $R X(n+5) F$ to $R X(n+5) 8$ |  |
| $R X(n+6) 7$ to RX (n+6) 0 | Status output of NETC01-CC * |
| $R X(n+6) F$ to RX ( $n+6) 8$ |  |
| $R X(n+7) 7$ to RX (n+7) 0 | Status output of system area * |
| $R X(n+7) F$ to RX $(n+7) 8$ |  |

* See the network converter NETC01-CC OPERATING MANUAL for details.


## 12-axes connection mode

| Command RY (Master to NETC01-CC) |  |
| :---: | :---: |
| Device No. | Description |
| RYn7 to RYn0 | Address number " 0 " remote I/O input |
| RYnF to RYn8 | Address number " 1 " remote I/O input |
| $R Y(n+1) 7$ to RY $(\mathrm{n}+1) 0$ | Address number " 2 " remote I/O input |
| $R Y(n+1) F$ to $R Y(n+1) 8$ | Address number " 3 " remote I/O input |
| $R Y(n+2) 7$ to RY (n+2) 0 | Address number " 4 " remote I/O input |
| $R Y(n+2) F$ to $R Y(n+2) 8$ | Address number " 5 " remote I/O input |
| $R Y(n+3) 7$ to RY $(\mathrm{n}+3) 0$ | Address number " 6 " remote I/O input |
| $R Y(n+3) F$ to $R Y(n+3) 8$ | Address number " 7 " remote I/O input |
| RY ( $\mathrm{n}+4$ ) 7 to RY $(\mathrm{n}+4) 0$ | Address number " 8 " remote I/O input |
| RY ( $n+4$ ) F to RY $(\mathrm{n}+4) 8$ | Address number " 9 " remote I/O input |
| RY ( $\mathrm{n}+5$ ) 7 to RY $(\mathrm{n}+5) 0$ | Address number "10" remote I/O input |
| $R Y(n+5) F$ to $R Y(n+5) 8$ | Address number "11" remote I/O input |
| $R Y(n+6) 7$ to RY (n+6) 0 | Control input of NETCO1- |
| $R Y(n+6) F$ to RY $(n+6) 8$ | CC* |
| RY ( $n+7$ ) 7 to RY $(n+7) 0$ | Control input of system |
| RY $(\mathrm{n}+7) \mathrm{F}$ to RY $(\mathrm{n}+7) 8$ |  |


| Response RX (NETC01-CC to master) |  |
| :---: | :---: |
| Device No. | Description |
| $\mathrm{RXn7}$ to RXn0 | Address number " 0 " remote I/O output |
| RXnF to RXn8 | Address number " 1 " remote I/O output |
| $R X(n+1) 7$ to $R X(n+1) 0$ | Address number "2" remote I/O output |
| $R X(n+1) F$ to $R X(n+1) 8$ | Address number " 3 " remote I/O output |
| $R X(n+2) 7$ to $R X(n+2) 0$ | Address number " 4 " remote I/O output |
| $R X(n+2) F$ to $R X(n+2) 8$ | Address number " 5 " remote I/O output |
| $R X(n+3) 7$ to $R X(n+3) 0$ | Address number " 6 " remote I/O output |
| $R X(n+3)$ F to $R X(n+3) 8$ | Address number"7" remote I/O output |
| $R X(n+4) 7$ to RX (n+4) 0 | Address number " 8 " remote I/O output |
| $R X(n+4) F$ to $R X(n+4) 8$ | Address number "9" remote I/O output |
| $R X(n+5) 7$ to RX (n+5) 0 | Address number "10" remote I/O output |
| $R X(n+5) F$ to $R X(n+5) 8$ | Address number "11" remote I/O output |
| $R X(n+6) 7$ to RX (n+6) 0 | Status output of NETC01- |
| $R X(n+6) F$ to $R X(n+6) 8$ | CC* |
| $R X(n+7) 7$ to RX (n+7) 0 | Status output of system |
| $R X(n+7)$ F to RX $(n+7) 8$ | area* |

* See the network converter NETC01-CC OPERATING MANUAL for details.


## Remote I/O input

The value in () is the initial value.

## 6-axes connection mode

| Device No. | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RYn7 to RYn0 | NET-IN7 <br> (AWO) | NET-IN6 <br> (Not used) | NET-IN5 <br> (STOP) | NET-IN4 <br> (HOME) | NET-IN3 <br> (START) | NET-IN2 <br> $($ M2 $)$ | NET-IN1 <br> $(M 1)$ | NET-IN0 <br> $(M 0)$ |
| RYnF to RYn8 | NET-IN15 <br> (RVS) | NET-IN14 <br> (FWD) | NET-IN13 <br> $(-J O G)$ | NET-IN12 <br> $(+J O G)$ | NET-IN11 <br> (SSTART) | NET-IN10 <br> $(M S 2)$ | NET-IN9 <br> $(M S 1)$ | NET-IN8 <br> $(M S 0)$ |

## 12-axes connection mode

| Device No. | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RYn7 to RYn0 | NET-IN7 | NET-IN6 | NET-IN5 | NET-IN4 | NET-IN3 | NET-IN2 | NET-IN1 | NET-IN0 |
|  | (AWO) | (Not used) | NETOP <br> (STO | (HOME) <br> (START) | (M2) | (M1) | $(M 0)$ |  |

## Remote I/O output

The value in () is the initial value.

## 6-axes connection mode

| Device No. | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RYn7 to RYn0 | NET-OUT7 <br> (ALM) | NET-OUT6 <br> (WNG) | NET-OUT5 <br> (READY) | NET-OUT4 <br> (HOME-P) | NET-OUT3 <br> (START_R) | NET-OUT2 <br> (M2_R) | NET-OUT1 <br> (M1_R) | NET-OUT0 <br> (M0_R) |
|  | NET- | NET- | NET- | NET- | NET- | NET- | NET-OUT9 | NET-OUT8 |
|  | OUT15 | OUT14 <br> (Not used) <br> (Not used) | OUT13 <br> (MOVE) | OUT12 <br> (TIM) | OUT11 <br> (AREA3) | OUT10 <br> (AREA2) | (AREA1) <br> $(S-B S Y) ~$ |  |

## 12-axes connection mode

| Device No. | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RYn7 to RYn0 | NET-OUT7 <br> (ALM) | NET-OUT6 <br> (WNG) | NET-OUT5 <br> (READY) | NET-OUT4 <br> (HOME-P) | NET-OUT3 <br> (START_R) | NET-OUT2 <br> (M2_R) | NET-OUT1 <br> (M1_R) | NET-OUT0 <br> (M0_R) |

## 13-3 When using the motor with MECHATROLINK communication

See the following explanation when using the PKA Series in combination with the network converter NETC01-M2 or NETCO1-M3, via MECHATROLINK communication.

## Guidance

If you are new to the PKA Series, read this section to understand the operating methods along with the operation flow.

Note - Before operating the motor, check the condition of the surrounding area to ensure safety.

- See the network converter NETC01-M2/NETC01-M3 OPERATING MANUAL for how to set the parameter.


## STEP 1 Set the transmission rate, station address and address number.

## - Using the switches

- Setting condition of PKA Series
- Address number of the PKA Series: 0
- RS-485 transmission rate: 625 kbps
- Connection device of RS-485 communication: Network converter
- Setting condition of NETC01-M2
- MECHATROLINK-II station address: 61
- RS-485 transmission rate: 625 kbps
- Remote I/O occupied size: 16 bit mode
- Number of transmission bytes: 32 bytes



## Using the parameter

1. Set the "communication (address number 0) " parameter of the NETC01-M2 to "1: Enable."
2. Cycle the NETC01-M2 power.

Note - "Communication" parameters will be enabled after the power is cycled.

- When setting the parameters of the NETC01-M2 or NETC01-M3, use the MEXE02 or OPX-2A.


## STEP 2 Check the termination resistor



## STEP 3 Turn on the power and check the setting



- When ERR (red) of the PKA Series or C-ERR (red) of the NETC01-M2 is lit: Check the transmission rate or address number of RS-485 communication.
- When ERR (red) of the NETC01-M2 is lit: Check the MECHATROLINK-II communication error.


## STEP 4 Positioning operation

Control the I/O signal of the PKA Series using the I/O command (DATA_RWA: 50h) of MECHATROLINK-II communication.

1. Set the position (1200h) and operating speed (1240h) of operation data No. 0 of the PKA Series.
2. Execute positioning operation by turning the START of the address number 0 to ON .

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NET-IN7 | NET-IN6 | NET-IN5 | NET-IN4 | NET-IN3 | NET-IN2 | NET-IN1 | NET-IN0 |
| (AWO) | (Not used) | (STOP) | (HOME) | (START) | (M2) | (M1) | (M0) |
| NET-IN15 | NET-IN14 | NET-IN13 | NET-IN12 | NET-IN11 | NET-IN10 | NET-IN9 | NET-IN8 |
| (RVS) | (FWD) | (-JOG) | (+JOG) | (SSTART) | (MS2) | (MS1) | (MS0) |

* ( ): Initial value


## STEP 5 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present in the PKA Series or NETCO1-M2?
- Are the address number, transmission rate and termination resistor set correctly?
- Is the "communication" parameter of the NETCO1-M2 set correctly?
- Is the ERR LED of the PKA Series or the C-ERR LED of the NETC01-M2 lit? (RS-485 communication error)
- Is the ERR LED of the NETC01-M2 lit? (MECHATROLINK-II/III communication error)
- Is the PKA Series motor excited? Or is the excitation setting correct?
- Is the PKA Series parameter set correctly?
- Is the STOP input of the PKA Series I/O turned ON?

For more detailed settings and functions, refer to the following pages.

## I/O field map for the NETC01-M2

Update of remote I/O data (asynchronous) is executed by the "DATA_RWA" Command (50h). When the remote I/O occupied size is 16 -bit mode and the number of transmission bytes is 32 bytes (initial setting), I/O field map will be as follows. See the network converter NETC01-M2 OPERATING MANUAL for other I/O field map.


## I/O field map for the NETC01-M3

Update of remote I/O data (asynchronous) is executed by "DATA_RWA" Command (20h). When the remote I/O occupied size is 16 -bit mode and the number of transmission bytes is 32 bytes (initial setting), I/O field map will be as follows. See the network converter NETC01-M3 OPERATING MANUAL for other I/O field map.

| Byte | Type | Command | Response |
| :---: | :---: | :---: | :---: |
| 0 | - | DATA_RWA (20h) | DATA_RWA (20h) |
| 1 | - | WDT | RWDT |
| 2 | - |  |  |
| 3 | - |  |  |
| 4 | - | Reser | ctor |
| 5 | - | Reserved | Connection status |
| 6 | Remote I/O | Address number " 0 " remote I/O input | Address number "0" remote I/O output |
| 7 |  |  |  |
| 8 |  | Address number "1" remote I/O input | Address number " 1 " remote I/O output |
| 9 |  |  |  |
| 10 |  | Address number "2" remote I/O input | Address number "2" remote I/O output |
| 11 |  |  |  |
| 12 |  | Address number " 3 " remote I/O input | Address number " 3 " remote I/O output |
| 13 |  |  |  |
| 14 |  | Address number "4" remote I/O input | Address number " 4 " remote I/O output |
| 15 |  |  |  |
| 16 |  | Address number "5" remote I/O input | Address number "5" remote I/O output |
| 17 |  |  |  |
| 18 |  | Address number " 6 " remote I/O input | Address number " 6 " remote I/O output |
| 19 |  |  |  |
| 20 |  | Address number "7" remote I/O input | Address number "7" remote I/O output |
| 21 |  |  |  |
| 22 | Remote resistor | Register address number | Register address number response |
| 23 |  |  |  |
| 24 |  | Command code+TRIG | Command code response+ TRIG response+STATUS |
| 25 |  |  |  |
| 26 |  | DATA | DATA response |
| 27 |  |  |  |
| 28 |  |  |  |
| 29 |  |  |  |
| 30 | - | Reserved | Reserved |
| 31 | - |  |  |

## Communication format

Communication format to the PKA Series and NETC01-M2/NETCO1-M3 are as follows.

- Remote I/O input

For details on remote I/O, refer to p.111. The value in () is the initial value.
16 bit mode

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NET-IN7 | NET-IN6 | NET-IN5 | NET-IN4 | NET-IN3 | NET-IN2 | NET-IN1 | NET-IN0 |
| (AWO) | (Not used) | (STOP) | (HOME) | (START) | (M2) | (M1) | (M0) |
| NET-IN15 | NET-IN14 | NET-IN13 | NET-IN12 | NET-IN11 | NET-IN10 | NET-IN9 | NET-IN8 |
| (RVS) | (FWD) | (-JOG) | (+JOG) | (SSTART) | (MS2) | (MS1) | (MS0) |

## 8 bit mode

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NET-IN7 | NET-IN6 | NET-IN5 | NET-IN4 | NET-IN3 | NET-IN2 | NET-IN1 | NET-IN0 |
| (AWO) | (Not used) | (STOP) | (HOME) | (START) | (M2) | (M1) | (M0) |

## - Remote I/O output

For details on remote I/O, refer to p.111. The value in () is the initial value.
16 bit mode

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NET-OUT7 <br> (ALM) | NET-OUT6 <br> (WNG) | NET-OUT5 <br> (READY) | NET-OUT4 <br> (HOME-P) | NET-OUT3 <br> (START_R) | NET-OUT2 <br> (M2_R) | NET-OUT1 <br> (M1_R) | NET-OUT0 <br> (M0_R) |
| NET-OUT15 <br> (Not used) | NET-OUT14 <br> (Not used) | NET-OUT13 <br> (MOVE) | NET-OUT12 <br> (TIM) | NET-OUT11 <br> (AREA3) | NET-OUT10 <br> (AREA2) | NET-OUT9 <br> (AREA1) | NET-OUT8 <br> (S-BSY) |

## 8 bit mode

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NET-OUT7 <br> (ALM) | NET-OUT6 <br> (WNG) | NET-OUT5 <br> (READY) | NET-OUT4 <br> (HOME-P) | NET-OUT3 | NET-OUT2 | NET-OUT1 | NET-OUTOT_R) |
| (M2_R) | (M1_R) | (M0_R) |  |  |  |  |  |

- Remote register field

Command (NETC01-M2/ NETC01-M3 to PKA Series)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Command code |  |  |  |  |  |  |  |  |
| - | TRIG | DATA |  |  |  |  |  |  |

Explanation of command

| Name | Description | Setting range |
| :--- | :--- | :---: |
| Command code | The command sets the command code for "write and read of parameters," <br> "monitor"and "maintenance." | - |
| TRIG | This is the trigger for handshake to execute the command code. When <br> turning the TRIG from 0 to 1, the command code and DATA will be executed. | $0:$ No Motion <br> $1:$ Execution |
| DATA | This is the data writing to the PKA Series (little endian) | - |

- Response (PKA Series to NETC01-M2/ NETC01-M3)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Command code |  |  |  |  |  |  |  |
| STATUS | TRIG_R |  |  |  |  |  |  |

Explanation of command

| Name | Description | Setting range |
| :--- | :--- | :---: |
| Command code | The response returns the command code of the command. | - |
| TRIG_R | This is the trigger for handshake indicating the completion of the <br> command code. When the command code is completed, the TRIG_R <br> will be turned from 0 to 1. | 0: Not processing <br> $1:$ Execution completion |
| STATUS | This indicates the result that executed the command code. | 0: Normal operation <br> $1:$ Error |
| DATA_R | This is the data reading from the PKA Series (little endian) | - |

## 13-4 Details of remote I/O

This is common to NETC01-CC, NETC01-M2 and NETC01-M3.

## ■ Input signals to the PKA Series

The following input signals can be assigned to the NET-INO to NET-IN15 of remote I/O using the parameter. See the table for the assignments of the NET-INO to NET-IN15. The value in ( ) is the initial value.
For details on parameter, refer to "I/O function parameter [RS-485]" on p.62.

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NET-IN7 | NET-IN6 | NET-IN5 | NET-IN4 | NET-IN3 | NET-IN2 | NET-IN1 | NET-IN0 |
| (AWO) | (Not used) | (STOP) | (HOME) | (START) | (M2) | (M1) | (M0) |
| NET-IN15 | NET-IN14 | NET-IN13 | NET-IN12 | NET-IN11 | NET-IN10 | NET-IN9 | NET-IN8 |
| (RVS) | (FWD) | (-JOG) | (+JOG) | (SSTART) | (MS2) | (MS1) | (MS0) |


| Signal name | Function | Setting range |
| :---: | :--- | :--- |
| Not used | Set when the input terminal is not used. | - |
| FWD | Continuous operation in the positive direction. | $0:$ Deceleration stop |
| 1: Operation |  |  |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.

Note

- Do not assign the same input signal to multiple input terminals. When the same input signal is assigned to multiple input terminals, the function will be executed if any of the terminals becomes active.
- If the HMI input is not assigned to the input terminal, the HMI input will always become ON (function limitation release). When assigning to both direct I/O and network I/O, the function will be executed when both of them are set to ON.


## - Output signals from the PKA Series

The following output signals can be assigned to the NET-OUT0 to NET-OUT15 of remote I/O using the parameter. See the table for the assignments of the NET-OUTO to NET-OUT15. The value in ( ) is the initial value.
For details on parameter, refer to "I/O function parameter [RS-485]" on p.62.

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NET-OUT7 <br> (ALM) | NET-OUT6 <br> (WNG) | NET-OUT5 <br> (READY) | NET-OUT4 <br> (HOME-P) | NET-OUT3 <br> (START_R) | NET-OUT2 <br> (M2_R) | NET-OUT1 <br> (M1_R) | NET-OUT0 <br> (M0_R) |
| NET-OUT15 <br> (Not used) | NET-OUT14 <br> (Not used) | NET-OUT13 <br> (MOVE) | NET-OUT12 <br> (TIM) | NET-OUT11 <br> (AREA3) | NET-OUT10 <br> (AREA2) | NET-OUT9 <br> (AREA1) | NET-OUT8 <br> (S-BSY) |


| Signal name | Function | Setting range |
| :---: | :---: | :---: |
| Not used | Set when the output terminal is not used. | - |
| FWD_R | Output in response to the FWD. | $\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$ |
| RVS_R | Output in response to the RVS. |  |
| HOME_R | Output in response to the HOME. |  |
| START_R | Output in response to the START |  |
| SSTART_R | Output in response to the SSTART. |  |
| +JOG_R | Output in response to the +JOG . |  |
| -JOG_R | Output in response to the -JOG. |  |
| MSO_R | Output in response to the MSO. |  |
| MS1_R | Output in response to the MS1. |  |
| MS2_R | Output in response to the MS2. |  |
| MS3_R | Output in response to the MS3. |  |
| MS4_R | Output in response to the MS4. |  |
| MS5_R | Output in response to the MS5. |  |
| FREE_R * | Output in response to the FREE. |  |
| AWO_R | Output in response to the AWO. |  |
| STOP_R | Output in response to the STOP. |  |
| R0 | Output the status of the general signal R0. |  |
| R1 | Output the status of the general signal R1. |  |
| R2 | Output the status of the general signal R2. |  |
| R3 | Output the status of the general signal R3. |  |
| R4 | Output the status of the general signal R4. |  |
| R5 | Output the status of the general signal R5. |  |
| R6 | Output the status of the general signal R6. |  |
| R7 | Output the status of the general signal R7. |  |
| R8 | Output the status of the general signal R8. |  |
| R9 | Output the status of the general signal R9. |  |
| R10 | Output the status of the general signal R10. |  |
| R11 | Output the status of the general signal R11. |  |
| R12 | Output the status of the general signal R12. |  |
| R13 | Output the status of the general signal R13. |  |
| R14 | Output the status of the general signal R14. |  |
| R15 | Output the status of the general signal R15. |  |
| M0_R to M5_R | Output in response to the M0 to M5 |  |
| +LS_R | Output in response to the +LS. |  |
| -LS_R | Output in response to the -LS. |  |
| HOMES_R | Output in response to the HOMES. |  |
| SLIT_R | Output in response to the SLIT. |  |


| Signal name | Function | Setting range |
| :---: | :--- | :--- |
| ALM | Output the alarm status (normally open). | 0: Alarm not present <br> $1:$ Alarm present |
| WNG | Output the warning status. | 0: Warning not present <br> $1:$ Warning present |
| READY | Output when the motor is ready. | 0: Not ready <br> $1:$ Ready |
| MOVE | Output when the motor operates. | 0: Motor stopped <br> $1:$ Motor operating |
| HOME-P | Output when the motor is in home position. | 0: Not home position <br> $1:$ Home position |
| TIM | Output once every 7.2 ${ }^{\circ}$ rotation of the motor output shaft. | 0: OFF <br> $1:$ ON |
| AREA1 | Output when the motor is within the area 1. | 0: Outside area |
| AREA2 | Output when the motor is within the area 2. | 1: Inside area |
| AREA3 | Output when the motor is within the area 3. | 0: OFF <br> $1:$ ON |
| S-BSY | Output when the motor is in internal processing state. |  |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.


## 13-5 Command code list

This is common to NETC01-CC, NETC01-M2 and NETC01-M3.

## - Group function

The PKA Series has a group function. Multiple slaves are made into a group and a operation command is sent to all slaves in the group at once.

## - Group composition

A group consists of one parent slave and child slaves.

## Group address

To perform a group send, set a group address to the child slaves to be included in the group.
The child slaves to which the group address has been set can receive a command sent to the parent slave.
The operation command will be sent to the child slaves in the same group by sending it to the parent slave.

## Parent slave

No special setting is required on the parent slave to perform a group send. The address of the parent slave becomes the group address.

## Child slave

Use a "group" (1018h) to set a group address to each child slave.
Note Only remote I/O input can execute the group function. Read from commands and parameters or write to commands and parameters cannot be executed.

## - Group setting

The group setting is not saved in the non-volatile memory even when the maintenance command "batch non-volatile memory write" executes.

| Command code |  | Description | Setting range | Initial value |
| :---: | :---: | :--- | :--- | :---: |
| Read | Write |  | (Individual |  |
| 0018 h | 1018 h | Group | Set the group. <br> $-1:$ Individual (No group setting) <br> 0 to 31: Set the group. | -1 Ind |

* Set in the 0 to 11 range when using the NETCO1-CC, and set in the 0 to 15 range when using the NETCO1-M2 or NETC01-M3.
- Example for setting of the group function

Set as follows when making a group by setting the PKA Series of address number 1 to the parent slave and by setting the PKA Series of address number 2 and 3 to the child slaves.


This is a timing chart for when assigning the START signal to NET-IN3 (remote I/O) of the PKA Series in the group.


Note When inputting a command to the parent slave with remote I/O, the motors of the parent slave and child slaves will operate. The motors will not operate if the command is input to the child slaves.

## - Maintenance command

These commands are used to reset alarms and warnings. They are also used to execute the batch processing for the non-volatile memory. All commands can be read and written (READ/WRITE). Executes when writing from 0 to 1 .

| Command code | Name | Description | Setting range |
| :---: | :--- | :--- | :--- |
| 30 COh | Reset alarm | Resets the alarms that are present. Some alarms <br> cannot be reset with the "reset alarm." |  |
| 30 C 2 h | Clear alarm records | Clears alarm records. |  |
| 30 C 3 h | Clear warning records | Clears warning records. |  |
| 30 C 4 h | Clear communication error <br> records | Clears the communication error records. |  |
| 30 C 5 h | P-PRESET execute | Presets the command position. |  |
| 30 C 6 h | Configuration | Executes the parameter recalculation and the <br> setup. | 1: Execute |
| 30 C 7 h | All data initialization | Resets the parameters saved in the non-volatile <br> memory to the initial settings. |  |
| 30 C 8 h | Batch non-volatile memory <br> read | Reads the parameters saved in the non-volatile <br> memory, to the RAM. All operation data and <br> parameters previously saved in the RAM are <br> overwritten. |  |
| $30 C 9 \mathrm{~h}$ | Batch non-volatile memory <br> write | Writes the parameters saved in the RAM to the <br> non-volatile memory. |  |

Note The non-volatile memory can be rewritten approximately 100,000 times.

## Monitor command

Monitor the command position, command speed, alarm and warning records, etc. All commands can be read (READ).

| Command code | Name | Description | Range |
| :---: | :---: | :---: | :---: |
| 2040h | Present alarm | Monitors the present alarm code. | 00h to FFh |
| 2041h | Alarm record 1 | Monitors the alarm records 1 to 10. |  |
| 2042h | Alarm record 2 |  |  |
| 2043h | Alarm record 3 |  |  |
| 2044h | Alarm record 4 |  |  |
| 2045h | Alarm record 5 |  |  |
| 2046h | Alarm record 6 |  |  |
| 2047h | Alarm record 7 |  |  |
| 2048h | Alarm record 8 |  |  |
| 2049h | Alarm record 9 |  |  |
| 204Ah | Alarm record 10 |  |  |
| 204Bh | Present warning | Monitors the present warning code. |  |
| 204Ch | Warning record 1 | Monitors the warning records 1 to 10. |  |
| 204Dh | Warning record 2 |  |  |
| 204Eh | Warning record 3 |  |  |
| 204Fh | Warning record 4 |  |  |
| 2050h | Warning record 5 |  |  |
| 2051h | Warning record 6 |  |  |
| 2052h | Warning record 7 |  |  |
| 2053h | Warning record 8 |  |  |
| 2054h | Warning record 9 |  |  |
| 2055h | Warning record 10 |  |  |


| Command code | Name | Description | Range |
| :---: | :---: | :---: | :---: |
| 2057h | Communication error code record 1 | Monitors the communication error records 1 to 10 that have occurred in the past. | 00h to FFh |
| 2058h | Communication error code record 2 |  |  |
| 2059h | Communication error code record 3 |  |  |
| 205Ah | Communication error code record 4 |  |  |
| 205Bh | Communication error code record 5 |  |  |
| 205Ch | Communication error code record 6 |  |  |
| 205Dh | Communication error code record 7 |  |  |
| 205Eh | Communication error code record 8 |  |  |
| 205Fh | Communication error code record 9 |  |  |
| 2060h | Communication error code record 10 |  |  |
| 2061h | Present selected data No. | Monitors the operation data No. currently selected. | 0 to 63 |
| 2062h | Present operation data No. | Monitors the operation data No. corresponding to the data used in the current positioning operation. This address is used in linked-motion operation and sequential operation. While the motor is stopped, the last used operation data number is indicated. " -1 " is indicated until the positioning operation is performed after turning the power ON. | -1 to 63 |
| 2063h | Command position | Monitors the command position. | $\begin{aligned} & -2,147,483,648 \text { to } \\ & 2,147,483,647 \text { step } \end{aligned}$ |
| 2064h | Command speed (r/min) | Monitors the current command speed. | $\begin{aligned} & \text {-9,600 to }+9,600 \mathrm{r} / \mathrm{min} \\ & \text { +: Forward } \\ & \text {-: Reverse } \\ & 0 \text { : Stop } \end{aligned}$ |
| 2065h | Command speed (Hz) |  | $\begin{aligned} & -1,000,000 \text { to } \\ & 1,000,000 \mathrm{~Hz} \end{aligned}$ |
| 2069h | Remaining dwell time | Monitors how much of the dwell time used in the linked-motion operation 2 remains. | 0 to $50,000 \mathrm{~ms}$ |
| 206Ah | Direct I/O status | Monitors the each direct I/O signal. | See table next. |

- Direct I/O status (206Ah)

| Byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | IN1 | IN0 | - | - | - | - | - | - |
| 1 | - | - | - | - | - | - | IN3 | IN2 |
| 2 | - | - | - | - | - | - | OUT1 | OUT0 |
| 3 | - | - | - | - | - | - | - | - |

## Operation data

The parameters are saved in the RAM or non-volatile memory.
Note - The parameters are written in the RAM area when writing via the NETCO1-CC, NETC01-M2 or NETCO1-M3.

- When saving data to the non-volatile memory, execute "batch non-volatile memory write" of the maintenance command.
- The non-volatile memory can be rewritten approximately 100,000 times.

| Command code |  | Name | Setting range | Initial value | Update *1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Read | Write |  |  |  |  |
| $\begin{aligned} & \text { 0200h } \\ & \text { to } \\ & 023 \mathrm{Fh} \end{aligned}$ | $\begin{gathered} 1200 \mathrm{~h} \\ \text { to } \\ 123 \mathrm{Fh} \end{gathered}$ | Position No. 0 to Position No. 63 | $-8,388,608$ to 8,388,607 step | 0 |  |
| $\begin{gathered} \hline 0240 \mathrm{~h} \\ \text { to } \\ 027 \mathrm{Fh} \end{gathered}$ | $\begin{gathered} 1240 \mathrm{~h} \\ \text { to } \\ 127 \mathrm{Fh} \end{gathered}$ | Operating speed No. 0 to Operating speed No. 63 | 0 to 1,000,000 Hz | 1,000 |  |
| 0280h to 02BFh | $\begin{gathered} 1280 \mathrm{~h} \\ \text { to } \\ 12 \mathrm{BFh} \end{gathered}$ | Operation mode No. 0 to Operation mode No. 63 | 0 : Incremental <br> 1: Absolute | 0 |  |
| $\begin{aligned} & \text { 02COh } \\ & \text { to } \\ & 02 \mathrm{FFh} \end{aligned}$ | $\begin{gathered} 12 \mathrm{COh} \\ \text { to } \\ 12 \mathrm{FFh} \end{gathered}$ | Operation function No. 0 to Operation function No. 63 | 0 : Single-motion <br> 1: Linked-motion <br> 2: Linked-motion 2 | 0 |  |
| $\begin{aligned} & \text { 0300h } \\ & \text { to } \\ & 033 \mathrm{Fh} \end{aligned}$ | $\begin{aligned} & 1300 \mathrm{~h} \\ & \text { to } \\ & \text { 133Fh } \end{aligned}$ | Acceleration No. 0 to Acceleration No. 63 | $\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) \end{aligned}$ | 30,000 |  |
| $\begin{gathered} \text { 0340h } \\ \text { to } \\ 037 \mathrm{Fh} \end{gathered}$ | $\begin{aligned} & \text { 1340h } \\ & \text { to } \\ & \text { 137Fh } \end{aligned}$ | Deceleration No. 0 to Deceleration No. 63 | *2*3 |  |  |
| $\begin{gathered} \text { 03COh } \\ \text { to } \\ 03 F F h \end{gathered}$ | $\begin{gathered} \text { 13C0h } \\ \text { to } \\ \text { 13FFh } \end{gathered}$ | $\begin{gathered}\text { Sequential positioning No. } 0 \\ \text { to }\end{gathered}$ $\begin{gathered}\text { Sequential positioning No. } 63\end{gathered}$ | 0: Disable <br> 1: Enable | 0 |  |
| $\begin{gathered} \hline 0400 \mathrm{~h} \\ \text { to } \\ 043 \mathrm{Fh} \end{gathered}$ | $\begin{gathered} 1400 \mathrm{~h} \\ \text { to } \\ \text { 143Fh } \end{gathered}$ | Dwell time No. 0 to Dwell time No. 63 | 0 to 50,000 ( $1=0.001 \mathrm{~s}$ ) | 0 |  |

*1 Indicates the timing for the data to become update. (B: Update after stopping the operation)
*2 This item is effective when the "acceleration/deceleration type" parameter is set to "separate". If this parameter is set to "common", the values of the "common acceleration" and "common deceleration" parameters will be used (initial value: separate).
*3 Acceleration/deceleration rate ( $\mathrm{ms} / \mathrm{kHz}$ ) or acceleration/deceleration time (s) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

## - User parameter

The parameters are saved in the RAM or non-volatile memory.
When a parameter is changed, the timing to update the new value varies depending on the parameter. See the following three types.

| Update timing |  | Description |
| :---: | :--- | :--- |
| A | Update immediately | Executes the recalculation and setup immediately when <br> writing the parameter. |
| B | Update after stopping the operation | Executes the recalculation and setup after stopping the <br> operation. |
| C | Update after executing the configuration | Executes the recalculation and setup after executing the <br> configuration. |

- I/O

| Command code |  | Name | Setting range | Initial value | Update <br> (p.118) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Read | Write |  |  |  |  |
| 0100h | 1100h | STOP input action | 0: Immediate stop <br> 1: Deceleration stop <br> 2: Immediate stop+Current OFF <br> 3: Deceleration stop+Current OFF | 1 | A |
| 0101h | 1101h | Hardware overtravel | 0 : Disable <br> 1: Enable | 1 |  |
| 0102h | 1102h | Overtravel action | 0: Immediate stop <br> 1: Deceleration stop | 0 |  |
| 0105h | 1105h | AREA1 positive direction position | $-8,388,608$ to 8,388,607 step | 0 |  |
| 0106h | 1106h | AREA1 negative direction position |  |  |  |
| 0107h | 1107h | AREA2 positive direction position |  |  |  |
| 0108h | 1108h | AREA2 negative direction position |  |  |  |
| 0109h | 1109h | AREA3 positive direction position |  |  |  |
| 010Ah | 110Ah | AREA3 negative direction position |  |  |  |
| 010Bh | 110Bh | Minimum ON time for MOVE output | 0 to 255 ms | 0 |  |
| 0800h | 1800h | MSO operation No. selection | 0 to 63 | 0 | B |
| 0801h | 1801h | MS1 operation No. selection |  | 1 |  |
| 0802h | 1802h | MS2 operation No. selection |  | 2 |  |
| 0803h | 1803h | MS3 operation No. selection |  | 3 |  |
| 0804h | 1804h | MS4 operation No. selection |  | 4 |  |
| 0805h | 1805h | MS5 operation No. selection |  | 5 |  |
| 0806h | 1806h | HOME-P function selection | 0 : Home output <br> 1: Return-to-home complete output | 0 | A |

- Motor

| Command code |  | Name |  | Setting range | Initial value |
| :---: | :---: | :--- | :--- | :---: | :---: | \(\left.\begin{array}{c}Update <br>

(\mathrm{p} .118)\end{array}\right)\)

- Operation

| Command code |  | Name | Setting range | Initial <br> value | Update (p.118) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Read | Write |  |  |  |  |
| 0140h | 1140h | Common acceleration | $\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) * 1 * 2 \end{aligned}$ | 30,000 | B |
| 0141h | 1141h | Common deceleration |  |  |  |
| 0142h | 1142h | Starting speed | 0 to 1,000,000 Hz | 100 |  |
| 0143h | 1143h | JOG operating speed | 1 to $1,000,000 \mathrm{~Hz}$ | 1,000 |  |
| 0144h | 1144h | Acceleration/deceleration rate of JOG | $\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) * 1 * 2 \end{aligned}$ | 30,000 |  |
| 0145h | 1145h | JOG starting speed | 0 to 1,000,000 Hz | 100 |  |
| 0146h | 1146h | Acceleration/deceleration type | 0 : Common 1:Separate | 1 |  |
| 0147h | 1147h | Acceleration/deceleration unit | $\begin{aligned} & 0: \mathrm{ms} / \mathrm{kHz} \\ & 1: \mathrm{s} \end{aligned}$ | 0 | C |
| 0824h | 1824h | JOG travel amount | 1 to 8,388,607 step | 1 | B |

*1 This item is effective when the "acceleration/deceleration type" parameter is set to "common" (initial value: separate).
*2 Acceleration/deceleration rate ( $\mathrm{ms} / \mathrm{kHz}$ ) or acceleration/deceleration time ( s ) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

- Return-to-home

| Command code |  | Name | Setting range | Initial value | Update (p.118) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Read | Write |  |  |  |  |
| 0160h | 1160h | Home-seeking mode | 0: 2-sensor mode <br> 1:3-sensor mode | 1 |  |
| 0161h | 1161h | Operating speed of homeseeking | 1 to 1,000,000 Hz | 1,000 |  |
| 0162h | 1162h | Acceleration/deceleration of home-seeking | $\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) \text { * } \end{aligned}$ | 30,000 |  |
| 0163h | 1163h | Starting speed of homeseeking | 1 to 1,000,000 Hz | 100 |  |
| 0164h | 1164h | Position offset of homeseeking | -8,388,608 to 8,388,607 step | 0 | B |
| 0165h | 1165h | Starting direction of homeseeking | 0 : Negative direction <br> 1: Positive direction | 1 |  |
| 0166h | 1166h | SLIT detection with homeseeking | 0: Disable | 0 |  |
| 0167h | 1167h | TIM signal detection with home-seeking | 1: Enable | 0 |  |
| 0830h | 1830h | Backward steps in 2sensor mode home-seeking | 1 to 32,767 step | 200 |  |

* Acceleration/deceleration rate ( $\mathrm{ms} / \mathrm{kHz}$ ) or acceleration/deceleration time ( s ) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).


## - Alarm/warning

| Command code |  | Name |  | Setting range |  |
| :---: | :---: | :--- | :--- | :---: | :---: | \(\left.\begin{array}{c}Initial <br>

value\end{array} $$
\begin{array}{c}\text { Update } \\
\text { (p.118) }\end{array}
$$\right)\)

- Coordination

| Command code |  | Name | Setting range |  | Initial value |
| :---: | :---: | :--- | :--- | :---: | :---: | \(\left.\begin{array}{c}Update <br>

(p.118)\end{array}\right)\)

- Common

| Command code |  | Name |  | Setting range | Initial value |
| :---: | :---: | :--- | :--- | :---: | :---: | \(\left.\begin{array}{c}Update <br>

(p.118)\end{array}\right)\)

- I/O function

| Command code |  |  | Name | Setting range | Initial value |
| :---: | :---: | :--- | :--- | :---: | :---: | \(\left.\begin{array}{c}Update <br>

(\mathrm{p} .118)\end{array}\right)\)

## Setting range for IN input function selection

| 0: Not used | 8: MS0 | 18: STOP | 36: R4 | 44: R12 | 52: M4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1: FWD | 9: MS1 | 24: ALM-RST | 37: R5 | 45: R13 | 53: M5 |
| 2: RVS | 10: MS2 | 25: P-PRESET | 38: R6 | 46: R14 | 60: +LS |
| 3: HOME | 11: MS3 | 27: HMI | 39: R7 | 47: R15 | 61: -LS |
| 4: START | 12: MS4 | 32: R0 | 40: R8 | 48: M0 | 62: HOMES |
| 5: SSTART | 13: MS5 | 33: R1 | 41: R9 | 49: M1 | 63: SLIT |
| 6: +JOG | 16: FREE * | 34: R2 | 42: R10 | 50: M2 |  |
| 7: -JOG | 17: AWO | 35: R3 | 43: R11 | 51: M3 |  |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.


## Setting range for OUT output function selection

| 0 : Not used | 8: MSO_R | 32: R0 | 41: R9 | 50: M2_R | 66: WNG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1:FWD_R | 9: MS1_R | 33: R1 | 42: R10 | 51: M3_R | 67: READY |
| 2: RVS_R | 10: MS2_R | 34: R2 | 43: R11 | 52: M4_R | 68: MOVE |
| 3: HOME_R | 11: MS3_R | 35: R3 | 44: R12 | 53: M5_R | 70: HOME-P |
| 4: START_R | 12: MS4_R | 36: R4 | 45: R13 | 60: +LS_R | 72: TIM |
| 5: SSTART_R | 13: MS5_R | 37: R5 | 46: R14 | 61:-LS_R | 73: AREA1 |
| 6: +JOG_R | 16: FREE_R * | 38: R6 | 47: R15 | 62: HOMES_R | 74: AREA2 |
| 7: -JOG_R | 17: AWO_R | 39: R7 | 48: MO_R | 63: SLIT_R | 75: AREA3 |
|  | 18: STOP_R | 40: R8 | 49: M1_R | 65: ALM | 80: S-BSY |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.
- I/O function [RS-485]

| Command code |  | Name | Setting range | Initial value | Update (p.118) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Read | Write |  |  |  |  |
| 08B0h | 18B0h | NET-IN0 input function selection | See table next. | 48 | C |
| 08B1h | 18B1h | NET-IN1 input function selection |  | 49 |  |
| 08B2h | 18B2h | NET-IN2 input function selection |  | 50 |  |
| 08B3h | 18B3h | NET-IN3 input function selection |  | 4 |  |
| 08B4h | 18B4h | NET-IN4 input function selection |  | 3 |  |
| 08B5h | 18B5h | NET-IN5 input function selection |  | 18 |  |
| 08B6h | 18B6h | NET-IN6 input function selection |  | 0 |  |
| 08B7h | 18B7h | NET-IN7 input function selection |  | 17 |  |
| 08B8h | 18B8h | NET-IN8 input function selection |  | 8 |  |
| 08B9h | 18B9h | NET-IN9 input function selection |  | 9 |  |
| 08BAh | 18BAh | NET-IN10 input function selection |  | 10 |  |
| 08BBh | 18BBh | NET-IN11 input function selection |  | 5 |  |
| 08BCh | 18BCh | NET-IN12 input function selection |  | 6 |  |
| 08BDh | 18BDh | NET-IN13 input function selection |  | 7 |  |
| 08BEh | 18BEh | NET-IN14 input function selection |  | 1 |  |
| 08BFh | 18BFh | NET-IN15 input function selection |  | 2 |  |
| 08C0h | 18C0h | NET-OUT0 output function selection | See table next. | 48 |  |
| 08C1h | 18C1h | NET-OUT1 output function selection |  | 49 |  |
| 08C2h | 18C2h | NET-OUT2 output function selection |  | 50 |  |
| 08C3h | 18C3h | NET-OUT3 output function selection |  | 4 |  |
| 08C4h | 18C4h | NET-OUT4 output function selection |  | 70 |  |
| 08C5h | 18C5h | NET-OUT5 output function selection |  | 67 |  |
| 08C6h | 18C6h | NET-OUT6 output function selection |  | 66 |  |
| 08C7h | 18C7h | NET-OUT7 output function selection |  | 65 |  |
| 08C8h | 18C8h | NET-OUT8 output function selection |  | 80 |  |


| Command code |  | Name | Setting range | Initial value | Update (p.118) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Read | Write |  |  |  |  |
| 08C9h | 18C9h | NET-OUT9 output function selection | See table next. | 73 | C |
| 08CAh | 18CAh | NET-OUT10 output function selection |  | 74 |  |
| 08CBh | 18CBh | NET-OUT11 output function selection |  | 75 |  |
| 08CCh | 18CCh | NET-OUT12 output function selection |  | 72 |  |
| 08CDh | 18CDh | NET-OUT13 output function selection |  | 68 |  |
| 08CEh | 18CEh | NET-OUT14 output function selection |  | 0 |  |
| 08CFh | 18CFh | NET-OUT15 output function selection |  | 0 |  |

## Setting range for NET-IN input function selection

| 0: Not used | 7: -JOG | 16: FREE * | 33: R1 | 40: R8 | 47: R15 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1: FWD | 8: MS0 | 17: AWO | 34: R2 | 41: R9 | 48: M0 |
| 2: RVS | 9: MS1 | 18: STOP | $35:$ R3 | 42: R10 | 49: M1 |
| 3: HOME | 10: MS2 | 24: ALM-RST | $36:$ R4 | 43: R11 | 50: M2 |
| 4: START | 11: MS3 | 25: P-PRESET | 37: R5 | 44: R12 | 51: M3 |
| 5: SSTART | 12: MS4 | 27: HMI | $38:$ R6 | 45: R13 | 52: M4 |
| 6: +JOG | 13: MS5 | 32: R0 | 39: R7 | 46: R14 | 53: M5 |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.
Setting range for NET-OUT output function selection

| 0: Not used | 8: MSO_R | 32: R0 | 41: R9 | 50: M2_R | 66: WNG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1:FWD_R | 9: MS1_R | 33: R1 | 42: R10 | 51: M3_R | 67: READY |
| 2: RVS_R | 10: MS2_R | 34: R2 | 43: R11 | 52: M4_R | 68: MOVE |
| 3: HOME_R | 11: MS3_R | 35: R3 | 44: R12 | 53: M5_R | 70: HOME-P |
| 4: START_R | 12: MS4_R | 36: R4 | 45: R13 | 60: +LS_R | 72: TIM |
| 5: SSTART_R | 13: MS5_R | 37: R5 | 46: R14 | 61: -LS_R | 73: AREA1 |
| 6: +JOG_R | 16: FREE_R * | 38: R6 | 47: R15 | 62: HOMES_R | 74: AREA2 |
| 7: -JOG_R | 17: AWO_R | 39: R7 | 48: MO_R | 63: SLIT_R | 75: AREA3 |
|  | 18: STOP_R | 40: R8 | 49: M1_R | 65: ALM | 80: S-BSY |

* The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.
- Communication

| Command code |  | Name |  | Setting range | Initial value |
| :---: | :---: | :--- | :--- | :---: | :---: | \(\left.\begin{array}{c}Update <br>

(p.118)\end{array}\right)\)

## 14 Alarms and warnings

The motor provides alarms that are designed to protect the motor from overheating, poor connection, error in operation, etc. (protective functions), as well as warnings that are output before the corresponding alarms generate (warning functions).

## 14-1 Alarms

When an alarm generates, the ALM output will turn OFF and the motor will stop. At the same time, the ALM LED will start blinking. The present alarm can be checked by counting the number of times the ALM LED blinks, or using the MEXE02, OPX-2A or RS-485 communication.

Example: Overvoltage alarm (number of ALM LED blinks: 3)


## Alarm reset

Before resetting an alarm, always remove the cause of the alarm and ensure safety, and perform one of the reset operations specified below. Refer to p. 51 for the timing chart.

- Turn the ALM-RST input to OFF and then ON. (The alarm will be reset at the ON edge of the input.)
- Perform an alarm reset using RS-485 communication.
- Perform an alarm reset using the MEXE02 or OPX-2A.
- Cycle the power.


## Note

Some alarms cannot be reset with the ALM-RST input, MEXE02, OPX-2A or RS-485 communication. Check the following table to identify which alarms meet this condition. To reset these alarms, cycle the power.

Alarm list

| Code | No. of <br> ALM <br> LED <br> blinks | Alarm type | Cause | Remedial action | Reset operation | Motor excitation* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21h | 2 | Main circuit overheat | The internal temperature of the control circuit has reached about $80^{\circ} \mathrm{C}\left(176{ }^{\circ} \mathrm{F}\right)$. | Review the ventilation condition in the enclosure. | - ALM-RST input <br> - RS-485 communication <br> - MEXEO2 <br> - OPX-2A <br> - Cycle the power | Off |
| 22h | 3 | Overvoltage | - A voltage exceeding the specification value was applied. <br> - A large inertial load was stopped abruptly or vertical operation was performed | - Check the input voltage of the power supply. <br> - If this alarm generates during operation, reduce the load or increase the acceleration/ deceleration. |  |  |
| 25h |  | Undervoltage | The main power was cut off momentarily or the voltage became low. | Check the input voltage of the main power supply. |  |  |
| 34h | 2 | Command pulse error | The command pulse frequency exceeded the specified value. | Lower the command pulse frequency to the rate at which no alarm is output. |  |  |
| 41h | 9 | EEPROM error | The stored data was damaged. | Initialize the all parameters. | Cycle the power | Off |


| Code | No. of ALM LED blinks | Alarm type | Cause | Remedial action | Reset operation | Motor excitation* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4Ah |  | Return-to-home incomplete | The positioning operation was started when the position origin has not been set. | Perform the position preset or return-to-home operation. |  |  |
| 60h |  | $\pm \mathrm{LS}$ both sides active | Both the +LS and -LS signals were detected when "hardware overtravel" parameter was enabled. | Check the sensor logic. |  |  |
| 61h |  | Reverse limit sensor connection | The LS opposite to the operating direction has detected during a return-tohome operation in 2-sensor mode or 3-sensor mode. | Check the $\pm \mathrm{LS}$ wiring. |  |  |
| 62h | 7 | Home seeking error | Return-to-home operation did not complete normally. | - An unanticipated load may have been applied during the return-to-home operation. Check the load. <br> - If the installation positions of $\pm$ LS and HOMES are close to one another, the return-tohome sequence may not end properly, depending on the starting direction of return-to-home operation. Review the sensor installation positions and the starting direction of return-to-home operation. <br> - Return-to-home operation may have been performed in a condition where both +LS and -LS were detected. Check the sensor logic. | - ALM-RST input <br> - RS-485 communication <br> - MEXEO2 <br> - OPX-2A <br> - Cycle the power | On |
| 63h |  | No HOMES | The HOMES is not detected at a position between +LS and -LS during return-to-home operation in 3-sensor mode. | Install a HOMES between + LS and -LS. |  |  |
| 64h |  | TIM, SLIT signal error | None of the SLIT input or TIM output could be detected during return-to-home operation. | - Adjust the connection condition of the motor output shaft and load as well as the HOMES position so that at least one of the SLIT input or TIM output will turn ON while HOMES is ON. <br> - If the SLIT input or TIM output are not used with HOMES, set the "TIM signal detection with home-seeking" parameter and "SLIT detection with home-seeking" parameter to "disable." |  |  |
| 66h |  | Hardware overtravel | A +LS or -LS signal was detected when "hardware overtravel" parameter was enabled. | Pull out from the limit sensor via continuous operation or return-to-home operation. |  |  |


| Code | No. of ALM LED blinks | Alarm type | Cause | Remedial action | Reset operation | Motor excitation* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 67h | 7 | Software overtravel | A software limit was reached when "software overtravel" parameter was enabled. | In single-motion operation, check to see if the position exceeds the softlimit. In linked-motion operation, check to see if the result of linked position exceeds the softlimit. | - ALM-RST input <br> - RS-485 communication <br> - MEXEO2 <br> - OPX-2A <br> - Cycle the power | On |
| 6Ah |  | Home seeking offset error | A limit sensor signal was detected during offset movement as part of return-tohome operation. | Check the offset value. |  |  |
| 70h |  | Invalid operation data | - Data of different directions may be linked in linkedmotion operation. <br> - Five or more data may be linked. <br> - Positioning operation of the operating speed $0 \mathrm{r} / \mathrm{min}$ was performed. | Check the operation data. |  |  |
| 71h |  | Electronic gear setting error | The resolution set by the "electronic gear" parameter was outside of the specification. | Set the electronic gear correctly, and then cycle the power. | Cycle the power | Off |
| 81h |  | Network bus error | When the motor operates, the host system for the network converter shows a disconnected status. | Check the host system connector or cable. | - ALM-RST input <br> - RS-485 communication <br> - MEXEO2 <br> - OPX-2A <br> - Cycle the power | On |
| 83h |  | Communication switch setting error | Transmission rate setting switch (SW3) was out-ofspecification. | Check the transmission rate setting switch (SW3) | Cycle the power | Off |
| 84h |  | RS-485 communication error | The number of consecutive RS-485 communication errors reached the value set in the "communication error alarm" parameter. | - Check the connection between the host system and motor. <br> - Check the setting of RS-485 communication. | - ALM-RST input <br> - RS-485 communication <br> - MEXEO2 <br> - OPX-2A <br> - Cycle the power | On |
| 85h |  | RS-485 <br> communication timeout | The time set in the "communication timeout" parameter has elapsed, and yet the communication could not be established with the host system. | Check the connection between the host system and motor. |  |  |
| 8Eh |  | Network converter error | The network converter generated an alarm. | Check the alarm code of the network converter. |  |  |
| FOh | Lit | CPU error | CPU malfunctioned. | Cycle the power. | Cycle the power | Off |

* When an alarm generates, the motor operates as follows.

Excitation off: When an alarm generates, the motor current will be cut off and the motor will lose its holding torque. Excitation on: Even when an alarm generates, the motor current will not be cut off and the motor position will be held.

## Alarm records

Up to 10 generated alarms are saved in the non-volatile memory in order of the latest to oldest.
Alarm records saved in the non-volatile memory can be read and cleared when performing any of the following.

- Get the alarm records by the monitor command via RS-485 communication.
- Clear the alarm records by the maintenance command via RS-485 communication.
- Get and reset the alarm records using the MEXE02 or OPX-2A.


## 14-2 Warnings

When a warning generates, the WNG output will turn ON. The motor will continue to operate. Once the cause of the warning is removed, the WNG output will turn OFF automatically.

## Warning list

| Code | Warning type | Cause | Remedial action |
| :---: | :--- | :--- | :--- |
| 21 h | Main circuit overheat | The internal temperature of the control <br> circuit has exceeded the set value of the <br> "overheat warning" parameter. | Review the ventilation condition in <br> the enclosure. |
| 22 h | Overvoltage | - The voltage of the power supply <br> exceeded the value set in the parameter <br> for overvoltage warning. <br> $\bullet$ A large inertial load was stopped abruptly <br> or vertical operation was performed | $\bullet$ Check the input voltage of the <br> power supply. <br> - If this alarm generates during <br> operation, decrease the load or <br> increase the acceleration/ <br> deceleration rate. |
| 25 h | Undervoltage | - The power supply voltage dropped from <br> the value set in the parameter for <br> undervoltage warning. <br> -The main power was cut off momentarily <br> or the voltage became low. | Check the input voltage of the <br> power supply. |
| 71 h | Electronic gear setting <br> error | The resolution set in the "electronic gear" <br> parameter is outside the specified range. | Set the electronic gear correctly, <br> and then cycle the power. |
| 84 h | RS-485 communication <br> error | A RS-485 communication error was <br> detected. | -Check the connection between <br> the host system and motor. |
| •Check the setting of RS-485 |  |  |  |
| communication. |  |  |  |

## Warning records

Up to 10 generated warnings are saved in the RAM in order of the latest to oldest. Warning records saved in the RAM can be read or cleared when performing any of the following.

- Get the warning records by the monitor command via RS-485 communication.
- Clear the warning records by the maintenance command via RS-485 communication.
- Get and reset the warning records using the MEXE02 or OPX-2A.

You can also clear the warning records by turning off the motor power.

## 14-3 Communication errors

Up to 10 communication errors are saved in the RAM in order of the latest to the oldest and you can check via RS-485 communication.

## Communication error list

| Code | Communication error type | Cause | Remedial action |
| :---: | :---: | :---: | :---: |
| 84h | RS-485 communication error | One of the following errors was detected. <br> - Framing error <br> - BCC error | - Check the connection between the host system and motor. <br> - Check the setting of RS-485 communication. |
| 88h | Command not yet defined | The command requested by the master could not be executed because of being undefined. | - Check the setting value for the command. <br> - Check the flame configuration. |
| 89h | Execution disable due to user I/F communication in progress | The command requested by the master could not be executed since the MEXEO2 or OPX-2A was communicating with the driver. | Wait until the processing for the MEXEO2 or OPX-2A will be completed. |
| 8Ah | Execution disable due to non-volatile memory processing in progress | The command could not be executed because the driver was processing the non-volatile memory. <br> - Internal processing was in progress. (S-BSY is ON.) <br> - An EEPROM error alarm was present. | - Wait until the internal processing will complete. <br> - When the EEPROM error was generated, initialize the parameter via RS-485 communication. |
| 8Ch | Outside setting range | The setting data requested by the master could not be executed due to outside the range. | Check the setting data. |
| 8Dh | Command execute disable | When the command could not be executed, it tried to do it. | Check the motor status. |

## Communication error records

Up to 10 communication errors are saved in the RAM in order of the latest to oldest. Communication error records saved in the RAM can be read or cleared when performing any of the following.

- Get the communication error records by the monitor command via RS-485 communication.
- Clear the communication error records by the maintenance command via RS-485 communication.
- Get and reset the communication error records using the MEXE02 or OPX-2A.

Note You can also clear the communication records by turning off the motor power.

## 15 Troubleshooting and remedial actions

During motor operation, the motor or driver may fail to function properly due to an improper speed setting or wiring. When the motor cannot be operated correctly, refer to the contents provided in this section and take appropriate action. If the problem persists, contact your nearest Oriental Motor sales office.

| Phenomenon | Possible cause | Remedial action |
| :---: | :---: | :---: |
| - The motor is not excited. <br> - The motor output shaft can be moved by hand. | Connection error in the power supply. | Check the connections between the motor and power supply. |
|  | The motor current is set wrong. | Return the "RUN current" or "STOP current" parameter to its initial setting and check the motor operation. If the operating current is too low, the motor torque will also be too low and operation will be unstable. |
|  | The AWO input is turned ON. | Turn the AWO input OFF and confirm that the motor will be excited. |
| The motor does not operate. | The STOP input is turned ON. | Turn the STOP input OFF. |
|  | The position (distance) is not set in the operation data while positioning operation. | Check the operation data. |
|  | The FWD input and RVS input are turned ON simultaneously in the continuous operation. | Turn either FWD input or RVS input ON. |
| The motor rotates in the direction opposite to the specified direction. | The "rotation direction" parameter is set wrong. | Check the setting of the "rotation direction" parameter. |
| Motor operation is unstable. | Connection error in the power supply. | Check the connections between the motor and power supply. |
|  | The "RUN current" or "STOP current" parameter is too low. | Return the "RUN current" or "STOP current" parameter to its initial setting and check the motor operation. If the operating current is too low, the motor torque will also be too low and operation will be unstable. |
| Motor vibration is too great. | The centers of the motor's output shaft and load shaft are not aligned. | Check the connection condition of the motor output shaft and load shaft. |
|  | Motor is resonating. | If the vibration decreases when the operating speed is changed, it means the motor is resonating. Change the operating speed setting. |
|  | Load is too small. | Lower the operating current using the "RUN current" parameter. Vibration will increase if the motor's output torque is too large for the load. |
| There is holding torque even if motor excitation is turned off. | Effect of dynamic brake. | If the motor becomes the overvoltage condition, the motor coil will be short-circuited in the control circuit and the holding torque will be generated (dynamic brake). Return to the normal voltage to release the dynamic brake. |

Note - Check the alarm message when the alarm generates.

- I/O signals can be monitored using the MEXE02, OPX-2A or via RS-485 communication. Use to check the wiring condition of the I/O signals.


## 16 Inspection

It is recommended that periodic inspections be conducted for the items listed below after each operation of the motor.
If an abnormal condition is noted, discontinue any use and contact your nearest Oriental Motor sales office.

## During inspection

- Are any of the motor mounting screws loose?
- Are there any abnormal noises in the motor bearings (ball bearings) or other moving parts.?
- Are the motor output shaft and load shaft out of alignment?

Note The motor uses semiconductor elements. Handle the motor with care since static electricity may damage semiconductor elements. Static electricity may damage the motor.

## 17 General specifications

| Degree of protection |  | IP20 |
| :---: | :---: | :---: |
| Operation environment | Ambient temperature | 0 to $+50^{\circ} \mathrm{C}\left[+32\right.$ to $\left.+122^{\circ} \mathrm{F}\right]$ (non-freezing) |
|  | Humidity | 85\% or less (non-condensing) |
|  | Altitude | Up to 1,000 m (3,300 ft.) above sea level |
|  | Surrounding atmosphere | No corrosive gas, dust, water or oil |
| Storage environment | Ambient temperature | -25 to $+70^{\circ} \mathrm{C}\left[-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right]$ (non-freezing) |
|  | Humidity | $85 \%$ or less (non-condensing) |
|  | Altitude | Up to $3,000 \mathrm{~m}(10,000 \mathrm{ft}$.) above sea level |
|  | Surrounding atmosphere | No corrosive gas, dust, water or oil |
| Shipping environment | Ambient temperature | -25 to $+70^{\circ} \mathrm{C}\left[-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right]$ (non-freezing) |
|  | Humidity | 85\% or less (non-condensing) |
|  | Altitude | Up to 3,000 m ( $10,000 \mathrm{ft}$.) above sea level |
|  | Surrounding atmosphere | No corrosive gas, dust, water or oil |
| Insulation resistance |  | $100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: <br> - Between FG terminal and power supply terminal |
| Dielectric strength |  | Applied $500 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ for 1 minute, leak current 10 mA or less <br> - Between FG terminal and power supply terminal |

## 18 Accessories

## Data setter

The data setter lets you set data and parameters for your PKA Series with ease and also functions as a monitor.
Model: OPX-2A

## Communication cable for the support software

Be sure to purchase the communication cable for the support software when connecting a driver to the PC in which the support software MEXEO2 has been installed.
This is a set of a PC interface cable and USB cable. The cable is connected to the USB port on the PC.
Model: CC05IF-USB [5 m ( 16.4 ft. )]
The MEXEO2 can be downloaded from Oriental Motor Website Download Page. Also, the MEXEO2 is provided in the form of a storage medium. For details, check out our Website or contact your nearest Oriental Motor sales office.

## Data setter cable

This is a cable to connect the MEXE02 or OPX-2A to the PKA Series.
Model: CC001IF-CA
RS-485 communication cable

| Model | Length $[\mathrm{m}(\mathrm{ft})]$. | Description |
| :---: | :---: | :--- |
| CC020-RS4A | $2(6.6)$ | This is a cable to link motors. |
| CC020-RS4B | $2(6.6)$ | This is a cable to connect the motor and network converter. |

- Unauthorized reproduction or copying of all or part of this Manual is prohibited. If a new copy is required to replace an original manual that has been damaged or lost, please contact your nearest Oriental Motor branch or sales office.
- Oriental Motor shall not be liable whatsoever for any problems relating to industrial property rights arising from use of any information, circuit, equipment or device provided or referenced in this manual.
- Characteristics, specifications and dimensions are subject to change without notice.
- While we make every effort to offer accurate information in the manual, we welcome your input. Should you find unclear descriptions, errors or omissions, please contact the nearest office.
- Orientalmotor is a registered trademark or trademark of Oriental Motor Co., Ltd., in Japan and other countries. Modbus is a registered trademark of the Schneider Automation Inc. CC-Link is a registered trademark of the CC-Link Partner Association. EtherCAT ${ }^{\oplus}$ is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. MECHATROLINK is a registered trademark of the MECHATROLINK Members Association.
Other product names and company names mentioned in this manual may be registered trademarks or trademarks of their respective companies and are hereby acknowledged. The third-party products mentioned in this manual are recommended products, and references to their names shall not be construed as any form of performance guarantee. Oriental Motor is not liable whatsoever for the performance of these third-party products.
© Copyright ORIENTAL MOTOR CO., LTD. 2012
Published in July 2018
- Please contact your nearest Oriental Motor office for further information.

ORIENTAL MOTOR U.S.A. CORP.
Technical Support Tel:(800)468-3982
8:30 A.M. to 5:00 P.M., P.S.T. (M-F)
7:30 A.M. to 5:00 p.M., C.S.T. (M-F)
www.orientalmotor.com

## ORIENTAL MOTOR DO BRASIL LTDA

Tel:+55-11-3266-6018 www.orientalmotor.com.br

ORIENTAL MOTOR (EUROPA) GmbH Schiessstraße 44, 40549 Düsseldorf, Germany
Technical Support Tel:00 800/22 556622 www.orientalmotor.de

ORIENTAL MOTOR (UK) LTD.
Tel:01256-347090
www.oriental-motor.co.uk
ORIENTAL MOTOR (FRANCE) SARL
Tel:01 47869750
www.orientalmotor.fr
ORIENTAL MOTOR ITALIA s.r.I.
Tel:02-93906346
www.orientalmotor.it

ORIENTAL MOTOR ASIA PACIFIC PTE. LTD. Singapore
Tel:1800-8420280
www.orientalmotor.com.sg
ORIENTAL MOTOR (MALAYSIA) SDN. BHD. Tel:1800-806161
www.orientalmotor.com.my
ORIENTAL MOTOR (THAILAND) CO., LTD.
Tel:1800-888-881 www.orientalmotor.co.th

ORIENTAL MOTOR (INDIA) PVT. LTD
Tel:+91-80-41125586 www.orientalmotor.co.in

TAIWAN ORIENTAL MOTOR CO., LTD.
Tel:0800-060708
www.orientalmotor.com.tw
SHANGHAI ORIENTAL MOTOR CO., LTD.
Tel:400-820-6516
www.orientalmotor.com.cn

INA ORIENTAL MOTOR CO., LTD.

## Korea

Tel:080-777-2042
www.inaom.co.kr
ORIENTAL MOTOR CO., LTD.
Hong Kong Branch
Tel:+852-2427-9800
ORIENTAL MOTOR CO., LTD.
4-8-1 Higashiueno, Taito-ku, Tokyo
110-8536 Japan
Tel:03-6744-0361
www.orientalmotor.co.jp


[^0]:    * The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.

[^1]:    * The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.

[^2]:    * The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.

[^3]:    *1 This item is effective when the "acceleration/deceleration type" parameter is set to "common" (initial value: separate).
    *2 Acceleration/deceleration rate ( $\mathrm{ms} / \mathrm{kHz}$ ) or acceleration/deceleration time (s) can be selected using "acceleration/deceleration unit" parameter. (initial value: acceleration/deceleration rate).

[^4]:    * The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.

[^5]:    * The FREE input is a function that is used for an electromagnetic brake type motor. Do not use the FREE input since there is no electromagnetic brake type in the PKA Series.

