5-Phase Stepping Motor

RKII Series/
Motorized actuator equipped with RKII Series

GLED Built-in Controller Type

USER MANUAL

Introduction

Installation and connection

Operation type and setting

Method of control via I/O

Method of control via Modbus RTU (RS-485 communication)

Method of control via industrial network

Operation using the OPX-2A

Inspection,

 troubleshooting and remedial actionsCables / Accessories

Thank you for purchasing an Oriental Motor product.
This Manual describes product handling procedures and safety precautions.

- Please read it thoroughly to ensure safe operation.
- Always keep the manual where it is readily available.
1 Introduction
1 Introduction 10
2 Overview of the product. 11
3 System configuration 14
4 Safety precautions 15
5 Precautions for use 18
6 Specifications 21
7 Regulations and standards 23
7-1 UL Standards 23
7-2 CE Marking. 23
7-3 Republic of Korea, Radio Waves Act 24
7-4 RoHS Directive 24
8 Preparation 25
8-1 Checking the product 25
8-2 How to identify the product model (unit model) 26
8-3 How to identify the product model (Individual model) 27
8-4 Information about nameplate 28
8-5 Combinations of motors and drivers 29
8-6 Names and functions of parts 32
2 Installation and connection
1 Installation 36
1-1 Location for installation 36
1-2 Installing the motor 36
1-3 Installing a load 37
1-4 Permissible radial load and permissible axial load 38
1-5 Installing the driver 40
2 Connection 42
2-1 Connection example 42
2-2 Grounding the motor and driver 43
2-3 Connecting the main power supply 44
2-4 Connecting the 24 VDC power supply and electomagnetic brake 45
2-5 Connecting the I/O signals 46
2-6 Connecting the data setter 49
2-7 Connecting the RS-485 communication cable 49
2-8 Noise measures 50
2-9 Conformity to the EMC Directive 51
3 Explanation of I/O signals 53
3-1 Assignment of direct I/O 53
3-2 Assignment of network I/O 57
3-3 Input signals 61
3-4 Output signals 67
3-5 Sensor input 72
3-6 General signals (RO to R15) 73
3 Operation type and setting
1 Guidance 76
2 Adjustment and setting 79
2-1 Resolution 79
2-2 Operating current 80
2-3 Standstill current 80
2-4 Acceleration/deceleration rate and acceleration/deceleration time 81
2-5 Speed filter 82
2-6 Moving average filter 82
2-7 When a motor with an encoder is used 83
3 Operation type and function list 87
4 Positioning operation 88
4-1 Operation data. 88
4-2 Starting method of positioning operation 90
4-3 Operation function 94
5 Return-to-home operation 98
5-1 About description of return-to-home operation 98
5-2 Operation sequence 101
5-3 Position preset 104
6 Continuous operation 105
6-1 Operation data 105
6-2 Starting method of continuous operation 106
6-3 Variable speed operation 108
7 Other operation 110
7-1 JOG operation 110
7-2 Test operation 111
7-3 Stop operation 112
8 Coordinate management 114
8-1 Position coordinate management 114
8-2 Wrap function 114
9 Operation data 116
10 Parameter 117
10-1 Parameter list 117
10-2 I/O parameter 119
10-3 Motor parameter 120
10-4 Operation parameter 120
10-5 Home operation parameter 121
10-6 Alarm parameter 122
10-7 Warning parameter 122
10-8 Coordinates parameter 122
10-9 Common parameter 123
10-10 I/O function [Input] parameter 124
10-11 I/O function [Output] parameter 124
10-12 I/O function [RS-485] parameter 125
10-13 Communication parameter 126
4 Method of control via I/O
1 Guidance 128
2 Operation data 130
3 Parameter 131
3-1 Parameter list 131
3-2 I/O parameter 133
3-3 Motor parameter 133
3-4 Operation parameter 134
3-5 Home operation parameter 134
3-6 Alarm parameter 135
3-7 Warning parameter 135
3-8 Coordinates parameter 135
3-9 Common parameter 135
3-10 I/O function [Input] parameter 136
3-11 I/O function [Output] parameter 136
3-12 I/O function [RS-485] parameter 137
3-13 Communication parameter. 138
4 Timing charts 139
5 Method of control via Modbus RTU (RS-485 communication)
1 Guidance 148
2 Communication specifications 153
3 Setting the switches 155
4 Setting the RS-485 communication 158
5 Communication mode and communication timing 159
5-1 Communication mode 159
5-2 Communication timing 159
6 Message 160
6-1 Query. 160
6-2 Response 162
7 Function code 164
7-1 Reading from a holding register(s) [03h] 164
7-2 Writing to a holding register [06h] 165
7-3 Diagnosis [08h] 166
7-4 Writing to multiple holding registers [10h] 167
8 Register address list 169
8-1 Operation commands 169
8-2 Maintenance commands 171
8-3 Monitor commands 172
8-4 Parameter R/W commands 175
9 Group send 184
10 Example for setting of the operation 186
10-1 Positioning operation. 186
10-2 Continuous operation 189
10-3 Return-to-home operation 191
11 Detection of communication errors 193
11-1 Communication errors 193
11-2 Alarms and warnings. 193
12 Timing charts 194
6 Method of control via industrial network
1 Setting the switches 198
1-1 Protocol 198
1-2 Address number (slave address) 198
1-3 Transmission rate. 199
1-4 Termination resistor 199
2 Method of control via CC-Link communication. 200
2-1 Guidance. 200
2-2 Basic operation procedure 205
2-3 Remote register list of NETC01-CC 209
2-4 Assignment for remote I/O of 6-axes connection mode 209
2-5 Assignment for remote I/O of 12-axes connection mode. 212
3 Method of control via MECHATROLINK communication 217
3-1 Guidance. 217
3-2 Basic operation procedure 222
3-3 I/O field map for the NETC01-M2. 225
3-4 I/O field map for the NETC01-M3. 226
3-5 Communication format 227
4 Details of remote I/O 229
4-1 Input signals to the driver. 229
4-2 Output signals from the driver 230
5 Command code list 232
5-1 Group function 232
5-2 Maintenance command 233
5-3 Monitor command 234
5-4 Operation data. 236
5-5 User parameters 237
7 Operation using the OPX-2A
1 Overview of the OPX-2A 246
1-1 Names and functions of parts 247
1-2 How to read the display 247
1-3 OPX-2A error display. 248
2 Screen transitions 250
3 Monitor mode 256
3-1 Overview of the monitor mode. 256
3-2 Monitor items 256
4 Data mode 258
4-1 Setting items 258
4-2 Setting example 260
4-3 Initialization of the selected operation data 261
4-4 Initialization of all operation data 261
5 Parameter mode 262
5-1 Setting example 263
5-2 Parameter list. 264
5-3 Initializing parameters 269
6 Test mode 270
6-1 Overview of the test mode. 270
6-2 Direct $1 / O$ test 271
6-3 JOG operation 271
6-4 Data select operation 271
6-5 Return-to-home operation 272
6-6 Presetting the position 272
6-7 Presetting the encoder counter 272
6-8 Teaching 272
7 Copy mode 273
7-1 Overview of the copy mode 273
7-2 Error of the copy mode 273
8 Inspection, troubleshooting and remedial actions
1 Inspection and maintenance 276
1-1 Inspection 276
1-2 Warranty 276
1-3 Disposal 276
2 Alarms and warnings 277
2-1 Alarms 277
2-2 Warnings 282
2-3 Communication errors 283
3 Troubleshooting and remedial actions 284
9 Cables / Accessories
1 Cables 286
1-1 Motor cable 286
1-2 I/O signal cable 288
1-3 Communication cable for the support software 288
1-4 RS-485 communication cable 289
2 Accessories 290
2-1 Data setter 290
2-2 CR circuit for surge suppression 290
2-3 CR circuit module 290

1 Introduction

This part explains the composition of the operating manuals, the product overview, specifications and safety standards as well as the name and function of each part and others.

Table of contents

1 Introduction 10
2 Overview of the product 11
3 System configuration 14
4 Safety precautions 15
5 Precautions for use 18
6 Specifications 21
7 Regulations and standards 23
7-1 UL Standards 23
7-2 CE Marking 23
7-3 Republic of Korea, Radio Waves Act 24
7-4 RoHS Directive 24
8 Preparation 25
8-1 Checking the product 25
8-2 How to identify the product model (unit model) 26
8-3 How to identify the product model (Individual model) 27
8-4 Information about nameplate. 28
8-5 Combinations of motors and drivers 29
8-6 Names and functions of parts 32

1 Introduction

Before use

Only qualified personnel of electrical and mechanical engineering should work with the product.
Use the product correctly after thoroughly reading the section "4 Safety precautions" on p.15. In addition, be sure to observe the contents described in warning, caution, and note in this manual.
The product described in this manual has been designed and manufactured to be incorporated in general industrial equipment. Do not use for any other purpose. Oriental Motor Co., Ltd. is not responsible for any damage caused through failure to observe this warning.

Related operating manuals

For operating manuals, download from Oriental Motor Website Download Page or contact your nearest Oriental Motor sales office.

- RKII Series/Motorized actuator equipped with RKII Series USER MANUAL (this manual)

Read the following operating manuals for motorized actuators.

- OPERATING MANUAL Actuator Edition
- Motorized Actuator OPERATING MANUAL Function Setting Edition

About terms and units

Terms and units to be used vary depending on a motor or motorized actuator. This manual explains by using the terms of the motor. When the motorized actuator is used, read this manual by replacing the terms.

	Motor	Motorized actuator
Term	Torque	Thrust force
	Moment of inertia	Mass
	Rotation	Movement
	CW direction	Forward direction
	CCW direction	Reverse direction
	Rotation speed	Speed
Unit	Resolution	Minimum travel amount
	$\mathrm{N} \cdot \mathrm{m}$	N

2 Overview of the product

This product is a motor and driver package product consisting of a 5-phase stepping motor and a driver with built-in controller function.
This product can be controlled via I/O, Modbus RTU (RS-485 communication) or industrial network communication using the network converter.
The operation data and parameters can be set using Oriental Motor support software MEXE02 or data setter OPX-
2A, or via RS-485 communication.

- Main features

- Energy-saving

Motor and driver losses have been substantially reduced to achieve low heat generation and save energy. Since the motor and driver generate much less heat, they can now be operated for longer hours at high speed, which was not possible with conventional motors/drivers.

- Closely installable compact, slim size driver

This compact size driver helps downsizing and space-saving for the control box and equipment. Since the drivers are available to install closely, the limited space can effectively be utilized.

- Simple wiring

Screwless type connectors have adopted for connection of I/O signals.
The motor can be connected with ease using the dedicated cable/connector assembly.

- Three operating patterns

You can perform positioning operation, return-to-home operation and continuous operation. Up to 64 operation data points can be set, and multi-point positioning is also possible.

- Compatible with Modbus RTU (RS-485 communication)

You can set operation data and parameters or issue operation start/stop commands from the master controller. Up to 31 drivers can be connected to one master.

- Low vibration

Adopting a high performance microstep driver, this product achieved a smooth drive operation with ultra lowvibration, even if the operation was at low speeds.

- Automatic control of the electromagnetic brake (electromagnetic brake type only)

This driver controls the electromagnetic brake automatically. The control signal input or the troublesome ladder logic design can be saved.

- Alarm and warning functions

The driver provides alarms that are designed to protect the driver from overheating, poor connection, error in operation, etc. (protective functions), as well as warnings that are output before the corresponding alarms generate (warning functions).

Accessories

The operation data and parameters can be set using the MEXE02, OPX-2A or via RS-485 communication. Provide the following accessories as necessary.

- MEXE02The MEXE02 can be downloaded from Oriental Motor Website Download Page. When the MEXE02 is used, a communication cable for support software CC05IF-USB is needed to connect a PC and driver. Be sure to purchase it.
- OPX-2A......This product can be purchased separately.

Related products

The RKII Series FLEX built-in controller type can be used via various network when connecting to a network converter.

Network converter	Supported network
NETC01-CC	CC-Link Ver.1.10
NETC02-CC	CC-Link Ver.2.00
NETC01-M2	MECHATROLINK-II
NETC01-M3	MECHATROLINK-III
NETC01-ECT	EtherCAT

Function list

Main functions

| Return-to-home operation
 [Setting by parameters] | $\cdot 3$-sensor mode $\cdot 2$-sensor mode \quad Position preset |
| :---: | :---: | :---: |

Support functions

Protective function

Alarm detection
Warning detection

- I/O function

Input function selection Output function selection Input logic level setting

- Coordination setting

Resolution (Electronic gear)
Wrap function
Motor rotation direction

- Return-to-home function

Home position offset
External sensor signal detection

- Stop operation

STOP input action Overtravel

- Motor function setting

Operating current
Standstill current
Speed filter
Moving average filter

- Misstep detection function

Stepout detection action
Stepout detection band
Encoder resolution

External interface

	\cdot Monitor function	\cdot Data storing	Test function Data setter
	\cdot Operation data setting	\cdot Download/Upload	Test operation Teaching
	\cdot Parameter setting	\cdot Data initialization	I/O test

RS-485 communication	•Operation start . Operation data setting	- Parameter setting $\cdot$$\quad$ Maintenance function

3 System configuration

*1 Included with the product or sold separately.
*2 The PC must be supplied by the user. Use communication cable for the support software of Oriental Motor when connecting the PC and driver.
*3 This product is provided as Oriental Motor accessory.

The precautions described below are intended to prevent danger or injury to the user and other personnel through safe, correct use of the product. Use the product only after carefully reading and fully understanding these instructions.

Description of signs

〔WARNING	Handling the product without observing the instructions that accompany a "WARNING" symbol may result in serious injury or death.
〔CAUTION	Handling the product without observing the instructions that accompany a "CAUTION" symbol may result in injury or property damage.
Note	The items under this heading contain important handling instructions that the user should observe to ensure the safe use of the product.

Description of graphic symbols

	Indicates "prohibited" actions that must not be performed.	Indicates "compulsory" actions that must be performed.

©WARNING

0	Do not use the product in explosive or corrosive environments, in the presence of flammable gases, locations subjected to splashing water, or near combustibles. This may cause fire, electric shock or injury.
	Do not transport, install the product, perform connections or inspections when the power is on. This may cause electric shock.
	Do not touch the driver while the power is on. This may cause fire or electric shock.
	The terminals on the driver's front panel marked with \triangle § symbol indicate the presence of high voltage. Do not touch these terminals while the power is on. This may cause fire or electric shock.
	Do not use the brake mechanism of an electromagnetic brake motor as a deceleration/safety brake. This may cause injury or damage to the equipment.
	Do not forcibly bend, pull or pinch the cable. This may cause fire or electric shock.
	Do not remove the motor excitation during operation. Doing so may cause the motor to stop and lose the holding force, resulting in injury or damage to equipment.
	Do not touch the connection terminals on the driver immediately (within 10 minute) after the power is turned off. Before making wiring connections or carrying out checks, also wait for the CHARGE LED to turn off. This may cause electric shock.
	Do not disassemble or modify the product. This may cause injury or damage to equipment.
!	Assign qualified personnel the task of installing, wiring, operating/controlling, inspecting and troubleshooting the product. Failure to do so may result in fire, electric shock, injury or damage to equipment.
	If this product is used in an vertical application, be sure to provide a measure for the position retention of moving parts. Failure to do so may result in injury or damage to equipment.
	When the driver generates an alarm (any of the driver's protective functions is triggered), take measures to hold the moving part in place since the motor stops and loses its holding torque. Failure to do so may result in injury or damage to equipment.

AWARNING

	When the driver generates an alarm (any of the driver's protective functions is triggered), first remove the cause and then clear the protection function. Continuing the operation without removing the cause of the problem may cause malfunction of the motor and driver, leading to injury or damage to equipment.
	Install the product in an enclosure. Failure to do so may result in electric shock or injury.
	The motor and driver are designed with Class I equipment basic insulation. When installing the motor and driver, do not touch the product or be sure to ground them. Failure to do so may result in electric shock.
Keep the driver's input-power voltage within the specified range. Failure to do so may result in fire or electric shock.	
Connect the cables securely according to the wiring diagram. Failure to do so may result in fire or electric shock.	
Turn off the driver power in the event of a power failure. Failure to do so may result in injury or damage to equipment.	

	Do not use the product beyond its specifications. This may cause injury, electric shock or damage to equipment.
	Keep your fingers and objects out of the openings in the product. Failure to do so may result in fire, electric shock or injury.
	Do not touch the product during operation or immediately after stopping. This may cause a skin burn(s).
	Do not forcibly bend or pull the cable that was connected to the driver. Doing so may cause damage.
Do not hold the output shaft or cable. This may cause injury.	
Keep the area around the product free of combustible materials. Failure to do so may result in fire or a skin burn(s).	
Leave nothing around the product that would obstruct ventilation. Failure to do so may result in damage to equipment.	
The data edit connector (CN4) and RS-485 communication connector (CN6/CN7) of the driver are not electrically insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. This may cause the driver and these equipment to short, damaging both.	
Do not touch the rotating parts (output shaft etc.) during operation. This may cause injury.	
Do not touch the terminals while performing the insulation resistance test or dielectric strength test. This may cause electric shock.	
Provide a cover over the rotating parts (output shaft etc.). Failure to do so may result in injury.	
Use a motor and driver only in the specified combination. Failure to do so may result in fire.	
For the 24 VDC power supply, use a DC power supply with reinforced insulation on its primary and secondary sides. Failure to do so may result in electric shock.	
Provide an emergency stop device or emergency stop circuit external to the equipment so that the entire equipment will operate safely in the event of a system failure or malfunction. Failure to do so may result in injury.	
Before supplying power to the driver, turn all input signals to the driver to OFF. Failure to do so may result in injury or damage to equipment.	
When moving the moving part manually, put the motor into a non-excitation state. Continuing the work while the motor is in an excitation state may result in injury.	

\triangle CAUTION

	When an abnormal condition has occurred，immediately stop operation and turn off the driver power． Failure to do so may result in fire，electric shock or injury．
Use only an insulated slotted screwdriver to adjust the driver＇s switches． Failure to do so may result in electric shock．	

Warning information

A warning label with handling instructions is attached on the driver．Be sure to observe the instructions on the label when handling the driver．
\triangle WARNING－ －is of feectic shock．
－Read manual before installing． Do not touch the driver for 10 minutes after the power is turned off．
Residual voltage may cause electric shock．
－Lire le manuel avant l＇installation．
Ne touchez pas les variateur les 10 minutes
qui suivent la mise hors tension．
a tension résiduelle peut entraîner un choc électrique

告 ー けが・感電のおそれがあります。
据え付け，運転の前には必ず取扱説明書をお読み
ください。
電源を切った直後，10分間ドライバに触れないで
ください。残留電圧により感電の原因になります。
Material：PET

5 Precautions for use

This section covers limitations and requirements the user should consider when using the product.

- Be sure to use Oriental Motor cable to connect the motor and the driver.

Be sure to purchase Oriental Motor cable separately in the following cases. Check the cable models on p.286.

- If a flexible cable is to be used.
- If a cable of 3 m (9.8 ft .) or longer is to be used.
- If a motor and driver package without a cable was purchased.
- When conducting the insulation resistance measurement and the dielectric strength test, be sure to separate the connection between the motor and the driver.
Conducting the insulation resistance measurement or dielectric strength test with the motor and driver connected may result in damage to the equipment.
- Do not apply strong impact on the output shaft.

If you are using a motor with encoder, an optical encoder is housed in the motor. To prevent damage to the encoder, handle the motor with care and avoid strong impact to the output shaft when transporting the motor or installing the load.

- Do not apply a radial load and axial load in excess of the specified permissible limit

Operating the motor under an excessive radial load or axial load may damage the motor bearings (ball bearings). Be sure to operate the motor within the specified permissible limit of radial load and axial load. Refer to p. 38 for details.

- Motor case temperature

- The driver has an overheat protection function, but the motor has no such feature. The motor surface temperature may exceed $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ under certain conditions (ambient temperature, operating speed, duty cycle, etc.). To prevent the motor bearings (ball bearings) from reaching its usable life quickly, use the motor in conditions where the surface temperature will not exceed $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$.
- Use the geared motor in a condition where the gear case temperature does not exceed $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$, in order to prevent deterioration of grease and parts in the gear case.
- In the case of a motor with an encoder, use it in a condition where the motor surface temperature will not exceed $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$ in order to protect the encoder.
- Holding torque at standstill

The motor holding torque is reduced by the current cutback function of the driver at motor standstill. When selecting a motor, check the holding torque at motor standstill in the specifications on the catalog.

- Do not use the electromagnetic brake to reduce speed or as a safety brake.

Do not use the electromagnetic brake as a means to decelerate and stop the motor. The brake hub of the electromagnetic brake will wear significantly and the braking force will drop if used to stop the motor.
The electromagnetic brake is a power-off activated type. This means that although it helps maintain the position of the load in the event of power outage, etc., this brake cannot securely hold the load in place. Accordingly, do not use the electromagnetic brake as a safety brake. To use the electromagnetic brake to hold the load in place, do so after the motor has stopped.

- Preventing leakage current

Stray capacitance exists between the driver's current-carrying line and other current-carrying lines, the earth and the motor, respectively. A high-frequency current may leak out through such capacitance, having a detrimental effect on the surrounding equipment. The actual leakage current depends on the driver's switching frequency, the length of wiring between the driver and motor, and so on.
When connecting an earth leakage breaker, use one of the following products offering resistance against high frequency current:
Mitsubishi Electric Corporation: NV series

- Preventing electrical noise

See "2-8 Noise measures" on p. 50 for measures with regard to noise.

- Saving data to the non-volatile memory

Do not turn off the power supply while writing the data to the non-volatile memory and 5 seconds after the completion of writing the data. Doing so may abort writing the data and cause an EEPROM error alarm to generate. The non-volatile memory can be rewritten approximately 100,000 times.

- Motor excitation at power ON

The motor is excited when the 24 VDC power and main power is on. If the motor is required to be in non-excitation status when turning on the power, assign the AWO input to the direct I/O or network I/O.

- Note on connecting a power supply whose positive terminal is grounded

The data edit connector (CN4) and RS-485 communication connector (CN6/CN7) of the driver are not electrically insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the driver and these equipment to short, damaging both. Use the data setter OPX-2A to set data, etc.

- Grease of geared motor

On rare occasions, a small amount of grease may ooze out from the geared motor. If there is concern over possible environmental damage resulting from the leakage of grease, check for grease stains during regular inspections. Alternatively, install an oil pan or other device to prevent leakage from causing further damage. Oil leakage may lead to problems in the customer's equipment or products.

- Rotation direction of the output shaft

The output shaft rotates in the figure below at the factory setting. The rotation direction can be changed with the parameter setting.

- When setting the position (travel amount) to a positive value
- When setting the position (travel amount)
to a negative value

For geared type, the relationship between the rotation direction of the motor output shaft and that of the gear output shaft changes as follows, depending on the gear type and gear ratio. Check with the following table.

Type of gear	Gear ratio	Rotation direction of the gear output shaft (relative to the motor output shaft)
TS geared	$3.6,7.2,10$	Same direction
	20,30	Opposite direction
FC geared	All gear ratios	Same direction
PS geared	All gear ratios	Same direction
Harmonic geared	All gear ratios	Opposite direction

- Peak torque of geared motor

Always operate the geared motor under a load not exceeding the peak torque. If the load exceeds the peak torque, the gear will be damaged.

■ Notes when the connection cable is used
Note the following points when Oriental Motor cable is used.

- When inserting the connector

Hold the connector main body, and insert it in straight securely. Inserting the connector in an inclined state may result in damage to terminals or a connection failure.

- When pulling out the connector

Pull out the connector in straight while releasing the lock part of the connector. Pulling out the connector with holding the lead wire may result in damage to the connector.

- Bending radius of cable

Use the cable in a state where the bending radius of the cable is more than six times of the cable diameter.
Do not bend the lead wires part or fix it with a clamp. Doing so may cause damage to the connector.

- How to fix the cable

Fix the cable near the connectors at two places as shown in the figure or fix it with a wide clamp to take measures to prevent stress from being applied to the connectors.

6 Specifications

■ Driver specifications

Input signals	Photocoupler inputs Input signal voltage: 11.4 to 26.4 V
Output signals	Photocoupler/open-collector output External use condition: $30 \mathrm{VDC}, 10 \mathrm{~mA}$ or less

General specifications

- Motor

Operation environment	Ambient temperature	- -10 to $+50^{\circ} \mathrm{C}\left(+14\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (non-freezing) - Standard type with encoder: 0 to $+50^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (non-freezing) - Harmonic geared type: 0 to $+40^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+104{ }^{\circ} \mathrm{F}\right)$ (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to 1,000 m (3,300 ft.) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water or oil
Storage environment	Ambient temperature	-20 to $+60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to 3,000 m ($10,000 \mathrm{ft}$.) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water or oil
Shipping environment	Ambient temperature	-20 to $+60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to 3,000 m ($10,000 \mathrm{ft}$.) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water or oil
Degree of protection	IP20	
Insulation resistance	$100 \mathrm{M} \Omega$ or more when 500 - Case - Motor windings - Case - Electromagnetic b	C megger is applied between the following places: e windings
Dielectric strength	Sufficient to withstand the - Case - Motor windings; 1 - Case - Electromagnetic b	lowing for 1 minute VAC $50 / 60 \mathrm{~Hz}$ e windings; $1.5 \mathrm{kVAC} 50 / 60 \mathrm{~Hz}$

- Driver

Operation environment	Ambient temperature	0 to $+55^{\circ} \mathrm{C}$ (+32 to $131^{\circ} \mathrm{F}$) ${ }^{*}$ (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to 1,000 m (3,300 ft.) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water or oil
Storage environment	Ambient temperature	-25 to $+70^{\circ} \mathrm{C}\left(-13\right.$ to $+158^{\circ} \mathrm{F}$) (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to 3,000 m ($10,000 \mathrm{ft}$.) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water or oil
Shipping environment	Ambient temperature	-25 to $+70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$ (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to 3,000 m ($10,000 \mathrm{ft}$.) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water or oil
Degree of protection	IP10	
Insulation resistance	$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: - PE Terminal - Power supply terminals - Signal I/O terminals - Power supply terminals	
Dielectric strength	Sufficient to withstand the following for 1 minute: - PE Terminal - Power supply terminals; $1.5 \mathrm{kVAC} 50 / 60 \mathrm{~Hz}$ - Signal I/O terminals - Power supply terminals; $1.8 \mathrm{kVAC} 50 / 60 \mathrm{~Hz}$	

* When installing a driver on a heat sink. [material: aluminium, $200 \times 200 \times 2 \mathrm{~mm}$ ($7.87 \times 7.87 \times 0.08 \mathrm{in}$.) equivalent]

7 Regulations and standards

7-1 UL Standards

Check the "APPENDIX UL Standards and CSA Standards for RKII Series" for recognition information about UL Standards.

7-2 CE Marking

This product is affixed with the mark under the following directives.

Low Voltage Directive

- Installation conditions

Item	Motor	Driver
Overvoltage category	II	II
Pollution degree	2	2
Degree of protection	IP20	IP10
Protection against electric shock	Class I	Class I

- This product cannot be used in IT power distribution systems.
- Isolate the motor cable, the power supply cable and other drive cables from the signal cables by means of double insulation.
- The temperature of the driver's heat sink may exceed $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ depending on the driving condition. Observe the followings.
- Be sure to perform test operation and check the driver temperature.
- Do not use the driver near combustibles.
- Do not touch the driver while operating.
- Use a circuit breaker conforming to EN or IEC Standards.
- The driver is not provided with the electronic motor overload protection and the motor overtemperature protection specified in EN Standards.
- The driver is not provided with the ground fault protection circuit. Wire the product in accordance with "Example of wiring to power supply considering ground fault protection." Also observe the followings.
- Earth leakage breaker: Rated sensitivity current 30 mA
- When connecting to a power supply of Overvoltage category III, use an insulation transformer to ground its secondary side (N for single-phase).
- Fault loop impedance: Equal to or less than the value in table

Power supply specifications of driver	Fault loop impedance
Single-phase 100-120 VAC	500Ω
Single-phase 200-240 VAC	$1,000 \Omega$

- Example of wiring to power supply considering ground fault protection
- TN power distribution systems

- TT power distribution systems

EMC Directive

Refer to "2-9 Conformity to the EMC Directive" on p. 51 for details about conformity.

7-3 Republic of Korea, Radio Waves Act

This product is affixed with the KC Mark under the Radio Waves Act, the Republic of Korea.

7-4 RoHS Directive

This product does not contain the substances exceeding the restriction values.

8 Preparation

This chapter explains the items you should check, as well as the name and function of each part.

8-1 Checking the product

Verify that the items listed below are included. Report any missing or damaged items to the Oriental Motor sales office from which you purchased the product.

- Motor- Motor1 unit
- Cable for motor 1 pc.*1
- Cable for electromagnetic brake 1 pc.*2
- Cable for encoder 1 pc.*3
- Parallel key 1 pc.*4
- Motor mounting screw (M4) 4 pcs.*5
- Motor mounting screw (M8) 4 pcs.*6
- Instructions and Precautions for Safe Use 1 copy
- APPENDIX UL Standards and CSA Standards for RKII Series 1 copy*1 When the product is included with a connection cable.*2 When the product is a motor with an electromagnetic brake included with a connection cable.*3 When the product is a motor with an encoder included with a connection cable.
*4 Included with geared types; except for the PKE543-TS.
*5 Included with PKE564-TS
*6 Included with PKE596-TS
- Driver
- Driver 1 unit
- CN1 connector (4 pins) 1 pc.
- CN3 connector (3 pins) 1 pc.
- CN5 connector (5 pins) 1 pc.
- CN8 connector (9 pins) 1 pc.
- CN9 connector (7 pins) 1 pc.
- Instructions and Precautions for Safe Use 1 copy

d Precautions for Safe Use..
*2 When the product is a motor with an electromagnetic brake included with a connection cable.
*3 When the product is a motor with an encoder included with a connection cable.
*6 Included with PKE596-TS.

8-2 How to identify the product model (unit model)

$$
\begin{array}{lllllllllllll}
\text { RKS } & \frac{5}{2} & \frac{6}{3} & \frac{4}{4} & \frac{\mathbf{A}}{5} & \frac{\mathrm{C}}{6} & \frac{\mathrm{D}}{7} & -\frac{\text { HS }}{8} & \frac{\mathbf{5 0}}{9} & \frac{\square}{10} & \frac{\mathbf{- 3}}{11} & \frac{1}{12}
\end{array}
$$

1	Series name	RKII Series
2	5-phase	
3	Motor frame size	4: 42 mm (1.65 in .) 6: 60 mm (2.36 in.) 9: 85 mm (3.35 in .) [90 mm (3.54 in .) for geared types]
4	Motor case length	
5	Motor type	A: Single shaft B: Double shaft M: With electromagnetic brake R: With encoder
6	Power supply input	A: Single-phase $100-120 \mathrm{~V}$ C: Single-phase 200-240 V
7	Driver type	D: Built-in Controller Type
8	Type of gear	TS: TS geared FC: FC geared PS: PS geared HS: Harmonic geared Blank: Standard
9	Gear ratio	
10	Output shaft direction*1*2	L: L shaft (Leftward direction) R: R shaft (Rightward direction)
11	Motor identification*1	A: Solid shaft
12	Length of a connection cable	Number: Length of included connection cable (m) None: Without connection cable

*1 FC geared type only.
*2 The direction of the output shaft represents that as the view from the motor cable outlet side.

8-3 How to identify the product model (Individual model)

Check the model name of the motor and driver against the model name shown on the nameplate. Refer to "8-4 Information about nameplate" on p .28 for how to identify the nameplate.

Motor

- Standard type
$\begin{array}{lllllll}\text { PKE } & \frac{5}{2} & \frac{\mathbf{4}}{3} & \frac{\mathbf{3}}{4} & \frac{\mathbf{R}}{5} & \frac{\mathbf{C}}{6} & \frac{\mathbf{2}}{7}\end{array}$
- Geared type

$$
\frac{\text { PKE }}{1} \frac{5}{2} \frac{4}{3} \frac{5}{4} \frac{\mathbf{A}}{5} \frac{\mathbf{C}}{6}-\frac{\text { FC }}{8} \frac{7.2}{9} \frac{\mathbf{L}}{10} \frac{\mathbf{A}}{11}
$$

1	Series name	PKE: RKII Series motor
2	5-phase	
3	Motor frame size	4: 42 mm (1.65 in .) 6: 60 mm (2.36 in.) 9: 85 mm (3.35 in.) [90 mm (3.54 in) for geared types]
4	Motor case length	
5	Motor type	A: Single shaft B: Double shaft M: With electromagnetic brake R: With encoder
6	Power supply input	C: AC power input type
7	Reference number	
8	Type of gear	TS: TS geared FC: FC geared PS: PS geared HS: Harmonic geared
9	Gear ratio	
10	Output shaft direction*1*2	L: L shaft (Leftward direction) R: R shaft (Rightward direction)
11	Motor identification*1	A: Solid shaft

*1 FC geared type only.
*2 The direction of the output shaft represents that as the view from the motor cable outlet side.

Driver
$\frac{\text { RKSD }}{1} \frac{\mathbf{5}}{2} \frac{\mathbf{0 7}}{3}-\frac{\mathrm{A}}{4} \frac{\mathrm{D}}{5}$

1	Series name	RKSD: RKII Series driver
2	5-phase	
3	Rated current	
4	Power supply input	A: Single-phase 100-120 V C: Single-phase 200-240 V
5	Driver type	D: Built-in Controller Type

8-4 Information about nameplate

The figure shows an example.
memo The position describing the information may vary depending on the product.

Motor

Driver

8-5 Combinations of motors and drivers

Verify the model number of the purchased product against the number shown on the package label. Check the model number of the motor and driver against the number shown on the nameplate.

- The box ($\mathbf{\square}$) in the model name indicates \mathbf{A} (single-phase $100-120 \mathrm{~V}$) or C (single-phase 200-240 V).
- When the connection cable is included, the box (O) in the model name indicates the cable length $(-1,-2,-3)$.
- Standard type (single shaft)

Model	Motor model	Driver model
RKS543A■DO	PKE543AC	RKSD503-■D
RKS544A■DO	PKE544AC	
RKS545A■DO	PKE545AC	
RKS564A■DO	PKE564AC	RKSD507-■D
RKS566A■DO	PKE566AC	
RKS569A■DO	PKE569AC	
RKS596A■DO	PKE596AC	
RKS599A■DO	PKE599AC	
RKS5913A■DO	PKE5913AC	

- Standard type (with electromagnetic brake)

Model	Motor model	Driver model
RKS543MmDO	PKE543MC	RKSD503-■D
RKS544M■DO	PKE544MC	
RKS545M■DO	PKE545MC	
RKS564M■DO	PKE564MC	RKSD507-■D
RKS566M■DO	PKE566MC	
RKS569M■DO	PKE569MC	
RKS596M■DO	PKE596MC	
RKS599M■DO	PKE599MC	
RKS5913M■DO	PKE5913MC	

- TS geared type (single shaft)

Model	Motor model	Driver model
RKS543A■D-TS3.6O	PKE543AC-TS3.6	RKSD503-■D
RKS543A■D-TS7.2O	PKE543AC-TS7.2	
RKS543A■D-TS100	PKE543AC-TS10	
RKS543A■D-TS200	PKE543AC-TS20	
RKS543A■D-TS300	PKE543AC-TS30	
RKS564A■D-TS3.6O	PKE564AC-TS3.6	RKSD507-■D
RKS564A■D-TS7.2O	PKE564AC-TS7.2	
RKS564A■D-TS100	PKE564AC-TS 10	
RKS564A■D-TS200	PKE564AC-TS20	
RKS564A■D-TS300	PKE564AC-TS30	
RKS596A■D-TS3.60	PKE596AC-TS3.6	
RKS596A■D-TS7.2O	PKE596AC-TS7.2	
RKS596A■D-TS100	PKE596AC-TS10	
RKS596A■D-TS200	PKE596AC-TS20	
RKS596A■D-TS300	PKE596AC-TS30	

- Standard type (double shaft)

Model	Motor model	Driver model
RKS543B■DO	PKE543BC	RKSD503-■D
RKS544B■DO	PKE544BC	
RKS545B■DO	PKE545BC	
RKS564B■DO	PKE564BC	RKSD507-■D
RKS566B■DO	PKE566BC	
RKS569B■DO	PKE569BC	
RKS596B■DO	PKE596BC	
RKS599B■DO	PKE599BC	
RKS5913B■DO	PKE5913BC	

- Standard type (with encoder)

Model	Motor model	Driver model
RKS543R■D2O	PKE543RC2	RKSD503-■D
RKS544R■D2	PKE544RC2	
RKS545R■D2O	PKE545RC2	
RKS564R■D2	PKE564RC2	RKSD507-■D
RKS566R■D2O	PKE566RC2	
RKS569R■D2O	PKE569RC2	
RKS596R■D2O	PKE596RC2	
RKS599R■D2	PKE599RC2	
RKS5913R■D2O	PKE5913RC2	

- TS geared type (double shaft)

Model	Motor model	Driver model
RKS543B■D-TS3.6O	PKE543BC-TS3.6	RKSD503-■D
RKS543B■D-TS7.2O	PKE543BC-TS7.2	
RKS543B■D-TS100	PKE543BC-TS 10	
RKS543B■D-TS200	PKE543BC-TS20	
RKS543B■D-TS300	PKE543BC-TS30	
RKS564B■D-TS3.6O	PKE564BC-TS3.6	RKSD507-■D
RKS564B■D-TS7.2O	PKE564BC-TS7.2	
RKS564B■D-TS100	PKE564BC-TS 10	
RKS564B■D-TS200	PKE564BC-TS20	
RKS564B■D-TS300	PKE564BC-TS30	
RKS596B■D-TS3.60	PKE596BC-TS3.6	
RKS596B■D-TS7.20	PKE596BC-TS7.2	
RKS596B■D-TS100	PKE596BC-TS10	
RKS596B■D-TS200	PKE596BC-TS20	
RKS596B■D-TS300	PKE596BC-TS30	

- TS geared type (with electromagnetic brake)

Model	Motor model	Driver model
RKS543M■D-TS3.60	PKE543MC-TS3.6	RKSD503-■D
RKS543M■D-TS7.2O	PKE543MC-TS7.2	
RKS543M■D-TS100	PKE543MC-TS10	
RKS543M■D-TS200	PKE543MC-TS20	
RKS543M-D-TS300	PKE543MC-TS30	
RKS564M■D-TS3.6O	PKE564MC-TS3.6	RKSD507-■D
RKS564M■D-TS7.2O	PKE564MC-TS7.2	
RKS564M■D-TS100	PKE564MC-TS 10	
RKS564M■D-TS200	PKE564MC-TS20	
RKS564M■D-TS300	PKE564MC-TS30	
RKS596M■D-TS3.60	PKE596MC-TS3.6	
RKS596M■D-TS7.2O	PKE596MC-TS7.2	
RKS596M■D-TS100	PKE596MC-TS10	
RKS596M■D-TS200	PKE596MC-TS20	
RKS596M■D-TS300	PKE596MC-TS30	

- FC geared type (single shaft)

Model	Motor model	Driver model
RKS545A■D-FC7.2LAO	PKE545AC-FC7.2LA	RKSD503-■D
RKS545A■D-FC7.2RAO	PKE545AC-FC7.2RA	
RKS545A■D-FC10LAO	PKE545AC-FC10LA	
RKS545A■D-FC10RAO	PKE545AC-FC10RA	
RKS545A■D-FC20LAO	PKE545AC-FC20LA	
RKS545A■D-FC20RAO	PKE545AC-FC20RA	
RKS545A■D-FC30LAO	PKE545AC-FC30LA	
RKS545A■D-FC30RAO	PKE545AC-FC30RA	
RKS566A■D-FC7.2LAO	PKE566AC-FC7.2LA	RKSD507-■D
RKS566A■D-FC7.2RAO	PKE566AC-FC7.2RA	
RKS566A■D-FC10LAO	PKE566AC-FC10LA	
RKS566A■D-FC10RAO	PKE566AC-FC10RA	
RKS566A■D-FC20LAO	PKE566AC-FC20LA	
RKS566A■D-FC20RAO	PKE566AC-FC20RA	
RKS566A■D-FC30LAO	PKE566AC-FC30LA	
RKS566A■D-FC30RAO	PKE566AC-FC30RA	

- PS geared type (single shaft)

Model	Motor model	Driver model
RKS545A■D-PS5O	PKE545AC-PS5	RKSD503-■D
RKS545A■D-PS7.2O	PKE545AC-PS7. 2	
RKS545A■D-PS100	PKE545AC-PS10	
RKS543A■D-PS25O	PKE543AC-PS25	
RKS543A■D-PS36O	PKE543AC-PS36	
RKS543A■D-PS500	PKE543AC-PS50	
RKS566A■D-PS5O	PKE566AC-PS5	RKSD507-■D
RKS566A■D-PS7.2O	PKE566AC-PS7.2	
RKS566A■D-PS100	PKE566AC-PS10	
RKS564A■D-PS25O	PKE564AC-PS25	
RKS564A■D-PS36O	PKE564AC-PS36	
RKS564A■D-PS500	PKE564AC-PS50	
RKS599A■D-PS5O	PKE599AC-PS5	
RKS599A■D-PS7.2O	PKE599AC-PS7.2	
RKS599A■D-PS100	PKE599AC-PS10	
RKS596A■D-PS25O	PKE596AC-PS25	
RKS596A■D-PS36O	PKE596AC-PS36	
RKS596A■D-PS500	PKE596AC-PS50	

- PS geared type (double shaft)

Model	Motor model	Driver model
RKS545B■D-PS5O	PKE545BC-PS5	RKSD503-■D
RKS545B■D-PS7.20	PKE545BC-PS7.2	
RKS545B■D-PS100	PKE545BC-PS10	
RKS543B■D-PS25O	PKE543BC-PS25	
RKS543B■D-PS36O	PKE543BC-PS36	
RKS543B■D-PS500	PKE543BC-PS50	
RKS566B■D-PS5O	PKE566BC-PS5	RKSD507-■D
RKS566B■D-PS7.2O	PKE566BC-PS7.2	
RKS566B■D-PS100	PKE566BC-PS10	
RKS564B■D-PS25○	PKE564BC-PS25	
RKS564B■D-PS36O	PKE564BC-PS36	
RKS564B■D-PS500	PKE564BC-PS50	
RKS599B■D-PS5O	PKE599BC-PS5	
RKS599B■D-PS7.2O	PKE599BC-PS7.2	
RKS599B■D-PS100	PKE599BC-PS10	
RKS596B■D-PS25○	PKE596BC-PS25	
RKS596B■D-PS36O	PKE596BC-PS36	
RKS596B■D-PS500	PKE596BC-PS50	

- PS geared type (with electromagnetic brake)

Model	Motor model	Driver model
RKS545M■D-PS50	PKE545MC-PS5	RKSD503-■D
RKS545M■D-PS7.2O	PKE545MC-PS7.2	
RKS545M■D-PS100	PKE545MC-PS10	
RKS543M■D-PS25O	PKE543MC-PS25	
RKS543M■D-PS36O	PKE543MC-PS36	
RKS543M■D-PS500	PKE543MC-PS50	
RKS566M■D-PS5O	PKE566MC-PS5	RKSD507-■D
RKS566M■D-PS7.2O	PKE566MC-PS7.2	
RKS566M■D-PS100	PKE566MC-PS10	
RKS564M■D-PS25O	PKE564MC-PS25	
RKS564M■D-PS36O	PKE564MC-PS36	
RKS564M■D-PS500	PKE564MC-PS50	
RKS599M■D-PS5O	PKE599MC-PS5	
RKS599M■D-PS7.20	PKE599MC-PS7.2	
RKS599M■D-PS100	PKE599MC-PS10	
RKS596M■D-PS25O	PKE596MC-PS25	
RKS596M■D-PS360	PKE596MC-PS36	
RKS596M■D-PS500	PKE596MC-PS50	

- Harmonic geared type (single shaft)

Model	Motor model	Driver model
RKS543A■D-HS500	PKE543AC-HS50	RKSD503-■D
RKS543A■D-HS1000	PKE543AC-HS100	
RKS564A■D-HS500	PKE564AC-HS50	RKSD507-■D
RKS564A■D-HS1000	PKE564AC-HS 100	
RKS596A■D-HS500	PKE596AC-HS50	
RKS596A■D-HS1000	PKE596AC-HS100	

- Harmonic geared type (double shaft)

Model	Motor model	Driver model
RKS543B■D-HS500	PKE543BC-HS50	RKSD503-■D
RKS543B■D-HS1000	PKE543BC-HS100	
RKS564B■D-HS500	PKE564BC-HS50	RKSD507-■D
RKS564B■D-HS1000	PKE564BC-HS100	
RKS596B■D-HS500	PKE596BC-HS50	
RKS596B■D-HS1000	PKE596BC-HS100	

- Harmonic geared type (with electromagnetic brake)

Model	Motor model	Driver model
RKS543M■D-HS500	PKE543MC-HS50	RKSD503-■D
RKS543M■D-HS1000	PKE543MC-HS100	
RKS564M■D-HS500	PKE564MC-HS50	
RKS564M■D-HS1000	PKE564MC-HS100	RKSD507-■D
RKS596M■D-HS50O	PKE596MC-HS50	
RKS596M■D-HS100O	PKE596MC-HS100	

8-6 Names and functions of parts

Driver (Example: RKSD507-CD)

Type	Name	Description	Ref
LED	PWR/ALM LED	- PWR (Green): This LED is lit while the 24 VDC power is input. - ALM (Red): This LED will blink when an alarm generates. It is possible to check the generated alarm by counting the number of times the LED blinks.	p. 277
	C-DAT/C-ERR LED	- C-DAT (Green): This LED will blink or illuminate steadily when the driver is communicating with the host controller properly via RS-485 communication. - C-ERR (Red): This LED will illuminate when a RS-485 communication error occurs with the host controller .	-
	CHARGE LED (Red)	This LED is lit while the main power is input. After the main power has been turned off, the LED will turn off once the residual voltage in the driver drops to a safe level.	-
Switch	Address number setting switch (ID)	Use this switch when controlling the system via RS-485 communication. Use this switch and SW1-No. 1 of the function setting switch, to set the address number of RS-485 communication. Factory setting: 0	$\begin{aligned} & \text { p. } 156 \\ & \text { p. } 198 \end{aligned}$
	Termination resistor setting switch (TERM.)	Use this switch when controlling the system via RS-485 communication. Set the termination resistor (120Ω) of RS-485 communication. Factory setting: OFF	$\begin{aligned} & \text { p. } 157 \\ & \text { p. } 199 \end{aligned}$
	Function setting switch (SW1)	Use this switch when controlling the system via RS-485 communication. - No.1: Using this switch and the address number setting switch (ID), set the address number of RS-485 communication. Factory setting: OFF - No.2: Set the protocol of RS-485 communication. Factory setting: OFF	$\begin{aligned} & \text { p. } 155 \\ & \text { p. } 198 \end{aligned}$
	Transmission rate setting switch (BAUD)	Use this switch when controlling the system via RS-485 communication. Set the transmission rate of RS-485 communication. Factory setting: 7	$\begin{aligned} & \text { p. } 156 \\ & \text { p. } 199 \end{aligned}$
Connector	Motor connector (CN2)	Connect the motor.	$\begin{aligned} & \text { p. } 42 \\ & \text { p. } 43 \end{aligned}$
	Data edit connector (CN4)	Connect a PC in which the MEXEO2 has been installed, or the OPX-2A.	p. 49
	Sensor signal connector (CN5)	Connect the sensor.	p. 46
	RS-485 communication connectors (CN6/CN7)	Connect the RS-485 communication cable.	p. 49
	Input signal connector (CN8)	Connect the input signals.	
	Output signal connector (CN9)	Connect the output signals.	
	Encoder connector (CN10)	Connect the encoder.	p. 43
Terminal	24 VDC power input terminals (CN1-24V)	Connect the control power supply of the driver. +: +24 VDC power supply input -: Power supply GND	p. 45
	Electromagnetic brake terminals (CN1-MB1/MB2)	Connect the lead wires from the electromagnetic brake. MB1: Electromagnetic brake - (Black) MB2: Electromagnetic brake + (White)	p. 45
	Main power supply input terminals (CN3)	Connect the main power supply. L: Live N : Neutral	p. 44
	Protective Earth Terminals $\stackrel{(}{\square}$	Used for grounding via a grounding cable of AWG16 to 14 (1.25 to $2.0 \mathrm{~mm}^{2}$).	p. 43

Motor

- Standard type with electromagnetic brake

- Standard type with encoder

2 Installation and connection

This part explains the installation method of the product, the mounting method of a load and the connection method as well as I/O signals.

Table of contents

1 Installation 36
1-1 Location for installation 36
1-2 Installing the motor 36
1-3 Installing a load 37
1-4 Permissible radial load and permissible axial load 38
1-5 Installing the driver 40
2 Connection. 42
2-1 Connection example 42
2-2 Grounding the motor and driver. 43
2-3 Connecting the main power supply 44
2-4 Connecting the 24 VDC power supply and electomagnetic brake 45
2-5 Connecting the I/O signals 46
2-6 Connecting the data setter 49
2-7 Connecting the RS-485 communication cable 49
2-8 Noise measures 50
2-9 Conformity to the EMC Directive 51
3 Explanation of I/O signals 53
3-1 Assignment of direct I/O 53
3-2 Assignment of network I/O 57
3-3 Input signals 61
3-4 Output signals 67
3-5 Sensor input. 72
3-6 General signals (R0 to R15) 73

1 Installation

This chapter explains the installation location and installation methods of the motor and driver, along with load installation.

1-1 Location for installation

The motor and driver are designed and manufactured to be incorporated in equipment. Install them in a wellventilated location that provides easy access for inspection.
The location must also satisfy the following conditions:

- Inside an enclosure that is installed indoors (provide vent holes)
- Operating ambient temperature

Motor: -10 to $+50^{\circ} \mathrm{C}\left(+14\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (non-freezing)
Motor with encoder: 0 to $+50^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (non-freezing)
Harmonic geared type: 0 to $+40^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+104{ }^{\circ} \mathrm{F}\right)$ (non-freezing)
Driver: 0 to $+55^{\circ} \mathrm{C}\left(+32\right.$ to $+131^{\circ} \mathrm{F}$) (non-freezing)

- Operating ambient humidity 85% or less (non-condensing)
- Area that is free of explosive atmosphere or toxic gas (such as sulfuric gas) or liquid
- Area not exposed to direct sun
- Area free of excessive amount of dust, iron particles or the like
- Area not subject to splashing water (rain, water droplets), oil (oil droplets) or other liquids
- Area free of excessive salt
- Area not subject to continuous vibration or excessive shocks
- Area free of excessive electromagnetic noise (from welders, power machinery, etc.)
- Area free of radioactive materials, magnetic fields or vacuum
- $1,000 \mathrm{~m}$ (3,300 ft.) or lower above sea level

1-2 Installing the motor

The motor can be installed in any direction. To allow for heat dissipation and prevent vibration, install the motor on a metal surface of sufficient strength. For PKE564-TS and PKE596-TS, install the motor using the included screws. Values of the tightening torque are recommended. Tighten the screws with a suitable torque according to the design conditions of the metal plate to be installed.

- Installation method A

- Installation method B

- Screw size, tightening torque, installation method

Type	Model	Nominal size	Tightening torque [$\mathrm{N} \cdot \mathrm{m}$ (oz-in)]	Effective depth of screw thread [mm (in.)]	Installation method
Standard	PKE54	M3	1 (142)	4.5 (0.177)	A
	PKE56	M4	2 (280)	-	B
	PKE59	M6	3 (420)		
TS geared	PKE54	M4	2 (280)	8 (0.315)	A
	PKE56	M4	2 (280)	-	B
	PKE59	M8	4 (560)		
FC geared	PKE54	M4	2 (280)	-	B
	PKE56	M5	2.5 (350)		
PS geared	PKE54	M4	2 (280)	8 (0.315)	A
	PKE56	M5	2.5 (350)	10 (0.394)	
	PKE59	M8	4 (560)	15 (0.591)	
Harmonic geared	PKE54	M4	2 (280)	8 (0.315)	A
	PKE56	M5	2.5 (350)	10 (0.394)	
	PKE59	M8	4 (560)	-	B

1-3 Installing a load

This section describes how to install a load to the motor.
Note - When installing a load on the output shaft, pay attention to centering, belt tension, parallelism of pulleys, etc. Also, securely tighten the screws of a coupling or pulley.

- When installing a coupling or pulley on the output shaft, be careful not to damage to the output shaft or the bearing (ball bearings).
- Do not modify or machine the output shaft. Doing so may damage the bearing (ball bearings), resulting in damage to the motor.
- When removing the parallel key from the output shaft, be careful not to apply excessive force with a hammer or other tool. Doing so may damage the output shaft or bearing (ball bearings).
- If you are using a motor with encoder, an optical encoder is housed in the motor. To prevent damage to the encoder, handle the motor with care and avoid strong impact to the motor output shaft when transporting the motor or installing the load.
- Using a coupling

Align the axis of rotation for the output shaft and load in a straight line.

- Using a belt
- Align the axis of rotation for the output shaft and load parallel to each other.
- Make the axis of rotation for the output shaft and load perpendicular to a line connecting the centers of the two pulleys.
- Using a gear drive
- Align the output shaft and gear axis parallel to each other.
- Properly engage the centers of the gear tooth surfaces.

- Using a key to fasten (geared motor)

When installing a load on the output shaft having machined a key slot, machine a key slot on the load side and secure the load and output shaft with the included key.

- Installing on the flange surface (Harmonic geared type)

With a Harmonic geared type (excluding PKE596), a load can be installed directly to the gear using the load mounting holes provided on the flange surface.

Model	Nominal size	Number of screw	Tightening torque [N.m (oz-in)]	Effective depth of screw thread [mm (in.)]
PKE543	M3	6	$1.4(198)$	$5(0.2)$
PKE564	M4	6	$2.5(350)$	$6(0.24)$

memo - When installing a load on the flange surface, the load cannot be mounted using the key slot in the output shaft.

- Design an appropriate installation layout so that the load will not contact the metal plate or screws used for installing the motor.

1-4 Permissible radial load and permissible axial load

The radial load and the axial load on the output shaft must be kept under the permissible values listed below.

Failure due to fatigue may occur when the motor bearings and output shaft are subject to repeated loading by a radial or axial load that is in excess of the permissible limit.
memo The permissible radial load and permissible axial load of the PS geared type represent the value that the service life of the gear part satisfies 20,000 hours when either of the radial load or axial load is applied to the gear output shaft.

Type	Motor model	Gear ratio	Permissible radial load [N (lb.)]					Permissible axial load [N (lb.)]
			Distance from the tip of output shaft					
			$\begin{aligned} & 0 \mathrm{~mm} \\ & \text { (0 in.) } \end{aligned}$	$\begin{gathered} 5 \mathrm{~mm} \\ (0.20 \mathrm{in} .) \end{gathered}$	$\begin{gathered} 10 \mathrm{~mm} \\ (0.39 \mathrm{in} .) \end{gathered}$	$\begin{gathered} 15 \mathrm{~mm} \\ (0.59 \mathrm{in} .) \end{gathered}$	$\begin{gathered} 20 \mathrm{~mm} \\ (0.79 \mathrm{in} .) \end{gathered}$	
Standard	PKE54	-	35 (7.8)	44 (9.9)	58 (13)	85 (19.1)	-	15 (3.3)
	PKE56		90 (20)	100 (22)	130 (29)	180 (40)	270 (60)	30 (6.7)
	PKE59		260 (58)	290 (65)	340 (76)	390 (87)	480 (108)	60 (13.5)
TS geared	PKE54	3.6, 7.2, 10	20 (4.5)	30 (6.7)	40 (9)	50 (11.2)	-	15 (3.3)
		20,30	40 (9)	50 (11.2)	60 (13.5)	70 (15.7)	-	
	PKE56	3.6, 7.2, 10	120 (27)	135 (30)	150 (33)	165 (37)	180 (40)	40 (9)
		20,30	170 (38)	185 (41)	200 (45)	215 (48)	230 (51)	
	PKE59	3.6, 7.2, 10	300 (67)	325 (73)	350 (78)	375 (84)	400 (90)	150 (33)
		20,30	400 (90)	450 (101)	500 (112)	550 (123)	600 (135)	
FC geared	PKE54	All gear ratios	180 (40)	200 (45)	220 (49)	250 (56)	-	100 (22)
	PKE56		270 (60)	290 (65)	310 (69)	330 (74)	350 (78)	200 (45)
PS geared	PKE54	5	70 (15.7)	80 (18)	95 (21)	120 (27)	-	100 (22)
		7.2	80 (18)	90 (20)	110 (24)	140 (31)	-	
		10	85 (19.1)	100 (22)	120 (27)	150 (33)	-	
		25	120 (27)	140 (31)	170 (38)	210 (47)	-	
		36	130 (29)	160 (36)	190 (42)	240 (54)	-	
		50	150 (33)	170 (38)	210 (47)	260 (58)	-	

Type	Motor model	Gear ratio	Permissible radial load [N (lb.)]					Permissible axial load [N (lb.)]
			Distance from the tip of output shaft					
			0 mm (0 in .)	$\begin{gathered} 5 \mathrm{~mm} \\ (0.20 \mathrm{in} .) \end{gathered}$	$\begin{gathered} 10 \mathrm{~mm} \\ (0.39 \mathrm{in} .) \end{gathered}$	$\begin{gathered} 15 \mathrm{~mm} \\ (0.59 \mathrm{in} .) \end{gathered}$	$\begin{gathered} 20 \mathrm{~mm} \\ (0.79 \mathrm{in} .) \end{gathered}$	
PS geared	PKE56	5	170 (38)	200 (45)	230 (51)	270 (60)	320 (72)	200 (45)
		7.2	200 (45)	220 (49)	260 (58)	310 (69)	370 (83)	
		10	220 (49)	250 (56)	290 (65)	350 (78)	410 (92)	
		25	300 (67)	340 (76)	400 (90)	470 (105)	560 (126)	
		36	340 (76)	380 (85)	450 (101)	530 (119)	630 (141)	
		50	380 (85)	430 (96)	500 (112)	600 (135)	700 (157)	
	PKE59	5	380 (85)	420 (94)	470 (105)	540 (121)	630 (141)	600 (135)
		7.2	430 (96)	470 (105)	530 (119)	610 (137)	710 (159)	
		10	480 (108)	530 (119)	590 (132)	680 (153)	790 (177)	
		25	650 (146)	720 (162)	810 (182)	920 (200)	1,070 (240)	
		36	730 (164)	810 (182)	910 (200)	1,040 (230)	1,210 (270)	
		50	820 (184)	910 (200)	1,020 (220)	1,160 (260)	1,350 (300)	
Harmonic geared	PKE54	All gear ratios	180 (40)	220 (49)	270 (60)	360 (81)	510 (114)	220 (49)
	PKE56		320 (72)	370 (83)	440 (99)	550 (123)	720 (162)	450 (101)
	PKE59		1,090 (240)	1,150 (250)	1,230 (270)	1,310 (290)	1,410 (310)	1,300 (290)

Permissible moment load of the Harmonic geared type

When installing an arm or table on the flange surface, calculate the moment load using the formula below if the flange surface receives any eccentric load. The moment load should not exceed the permissible value specified in the table.
L : Distance from the center of the output flange (m)
F : External force (N)
Moment load: $M(N \cdot m)=F \times L$

Motor model	Permissible moment load $[\mathrm{N} \cdot \mathrm{m}]$
PKE543	5.6
PKE564	11.6

1-5 Installing the driver

The driver is designed so that heat is dissipated via air convection and conduction through the enclosure. Install the driver on a flat metal plate [material: aluminium, $200 \times 200 \times 2 \mathrm{~mm}(7.87 \times 7.87 \times 0.08 \mathrm{in}$.) equivalent] having excellent heat conductivity.
There must be a clearance of at least 25 mm (0.98 in .) in the horizontal and vertical directions, between the driver and enclosure or other equipment within the enclosure. When two or more drivers are to be installed side by side, provide 20 mm (0.79 in .) and 25 mm (0.98 in .) clearances in the horizontal and vertical directions, respectively.
When installing two or more drivers in parallel, it is possible to install them closely in the horizontal direction. In this case, use the drivers in conditions that an ambient temperature is 0 to $+40^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$ and the standstill current is 50% or less.
When installing the driver in an enclosure, use two screws (M4, not included) to secure the driver through the mounting holes.

- When installing drivers while keeping clearances in the horizontal and vertical directions.

- When installing drivers closely in the horizontal direction.

Unit: mm (in.)
memo

- Install the driver in an enclosure whose degree of protection is IP54 minimum when used in a pollution degree 3 environment.
- Do not install any equipment that generates a large amount of heat or noise near the driver.
- Do not install the driver underneath the controller or other equipment vulnerable to heat.
- If the ambient temperature of the driver exceeds $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$, improve the ventilation condition. Also, when the standstill current is set to 60%, use the driver in a condition that an ambient temperature does not exceed $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$. See p. 80 for the standstill current.
- Be sure to install the driver vertically (vertical position).

Dimension [Unit: mm (in.)]

Mass: 0.8 kg (1.76 lb .)

2 Connection

This chapter explains how to connect the motor, I/O signals and power supply to the driver, as well as grounding method. The installation and wiring methods in compliance with the EMC Directive are also explained.

- For protection against electric shock, do not turn on the power supply until the wiring is completed.
- A high voltage is applied to the motor connector (CN2) and the main power supply input terminals (CN3). Do not touch these terminals while the power is on. Doing so may result in fire or electric shock.

2-1 Connection example

Note - Have the connector plugged in securely. Insecure connections may cause malfunction or damage to the motor or driver.

- When cycling the power or plugging/unplugging the connector, turn off the power and wait for the CHARGE LED to turn off before doing so. The residual voltage may cause electric shock.
- Do not wire the power supply cable of the driver in the same cable duct with other power lines or motor cables. Doing so may cause malfunction due to noise.
- The lead wires of the "cable for electromagnetic brake" have polarities, so connect them in the correct polarities. If the lead wires are connected with their polarities reversed, the electromagnetic brake will not operate properly.
memo - When unplugging the connector, do so while pressing the latches on the connector.
- When installing the motor on a moving part, use a flexible cable. Check the model name on p.286.

Standard type with electromagnetic brake

[^0]
Standard type with encoder

*1 Keep 20 m (65.6 ft .) or less for the wiring distance between the motor and driver.
*2 Included with the product or sold separately.

2-2 Grounding the motor and driver

Grounding the motor

Be sure to ground the Protective Earth Terminal of the motor.

- Grounding wire: AWG18 (0.75 mm ${ }^{2}$) or more
- Screw size: M4
- Tightening torque: 1.2 N•m (170 oz-in)

When grounding, use a round terminal and secure it with a mounting screw with a washer. Ground wires and crimp terminals are not included.

Grounding the driver

Be sure to ground the Protective Earth Terminal of the driver.

- Grounding wire: AWG16 to 14 (1.25 to $2.0 \mathrm{~mm}^{2}$)
- Screw size: M4
- Tightening torque: 1.2 N•m (170 oz-in)

You can ground either of the two Protective Earth Terminals. The terminal that is not grounded is used as a service terminal. Use the service terminal according to your specific need, such as connecting it to the motor in order to ground the motor. Do not share the grounding wire with a welder or any other power

Grounding Protective Earth Terminals
(Ground one of these terminals.) equipment.
When grounding the Protective Earth Terminal, use a round terminal and affix the grounding point near the driver.

2-3 Connecting the main power supply

Connect the main power supply to the main power supply input terminals (CN3) using the CN3 connector (3 pins).
Note - When cycling the power or plugging/unplugging the connector, turn off the power and wait for the CHARGE LED to turn off before doing so. The residual voltage may cause electric shock.

- Do not wire the power supply cable of the driver in the same cable duct with other power lines or motor cables. Doing so may cause malfunction due to noise.

- Wiring method

- Applicable lead wire: AWG16 to 14 (1.25 to $2.0 \mathrm{~mm}^{2}$)
- Strip length of the insulation cover: 10 mm (0.39 in .)

1. Insert the lead wire while pushing the button of the orange color with a slotted screwdriver.
2. After having inserted, release the button to secure the lead wire.

Pin assignment

Pin No.	Display	Description			
1	NC	Not used.			
2	L	nect the main power supply.			
3	N				

Main power supply current capacity

Model	Single-phase $100-12 \mathrm{~V}-15$ to $+10 \%$ $50 / 60 \mathrm{~Hz}$	Single-phase $200-240 \mathrm{~V}-15 \mathrm{to}+10 \%$ $50 / 60 \mathrm{~Hz}$
PKE543	2.1 A or more	1.3 A or more
PKE544	1.9 A or more	1.2 A or more
PKE545	4.0 A or more	2.4 A or more
PKE564	3.8 A or more	2.4 A or more
PKE566	4.0 A or more	2.5 A or more
PKE569	4.9 A or more	3.0 A or more
PKE596	3.5 A or more	2.2 A or more
PKE599 PKE5913		

2-4 Connecting the 24 VDC power supply and electomagnetic brake

Use the CN1 connector (4 pins) to connect the 24 VDC power supply and electromagnetic brake.
The 24 VDC power supply is for the control circuit of the driver. Be sure to connect it.

Wiring method

- Applicable lead wire: AWG28 to 16 (0.08 to $1.25 \mathrm{~mm}^{2}$)
- Strip length of the insulation cover: 7 mm (0.28 in .)

1. Insert the lead wires into the CN1 connector and tighten the screw with a slotted screwdriver.
2. Insert the CN1 connector into the CN1 on the driver, and tighten the screws.

Pin assignment

Display	Description
$24 \mathrm{~V}+$	Connect the 24 VDC.$$
$24 \mathrm{~V}-$	
MB1	Electromagnetic brake input - (Black)
MB2	Electromagnetic brake input + (White)

Power supply capacity

Model	Power supply voltage	Current capacity	
		Without electromagnetic brake	With electromagnetic brake
PKE54	$24 \mathrm{VDC} \pm 5 \%^{*}$	0.2 A or more	0.3 A or more
PKE56			
PKE59		0.7 A or more	

* If the distance between the motor and driver is extended to 15 to 20 m (49.2 to 65.6 ft .) or longer, use a power supply of $24 \mathrm{VDC} \pm 4 \%$.
memo When cycling the 24 VDC power supply, turn off the power and turn on the power again after waiting for 1 second or more.

2-5 Connecting the I/O signals

Wiring method

- Applicable lead wire: AWG26 to 20 (0.14 to $0.5 \mathrm{~mm}^{2}$)
- Strip length of the insulation cover: 8 mm (0.32 in .)

1. Insert the lead wire while pushing the button of the orange color with a slotted screwdriver.
2. After having inserted, release the button to secure the lead wire.

- Pin assignment
- Sensor signals (CN5)

Pin No.	Signal name	Description
1	+ LS	Limit sensor input +
2	- LS	Limit sensor input -
3	HOMES	Mechanical home sensor input
4	SLIT	Slit sensor input
5	IN-COM2	Sensor common input

- Input signals (CN8)

Pin No.	Signal name	Description *
1	IN0	Control input 0 [HOME]
2	IN1	Control input 1 [START]
3	IN2	Control input 2 [M0]
4	IN3	Control input 3 [M1]
5	IN4	Control input 4 [M2]
6	IN5	Control input 5 [FREE]
7	IN6	Control input 6 [STOP]
8	IN7	Control input 7 [ALM-RST]
9	IN-COM1	Input signal common

* []: Initial value
- Output signals (CN9)

Pin No.	Signal name	Description *
1	OUT0	Control output 0 [HOME-P]
2	OUT1	Control output 1 [MOVE]
3	OUT2	Control output 2 [AREA1]
4	OUT3	Control output 3 [READY]
5	OUT4	Control output 4 [WNG]
6	OUT5	Control output 5 [ALM]
7	OUT-COM	Output signal common

* []: Initial value

Connecting to a current sink output circuit (NPN specifications)

* (): Initial value
memo - Use input signals at 24 VDC .
- Use output signals at 12 to 24 VDC 10 mA or less. If the current exceeds 10 mA , connect an external resistor RO.
- The saturated voltage of the output signal is 3 VDC maximum.

■ Connecting to a current source output circuit (PNP specifications)

* (): Initial value
memo - Use input signals at 24 VDC .
- Use output signals at 12 to 24 VDC 10 mA or less. If the current exceeds 10 mA , connect an external resistor RO.
- The saturated voltage of the output signal is 3 VDC maximum.

2-6 Connecting the data setter

Connect communication cable for support software or OPX-2A cable to the data edit connector (CN4) on the driver.

. CAUTION

The data edit connector (CN4) and RS-485 communication connector (CN6/CN7) of the driver are not electrically insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC , etc.) whose negative terminal is grounded. Doing so may cause the driver and these equipment to short, damaging both.

2-7 Connecting the RS-485 communication cable

Connect this cable if you want to control your product via RS-485 communication. Connect the RS-485 communication cable to CN6 or CN7 on the driver. You can use the vacant connectors to connect a different driver. Cable for connecting between drivers are provided in our product line. Check the model name on p.289. You can also use a commercial LAN cable (shielded straight cable) to link drivers.

CN6/CN7 pin assignments

Pin No.	Signal name	Description
1	N.C.	Not used
2	GND	GND
3	TR+	RS-485 communication signal (+)
4	N.C.	Not used
5	N.C.	
6	TR-	RS-485 communication signal (-)
7	N.C.	Not used
8	N.C.	

2-8 Noise measures

The electrical noise is of two types: One is a noise to invade into the driver from the outside and cause the driver malfunction, and the other is a noise to emit from the driver and cause peripheral equipments malfunction. For the noise that is invaded from the outside, take measures to prevent the driver malfunction. It is needed to take adequate measures because signal lines are very likely to be affected by the noise.
For the noise that is emitted from the driver, take measures to suppress it.

Measures against electrical noise

There are the following three methods mainly to take measures against the electrical noise.

- Noise suppression

- When relays or electromagnetic switches are used together with the system, use noise filters and CR circuits to suppress surges generated by them.
- Use Oriental Motor cable when extending a wiring distance between the motor and driver. This is effective in suppressing the electrical noise emitted from the motor. Check the model name on p.286.
- Cover the driver by a metal plate such as aluminum. This is effective in shielding the electrical noise emitted from the driver.

- Prevention of noise propagation

- Connect a noise filter in the power supply cable of driver.
- Place the power lines, such as the motor and power supply cables, keeping a distance of 100 mm (3.94 in.) or more from the signal lines, and also do not bundle them or wire them in parallel. If the power cables and signal cables have to cross, cross them at a right angle.
- Use shielded twisted pair cables for power lines and signal lines.
- Keep cables as short as possible without coiling and bundling extra lengths.
- When grounding PE terminals of multiple drivers to a grounding point, it becomes more effective to block the electrical noise since impedance on the grounding point is decreased. However, ground them so that a potential difference does not occur among the grounding points.
- To ground a shielded cable, use a metal cable clamp that will maintain contact with the entire circumference of the cable. Ground the cable clamp near the product.

- Suppression of effect by noise propagation

Loop the noise propagated cable around a ferrite core. Doing so will prevent the propagated noise invades into the driver or emits from the driver. The frequency band in which an effect by the ferrite core can be seen is generally 1 MHz or more. Check the frequency characteristics of the ferrite core used. To increase the effect of noise attenuation by the ferrite core, loop the cable a lot.

- Noise suppression parts

- Noise filter

- Connect the following noise filter (or equivalent) to the power line. Doing so will prevent the propagated noise through the power line. Install the noise filter as close to the driver as possible.

Manufacturer	Model
SOSHIN ELECTRIC CO., LTD	HF2010A-UPF
Schaffner EMC	FN2070-10-06

- Use the AWG18 ($0.75 \mathrm{~mm}^{2}$) or thicker wire for the input and output cables of the noise filter, and secure firmly using a cable clamp etc. so that the cable does not come off the enclosure.
- Place the input cable as far apart as possible from the output cable, and do not wire the cables in parallel. If the input and output cable are placed at a close distance or if they are wired in parallel, the noise in the enclosure affects the power cable through stray capacitance, and the noise suppressing effect will reduce.
- Connect the ground terminal of the noise filter to the grounding point, using as thick and short a wire as possible.
- When connecting a noise filter in an enclosure, wire the input cable of the noise filter as short as possible. Wiring in long distance may reduce the noise suppressing effect.

- Surge arrester

A surge arrester is effective for reduction of the surge voltage of the lightning surge generated between the AC power line and earth or between $A C$ power lines. Connect the following surge arrester.

Manufacturer	Model
SOSHIN ELECTRIC CO., LTD	LT-C12G801WS
OKAYA ELECTRIC INDUSTRIES CO., LTD.	R•A•V-781BWZ-4

Note When measuring dielectric strength of the equipment, be sure to remove the surge arrester, or the surge arrester may be damaged.

■ Oriental motor's noise suppression product
Refer to $p .290$ for the model name.

- Surge suppressor

This product is effective to suppress the surge which occurs in a relay contact part. Connect it when using a relay or electromagnetic switch. CR circuit for surge suppression and CR circuit module are provided.

2-9 Conformity to the EMC Directive

Effective measures must be taken against the EMI that the motor and driver may give to adjacent control-system equipment, as well as the EMS of the motor and driver itself, in order to prevent a serious functional impediment in the machinery. The use of the following installation and wiring methods will enable the motor and driver to be compliant with the EMC directive.
Oriental Motor conducts EMC measurements on its motors and drivers in accordance with "Example of motor and driver installation and wiring". The user is responsible for ensuring the machine's compliance with the EMC Directive, based on the installation and wiring explained below.

This equipment is not intended for use in residential environments nor for use on a low-voltage public network supplied in residential premises, and it may not provide adequate protection to radio reception interference in such environments.

- Connecting noise filter

In large electrically noisy environments, connect a noise filter. Refer to p. 50 for details.

- Connecting surge arrester

Refer to p. 51 .

- Connecting the 24 VDC power supply

Use a DC power supply compliant with the EMC Directive. Use a shielded twisted pair cable for wiring. Refer to "Prevention of noise propagation" on p. 50 for wire the shielded cable.

- Connecting the motor cable

Use Oriental Motor connection cable or extension cable when extending the wiring distance between the motor and driver. Check the model name on p.286.

- Connecting the signal cable

Refer to "Prevention of noise propagation" on p.50.

- How to ground
- The cable used to ground the motor, driver and noise filter must be as thick and short as possible so that no potential difference is generated.
- Choose a large, thick and uniformly conductive surface for the grounding point.
- Be sure to ground the Protective Earth Terminal of the motor and driver. Refer to p. 43 for grounding method.
- Example of motor and driver installation and wiring

Note The driver uses parts that are sensitive to electrostatic charge. Take measures against static electricity since static electricity may cause the driver to malfunction or suffer damage.

3 Explanation of I/O signals

In this manual, I/O signals are described as follows.

- Direct I/O: I/O signals accessed via input signal connector (CN8) and output signal connector (CN9)
- Network I/O: I/O signals accessed via RS-485 communication

Set the following parameters using the MEXE02, OPX-2A or RS-485 communication.

3-1 Assignment of direct I/O

Assignment to the input terminals

The input signals shown next can be assigned to the input terminals INO to IN7 of CN8 by setting parameters. For details on input signals, refer to p.61.

Direct I/O signal name	Initial value
INO	$3:$ HOME
IN1	$4:$ START
IN2	$48:$ M0
IN3	$49:$ M1

Direct I/O signal name	Initial value
IN4	$50:$ M2
IN5	16: FREE
IN6	18: STOP
IN7	24: ALM-RST

Assignment No.	Signal name	Function
0	Not used	Set when the input terminal is not used.
1	FWD	Continuous operation in the positive direction.
2	RVS	Continuous operation in the negative direction.
3	HOME	Return-to-home operation.
4	START	Positioning operation.
5	SSTART	Sequential positioning operation.
6	+JOG	JOG operation in the positive direction.
7	-JOG	JOG operation in the negative direction.
8	MSO	Direct positioning operation.
9	MS1	
10	MS2	
11	MS3	
12	MS4	
13	MS5	
16	FREE	Stop the motor excitation and release the electromagnetic brake.
17	AWO	Motor excitation switching between excitation and non-excitation.
18	STOP	Stop of the motor operation.
24	ALM-RST	Reset of the current alarm.
25	P-PRESET	Position preset.
27	HMI	Release of the function limitation of the MEXE02 or OPX-2A.
32	R0	General signals. Use these signals when controlling the system via RS-485 communication.
33	R1	
34	R2	
35	R3	
36	R4	
37	R5	
38	R6	
39	R7	

Assignment No.	Signal name	Function
40	R8	General signals. Use these signals when controlling the system via RS-485 communication.
41	R9	
42	R10	
43	R11	
44	R12	
45	R13	
46	R14	
47	R15	
48	M0	Select the operation data No. using these six bits.
49	M1	
50	M2	
51	M3	
52	M4	
53	M5	

Related parameters

MEXE02 tree view	Parameter name		Description			Initial value
I/O function [Input]	IN0 input function selection		Assigns the input signals shown next to IN0 to IN7 of the input terminals.			3: HOME
	IN1 input function selection					4: START
	IN2 input function selection					48: M0
	IN3 input function selection					49: M1
	IN4 input function selection					50: M2
	IN5 input function selection					16: FREE
	IN6 input function selection					18: STOP
	IN7 input function selection					24: ALM-RST
0: Not used	7: -JOG	16: FREE	33: R1	40: R8	47: R15	
1: FWD	8: MS0	17: AWO	34: R2	41: R9	48:	
2: RVS	9: MS1	18: STOP	35: R3	42: R10	49:	
3: HOME	10: MS2	24: ALM-RST	36: R4	43: R11	50:	
4: START	11: MS3	25: P-PRESET	37: R5	44: R12	51:	
5: SSTART	12: MS4	27: HMI	38: R6	45: R13	52:	
6: +JOG	13: MS5	32: R0	39: R7	46: R14	53:	

memo - Do not assign the same input signal to multiple input terminals. When the same input signal is assigned to multiple input terminals, the function will be executed if any of the terminals becomes active.

- The ALM-RST input and P-PRESET input will be executed when turning from OFF to ON.
- When the HMI input is not assigned to the input terminals, this input will always be set to ON. When assigning to both direct I/O and network I/O, the function will be executed when both of them are set to ON .

■ Changing the logic level setting of input signals

You can change the logic level setting for input terminals INO to IN7 using the parameter.

Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
I/O function [Input]	INO input logic level setting	Changes the logic level setting for the input terminal INO to IN7. [Setting range] 0 : Normally open 1: Normally closed	0
	IN1 input logic level setting		
	IN2 input logic level setting		
	IN3 input logic level setting		
	IN4 input logic level setting		
	IN5 input logic level setting		
	IN6 input logic level setting		
	IN7 input logic level setting		

Assignment to the output terminals

The output signals shown next can be assigned to the output terminals OUT0 to OUT5 of CN9 by setting parameters. For details on output signals, refer to p.67.

Direct I/O signal name	Initial value			
OUT0	$70:$ HOME-P		Direct I/O signal name	Initial value
OUT1	68: MOVE	OUT3	67: READY	
OUT2	$73:$ AREA1	OUT4	$66:$ WNG	

Assignment No.	Signal name	Function
41	R9	Output the status of the general signal R8 to R15.
42	R10	
43	R11	
44	R12	
45	R13	
46	R14	
47	R15	
48	M0_R	Output in response to the M0 to M5 input.
49	M1_R	
50	M2_R	
51	M3_R	
52	M4_R	
53	M5_R	
60	+LS_R	Output in response to the +LS input.
61	-LS_R	Output in response to the -LS input.
62	HOMES_R	Output in response to the HOMES input.
63	SLIT_R	Output in response to the SLIT input.
65	ALM	Output the alarm status of the driver (normally closed).
66	WNG	Output the warning status of the driver.
67	READY	Output when the driver is ready.
68	MOVE	Output when the motor operates.
70	HOME-P	Output when the motor is in home position.
72	TIM	Output once every 7.2° rotation of the motor output shaft.
73	AREA1	Output when the motor is within the area 1.
74	AREA2	Output when the motor is within the area 2.
75	AREA3	Output when the motor is within the area 3.
80	S-BSY	Output when the driver is in internal processing state.
82	MPS	Output the ON-OFF state of the main power supply.
83	STEPOUT	Output when the deviation error occurs.
84	O.H.	Output when the overheat warning generates.
85	ZSG	Output when the ENC-Z input signal is input from the encoder.
86	MBC	Output the electromagnetic brake status.

Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
I/O function [Output]	OUTO output function selection	Assigns the output signals shown next to OUTO to OUT5 of the output terminals.	70: HOME-P
	OUT1 output function selection		68: MOVE
	OUT2 output function selection		73: AREA1
	OUT3 output function selection		67: READY
	OUT4 output function selection		66: WNG
	OUT5 output function selection		65: ALM

0: Not used	10: MS2_R	35: R3	45: R13	61:-LS_R	74: AREA2
1:FWD_R	11:MS3_R	36: R4	46: R14	62: HOMES_R	75: AREA3
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	80: S-BSY
3: HOME_R	13: MS5_R	38: R6	48: MO_R	65: ALM	82: MPS
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	83: STEPOUT
5: SSTART_R	17: AWO_R	40: R8	50: M2_R	67: READY	84: O.H.
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	85: ZSG
7: -JOG_R	32: R0	42: R10	52: M4_R	70: HOME-P	86: MBC
8: MSO_R	33: R1	43: R11	53: M5_R	72: TIM	
9: MS1_R	34: R2	44: R12	60: +LS_R	73: AREA1	

3-2 Assignment of network I/O

Assign the I/O function via RS-485 communication.

Assignment of input signals

The input signals shown next can be assigned to the NET-INO to NET-IN15 of the network I/O by setting parameters. See each command description for the assignment of the NET-INO to NET-IN15.

Assignment No.	Signal name	Function	Setting range
0	Not used	Set when the input terminal is not used.	-
1	FWD	Continuous operation in the positive direction.	0 : Deceleration stop 1: Operation
2	RVS	Continuous operation in the negative direction.	
3	HOME	Return-to-home operation.	0: No operation 1: Start operation
4	START	Positioning operation.	
5	SSTART	Sequential positioning operation.	
6	+JOG	JOG operation in the positive direction.	
7	-JOG	JOG operation in the negative direction.	
8	MSO	Perform direct positioning operation of the operation data No. set by the I/O parameter.	
9	MS1		
10	MS2		
11	MS3		
12	MS4		
13	MS5		
16	FREE	Stop the motor excitation and release the electromagnetic brake.	0: No operation 1: Electromagnetic brake release + motor non-excitation
17	AWO	Motor excitation switching between excitation and non-excitation.	0 : Motor non-excitation 1: Motor excitation
18	STOP	Stop of the motor operation.	0 : No operation 1: Stop operation
24	ALM-RST	Reset of the current alarm.	0: No operation 1: Execute
25	P-PRESET	Position preset.	
27	HMI	Release of the function limitation of the MEXEO2 or OPX-2A.	0 : Function limitation 1: Function limitation release
32	Ro	General signals. Use these signals when controlling the system via RS-485 communication.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
33	R1		
34	R2		
35	R3		
36	R4		
37	R5		
38	R6		

Assignment No.	Signal name	Function	Setting range
39	R7	General signals. Use these signals when controlling the system via RS-485 communication.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
40	R8		
41	R9		
42	R10		
43	R11		
44	R12		
45	R13		
46	R14		
47	R15		
48	M0	Select the operation data No. using these six bits. See p. 62 for details on the combination.	0: OFF 1: ON (Operation data No. 0 to 63 can be selected.)
49	M1		
50	M2		
51	M3		
52	M4		
53	M5		

Related parameters

memo - Do not assign the same input signal to multiple input terminals. When the same input signal is assigned to multiple input terminals, the function will be executed if any of the terminals becomes active.

- The ALM-RST input and P-PRESET input will be executed when turning from OFF to ON.
- When the HMI input is not assigned to the input terminals, this input will always be set to ON. When assigning to both direct I / O and network I / O, the function will be executed when both of them are set to ON.

Assignment to the output terminals

The output signals shown next can be assigned to the NET-OUTO to NET-OUT15 of the network I/O by setting parameters. See each command description for the assignment of the NET-OUT0 to NET-OUT15.

Assignment No.	Signal name	Function	Data read
0	Not used	Set when the output terminal is not used.	-
1	FWD_R	Output in response to the FWD input.	
2	RVS_R	Output in response to the RVS input.	
3	HOME_R	Output in response to the HOME input.	
4	START_R	Output in response to the START input.	
5	SSTART_R	Output in response to the SSTART input.	
6	+JOG_R	Output in response to the +JOG input.	
7	-JOG_R	Output in response to the -JOG input.	
8	MSO_R	Output in response to the MS0 to MS5 input.	
9	MS1_R		
10	MS2_R		
11	MS3_R		
12	MS4_R		
13	MS5_R		
16	FREE_R	Output in response to the FREE input.	
17	AWO_R	Output in response to the AWO input.	
18	STOP_R	Output in response to the STOP input.	
32	R0	Output the status of the general signal R0 to R15.	
33	R1		
34	R2		
35	R3		
36	R4		
37	R5		1: ON
38	R6		
39	R7		
40	R8		
41	R9		
42	R10		
43	R11		
44	R12		
45	R13		
46	R14		
47	R15		
48	M0_R	Output in response to the M0 to M5 inputs.	
49	M1_R		
50	M2_R		
51	M3_R		
52	M4_R		
53	M5_R		
60	+LS_R	Output in response to the +LS input.	
61	-LS_R	Output in response to the -LS input.	
62	HOMES_R	Output in response to the HOMES input.	
63	SLIT_R	Output in response to the SLIT input.	
65	ALM	Output the alarm of the driver (normally open).	0: Alarm not present 1: Alarm present

Assignment No.	Signal name	Function	Data read
66	WNG	Output the warning of the driver.	0 : Warning not present 1: Warning present
67	READY	Output when the driver is ready.	0: Not ready 1: Ready for operation
68	MOVE	Output when the motor operates.	0: Motor stopped 1: Motor operating
70	HOME-P	Output when the motor is in home position.	0 : Not home position 1:Home position
72	TIM	Output once every 7.2° rotation of the motor output shaft.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1:ON } \end{aligned}$
73	AREA1	Output when the motor is within the area 1.	0 : Outside area 1: Inside area
74	AREA2	Output when the motor is within the area 2.	
75	AREA3	Output when the motor is within the area 3.	
80	S-BSY	Output when the driver is in internal processing status.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
82	MPS	Output the ON-OFF state of the main power supply.	
83	STEPOUT	Output when the deviation error occurs.	0 : No deviation error 1: During deviation error
84	O.H.	Output when the overheat warning generates.	0: No overheat warning 1: During overheat warning
85	ZSG	Output when the ENC-Z input signal is input from the encoder.	0: ENC-Z input not used 1: ENC-Z input used
86	MBC	Output the electromagnetic brake status.	0 : Electromagnetic brake hold 1: Electromagnetic brake release

Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
I/O function [RS-485]	NET-OUTO output function selection	Assigns the output signals shown next to NET-OUTO to NET-OUT15.	48: MO_R
	NET-OUT1 output function selection		49: M1_R
	NET-OUT2 output function selection		50: M2_R
	NET-OUT3 output function selection		4: START_R
	NET-OUT4 output function selection		70: HOME-P
	NET-OUT5 output function selection		67: READY
	NET-OUT6 output function selection		66: WNG
	NET-OUT7 output function selection		65: ALM
	NET-OUT8 output function selection		80: S-BSY
	NET-OUT9 output function selection		73: AREA1
	NET-OUT10 output function selection		74: AREA2
	NET-OUT11 output function selection		75: AREA3
	NET-OUT12 output function selection		72: TIM
	NET-OUT13 output function selection		68: MOVE
	NET-OUT14 output function selection		0 : Not used
	NET-OUT15 output function selection		83: STEPOUT

0: Not used	10: MS2_R	35: R3	45: R13	61: -LS_R	74: AREA2
1:FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	75: AREA3
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	80: S-BSY
3: HOME_R	13: MS5_R	38: R6	48: MO_R	65: ALM	82: MPS
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	83: STEPOUT
5: SSTART_R	17: AWO_R	40: R8	50: M2_R	67: READY	84: O.H.
6: +JOG_R	18: STOP_R	41: R9	51:M3_R	68: MOVE	85: ZSG
7:-JOG_R	32: R0	42: R10	52: M4_R	70: HOME-P	86: MBC
8: MSO_R	33: R1	43: R11	53: M5_R	72: TIM	
9: MS1_R	34: R2	44: R12	60: +LS_R	73: AREA1	

3-3 Input signals

The input signals of the driver are photocoupler inputs.

- Direct I/O \qquad I/O for normally open: "ON: Current-carrying", "OFF: Not current-carrying" I/O for normally closed: "ON: Not current-carrying", "OFF: Current-carrying"
- Network I/O "ON: 1", "OFF: 0"

■ Order of priority for input signals

Each input signal has the order of priority and the order is as follows. When inputting multiple input signals simultaneously, the signal with a high priority is performed.
FREE > AWO > STOP > Operation signals (START, HOME, FWD etc.)

- Internal input circuit

- M0 to M5 input

Select a desired operation data number for positioning operation or continuous operation based on the combination of ON/OFF states of the M0 to M5 inputs.

Operation data No.	M5	M4	M3	M2	M1	M0
0	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
3	OFF	OFF	OFF	OFF	ON	ON
4	OFF	OFF	OFF	ON	OFF	OFF
5	OFF	OFF	OFF	ON	OFF	ON
6	OFF	OFF	OFF	ON	ON	OFF
7	OFF	OFF	OFF	ON	ON	ON
8	OFF	OFF	ON	OFF	OFF	OFF
9	OFF	OFF	ON	OFF	OFF	ON
10	OFF	OFF	ON	OFF	ON	OFF
11	OFF	OFF	ON	OFF	ON	ON
12	OFF	OFF	ON	ON	OFF	OFF
13	OFF	OFF	ON	ON	OFF	ON
14	OFF	OFF	ON	ON	ON	OFF
15	OFF	OFF	ON	ON	ON	ON
16	OFF	ON	OFF	OFF	OFF	OFF
17	OFF	ON	OFF	OFF	OFF	ON
18	OFF	ON	OFF	OFF	ON	OFF
19	OFF	ON	OFF	OFF	ON	ON
20	OFF	ON	OFF	ON	OFF	OFF
21	OFF	ON	OFF	ON	OFF	ON
22	OFF	ON	OFF	ON	ON	OFF
23	OFF	ON	OFF	ON	ON	ON
24	OFF	ON	ON	OFF	OFF	OFF
25	OFF	ON	ON	OFF	OFF	ON
26	OFF	ON	ON	OFF	ON	OFF
27	OFF	ON	ON	OFF	ON	ON
28	OFF	ON	ON	ON	OFF	OFF
29	OFF	ON	ON	ON	OFF	ON
30	OFF	ON	ON	ON	ON	OFF
31	OFF	ON	ON	ON	ON	ON

Operation data No.	M5	M4	M3	M2	M1	M0
32	ON	OFF	OFF	OFF	OFF	OFF
33	ON	OFF	OFF	OFF	OFF	ON
34	ON	OFF	OFF	OFF	ON	OFF
35	ON	OFF	OFF	OFF	ON	ON
36	ON	OFF	OFF	ON	OFF	OFF
37	ON	OFF	OFF	ON	OFF	ON
38	ON	OFF	OFF	ON	ON	OFF
39	ON	OFF	OFF	ON	ON	ON
40	ON	OFF	ON	OFF	OFF	OFF
41	ON	OFF	ON	OFF	OFF	ON
42	ON	OFF	ON	OFF	ON	OFF
43	ON	OFF	ON	OFF	ON	ON
44	ON	OFF	ON	ON	OFF	OFF
45	ON	OFF	ON	ON	OFF	ON
46	ON	OFF	ON	ON	ON	OFF
47	ON	OFF	ON	ON	ON	ON
48	ON	ON	OFF	OFF	OFF	OFF
49	ON	ON	OFF	OFF	OFF	ON
50	ON	ON	OFF	OFF	ON	OFF
51	ON	ON	OFF	OFF	ON	ON
52	ON	ON	OFF	ON	OFF	OFF
53	ON	ON	OFF	ON	OFF	ON
54	ON	ON	OFF	ON	ON	OFF
55	ON	ON	OFF	ON	ON	ON
56	ON	ON	ON	OFF	OFF	OFF
57	ON	ON	ON	OFF	OFF	ON
58	ON	ON	ON	OFF	ON	OFF
59	ON	ON	ON	OFF	ON	ON
60	ON	ON	ON	ON	OFF	OFF
61	ON	ON	ON	ON	OFF	ON
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

- START input

This signal starts the positioning operation.
Select the operation data No. and turn the START input to ON to start positioning operation.
Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
Alarm	Return-to-home incomplete alarm	When the positioning operation is started while the position origin has not been set, sets whether the alarm generates or not. [Setting range] 0: Disable 1: Enable	0

memo If positioning operation of the operating speed 0 Hz is performed, the abnormal operation data alarm generates.

SSTART input

This signal starts the sequential positioning operation (p.92).
Positioning operation based on the next operation data No. will be performed every time the SSTART input turns ON. This function is useful when multiple positioning operations must be performed sequentially, because there is no need to repeatedly select each operation data No.

Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
Alarm	Return-to-home incomplete alarm	When the positioning operation is started while the position origin has not been set, sets whether the alarm generates or not. [Setting range] 0: Disable 1: Enable	0

memo If positioning operation of the operating speed 0 Hz is performed, the abnormal operation data alarm generates.

MS0 to MS5 input

This signal starts the direct positioning operation (p.91).
When any of the MSO to MS5 inputs is turned ON, the positioning operation corresponding to the input data No. will be performed. Since the positioning operation is enabled by turning any of the MSO to MS5 inputs ON, you can save the steps of selecting the operation data No.
Related parameters

MEXEO2 tree view	Parameter name	Description	Initial value
Alarm	Return-to-home incomplete alarm	When the positioning operation is started while the position origin has not been set, sets whether the alarm generates or not. [Setting range] 0: Disable 1: Enable	0
I/O	MS0 operation No. selection	Sets the operation data number corresponding to the MS0 to MS5 input. [Setting range] Operation data No. 0 to 63	0
	MS1 operation No. selection		1
	MS2 operation No. selection		2
	MS3 operation No. selection		3
	MS4 operation No. selection		4
	MS5 operation No. selection		5

memo If positioning operation of the operating speed 0 Hz is performed, the abnormal operation data alarm generates.

HOME input

This signal starts the return-to-home operation (p.98).
Turn the HOME input ON to start return-to-home operation. When the return-to-home operation is completed and the motor stops, the HOME-P output turns ON.

Related parameters

MEXEO2 tree view	Parameter name	Description	Initial value
Home operation	Home-seeking mode	Sets the mode for return-to-home operation. [Setting range] 0: 2-sensor mode 1:3-sensor mode	1
	Operating speed of home-seeking	This is the operating speed for return-to-home operation. [Setting range] $1 \text { to } 1,000,000 \mathrm{~Hz}$	1,000
	Acceleration/ deceleration of homeseeking	This is the acceleration/deceleration rate (or acceleration/ deceleration time) for return-to-home operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s})^{*}$	30,000
	Starting speed of homeseeking	This is the starting speed for return-to-home operation. [Setting range] $1 \text { to } 1,000,000 \mathrm{~Hz}$	100
	Position offset of home-seeking	This is the amount of offset from mechanical home. [Setting range] $-8,388,608$ to $8,388,607$ step	0
	Starting direction of home-seeking	Sets the starting direction for home detection. [Setting range] 0 : Negative direction 1: Positive direction	1
	SLIT detection with home-seeking	Sets whether or not to concurrently use the SLIT input for return-to-home operation. [Setting range] 0 : Disable 1: Enable	
	TIM signal detection with home-seeking	Sets whether or not to concurrently use the TIM (ZSG) output for return-to-home operation. [Setting range] 0 : Disable 1:TIM signal enable 2: ZSG signal enable	0
	Backward steps in 2-sensor mode homeseeking	Sets the travel amount after pulling out of the LS in 2-sensor mode return-to-home operation. [Setting range] 0 to 32,767 step	200

[^1]
- FWD input, RVS input

These signals start the continuous operation (p.105).
Operation is performed based on the FWD or RVS input and the operating speed corresponding to the selected operation data No. Continuous operation is performed while turning the FWD input or RVS input ON.
When turning the FWD input ON, the motor rotates in the positive direction, and when turning the RVS input ON, the motor rotates in the negative direction.
If the signal of the same direction is turned ON again during deceleration, the motor will accelerate and continue operating.
If the FWD and RVS inputs are turned ON simultaneously, the motor will decelerate to a stop.
When the operation data No. is changed during continuous operation, the speed will change to the one specified for the new operation data No.

+JOG input, -JOG input

These signals start the JOG operation (p.110).
Turn the + JOG signal to ON, to perform JOG operation in the positive direction.
Turn the -JOG signal to ON, to perform JOG operation in the negative direction.
Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
Operation	JOG travel amount	This is the travel amount for JOG operation. [Setting range] 1 to $8,388,607$ step	1
	JOG operating speed	This is the operating speed for JOG operation. [Setting range] 1 to $1,000,000 \mathrm{~Hz}$	1,000
	JOG acceleration/ deceleration rate	This is the acceleration/deceleration rate (or acceleration/ deceleration time) for JOG operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s})^{*}$	30,000
	JOG starting speed	This is the starting speed for JOG operation. [Setting range] 0 to $1,000,000 \mathrm{~Hz}$	100

* Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "Acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

STOP input

When the STOP input turns ON, the motor will stop. When the STOP input turns ON while a positioning operation is being performed, the balance of the travel amount will be cleared. See p. 112 for stop action.

Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
		Sets how to stop the motor when the STOP input has turned ON. [Setting range] I/O	STOP input action
		1: Immediate stop 1: Deceleration stop 2: Immediate stop+current OFF 3: Deceleration stop+current OFF	

AWO input

When the AWO input is turned ON, the motor current will be cut off and the motor will become non-excitation status. When an electromagnetic brake motor is used, the electromagnetic brake continues to hold the position.
When the AWO input is turned OFF, the motor will be excited.

- FREE input

When the FREE input is turned ON, the motor current will be cut off. The motor will lose its holding torque, and the output shaft can be turned manually. When an electromagnetic brake motor is used, the electromagnetic brake will be released.

Note Do not turn the FREE input ON when driving a vertical load. Since the motor loses its holding torque, the load may drop.

P-PRESET input

This signal is used to set the command position and feedback position to the preset position.
When the P-PRESET input is turned ON, the value in the "preset position" parameter will be overwritten by the command position and feedback position. (This signal will become effective when turning from OFF to ON) Note that preset will not execute in the following conditions.

- When an alarm is present
- When the motor is operating

Related parameters

MEXEO2 tree view	Parameter name	Description	Initial value
Coordinates	Preset position	Sets the preset position. [Setting range] $-8,388,608$ to $8,388,607$ step	0

ALM-RST input

When an alarm generates, the motor will stop. When the ALM-RST input is turned from OFF to ON, the alarm will be reset. (This signal will become effective when turning from OFF to ON.) Always reset an alarm after removing the cause of the alarm and after ensuring safety.
Note that some alarms cannot be reset with the ALM-RST input. See p. 278 for alarm descriptions.

HMI input

When the HMI input is turned ON, the function limitation of the MEXEO2 or OPX-2A will be released.
When the HMI input is turned OFF, the function limitation will be imposed.
The following functions will be limited to execute.

- I/O test
- Test operation
- Teaching
- Writing, downloading and initializing parameters
memo When the HMI input is not assigned to the input terminal, this input will always be set to ON. When assigning to both direct I/O and network I/O, the function will be executed when both of them are set to ON.

3-4 Output signals

The output signals of the driver are photocoupler/open-collector output.

- Direct I/O. \qquad I/O for normally open: "ON: Current-carrying", "OFF: Not current-carrying" I/O for normally closed: "ON: Not current-carrying", "OFF: Current-carrying"
- Network I/O "ON: 1", "OFF: 0"
- Internal output circuit

- ALM output

See p. 277 for alarm.

- Direct I/O

When an alarm generates, the ALM output will turn OFF. At the same time, the ALM LED of the driver will blink and the motor current will be cut off and the motor will stop. The ALM output is normally closed.

- Network I/O

When an alarm generates, the ALM output will turn ON. At the same time, the ALM LED of the driver will blink and the motor current will be cut off and the motor will stop. The ALM output is normally open.

- Related parameters

MEXEO2 tree view	Parameter name	Description	Initial value
Alarm	Return-to-home incomplete alarm	When the positioning operation is started while the position origin has not been set, sets whether the alarm generates or not. [Setting range] 0: Disable 1: Enable	0
Communication	Communication timeout	Sets the condition in which the communication timeout occurs in RS-485 communication. When setting to zero (0), the driver does not monitor the condition in which the communication timeout occurs. [Setting range] 0 to $10,000 \mathrm{~ms}$	0

MEXEO2 tree view	Parameter name	Description	Initial value
Communication	Communication error alarm	Sets the condition in which the RS-485 communication error alarm generates. The communication error alarm generates after the RS-485 communication error has occurred by the number of times set here. [Setting range] 1 to 10 times	3
Coordinates	Stepout detection action	Sets how to operate when the deviation between the command position and encoder position reached the detection band for the loss of synchronism. [Setting range] 0: No operation (alarm/warning not present) 1: Warning 2: Alarm	0

WNG output

When a warning generates, the WNG output turns ON. See p. 282 for warning.
Related parameters

MEXEO2 tree view	Parameter name	Description	Initial value
Warning	Overheat warning	Sets the temperature at which a main circuit overheat warning generates. [Setting range] 40 to $85^{\circ} \mathrm{C}\left(104\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	85
	Overvoltage warning	Sets the voltage at which an overvoltage warning generates. * [Setting range] 120 to 450 V	435
	Undervoltage warning	Sets the voltage at which an undervoltage warning generates. * [Setting range] 120 to 280 V	120
	Stepout detection action	Sets how to operate when the deviation between the command position and encoder position reached the detection band for the loss of synchronism. [Setting range $]$ 0: No operation (alarm/warning not present) $1:$ Warning 2: Alarm	0

* This is the driver internal voltage after smoothing the rectified current (pulsating current) by the capacitor. When converting the input voltage into the internal voltage, convert using the following formula.
Single-phase 100-120 V driver: Internal voltage $=2 \times(\sqrt{ } 2 \times$ Input voltage -1$)$
Single-phase 200-240 V driver: Internal voltage $=\sqrt{ } 2 \times$ Input voltage -1

READY output

When the driver becomes ready, the READY output turns ON. Input operating commands to the driver after the READY output has turned ON. The READY output turns ON when all of the following conditions are satisfied.

- All inputs which start operation are OFF
- The FREE input, AWO input and STOP input are OFF
- An alarm is not present.
- The motor is not operating.
- Test function, downloading or teaching function was not performed using the MEXEO2.
- Test operation, downloading, initializing or teaching function was not performed using the OPX-2A.
- Configuration commands, all data initialization commands and batch non-volatile memory read commands are not executed via RS-485 communication.

■ HOME-P output

The HOME-P output turns ON corresponding to the setting of the " HOME-P output function selection" parameter. See p. 114 for setting the position origin.

- When " HOME-P output function selection" parameter is set to "home output":

When the command position of the driver is in the home-position while the MOVE output is OFF, the HOME-P output will turn ON. However, the HOME-P output remains OFF when the position origin for the driver has not been set.

- When " HOME-P output function selection" parameter is set to "return-to-home complete output": Regardless of the command position by the driver, if the position origin for the driver is set, the HOME-P output will turn ON. Therefore, it turns ON after completing the return-to-home operation or preset. Once the HOME-P output turns ON, it will not turn OFF until the motor has moved from the position origin.
- Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
I/O	HOME-P output		
	Sets the timing to output the HOME-P output. [Setting range] 0: Home output $1:$ Return-to-home complete output	0	

MOVE output

The MOVE output turns ON while the motor is operating.
Related parameters

MEXEO2 tree view	Parameter name	Description	Initial value
I/O	Minimum ON time for MOVE output	Sets the output time for the MOVE signal. If the motor operates more than the time set in this parameter, the MOVE output is turned ON. [Setting range] 0 to 255 ms	0

AREA1 to AREA3 output

The AREA output turns ON when the motor is inside the area set by the parameters. It turns ON when the motor is inside the area even when the motor stops.

- Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
I/O	AREA1 positive direction position	This is the position of AREA1 to AREA3 positive direction. [Setting range]	
	AREA2 positive direction position		
	AREA3 positive direction position	$8,388,608$ to 8,388,607 step	

- When the "AREA positive direction position" parameter < "AREA negative direction position" parameter

To turn the AREA output ON:
Motor position \leq AREA positive direction position, or Motor position \geq AREA negative direction position

AREA output

- When the "AREA positive direction position" parameter > "AREA negative direction position" parameter
To turn the AREA output ON:
AREA negative direction position \leq Motor position \leq
AREA positive direction position
AREA output

- When the "AREA positive direction position" parameter = "AREA negative direction position" parameter
To turn the AREA output ON: Motor position = AREA negative direction position = AREA positive direction position
memo The motor position is the command position when turning the AREA1 to AREA3 output ON.

TIM output

This signal turns ON when the motor is at its excitation home. The present motor position will reset to the excitation home when turning on the driver power.
The TIM output will turn ON every time the motor moves by 7.2° from its excitation home in synchronization with the internal oscillation pulse.
If the "TIM signal detection with home-seeking" parameter is set to "TIM signal enable," when detecting the mechanical home in the equipment, the tolerance for the motor stop positions in a detection range of the home sensor can be reduced and the further accurate mechanical home can be detected.

Example of the TIM output when the motor resolution is $500 \mathrm{P} / \mathrm{R}$

memo - If the operating speed is faster than 500 Hz , TIM output will not be output correctly.

- When using the TIM output, set the position (travel amount) or resolution so that the motor output shaft stops at an integral multiple of 7.2°.

S-BSY output

The S-BSY output turns ON while internal processing of the driver is being executed. In the following condition, the driver will be in an internal processing status.

- Issuing maintenance commands via RS-485 communication

MPS output

The MPS output turns ON when the driver main power is ON.

STEPOUT output

This signal becomes effective when an encoder is connected, and notifies the deviation error. This signal will be output when the deviation between the feedback position and driver command position reaches the value set in the "stepout detection band" parameter.
If the STEPOUT output is to be used, set the "stepout detection" parameter to "enable".

Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
Coordinates	Stepout detection	Sets whether to enable or disable the detection function for the loss of synchronism. [Setting range] 0: Disable 1: Enable	0
	Stepout detection band	Sets the detection condition for the loss of synchronism by the deviation (angle) between the command position and encoder position. [Setting range] 1 to $3,600\left(1=0.1^{\circ}\right)$	72
	Stepout detection action	Sets how to operate when the deviation between the command position and encoder position reached the detection band for the loss of synchronism. [Setting range] 0: Not operated 1: Warning 2: Alarm	0

O.H. output

If an overheat warning generates, the O.H. output turns ON. The O.H. output will automatically turn OFF upon recovery from the warning condition.

ZSG output

ZSG signal is used when an encoder is connected.
The ZSG output signal is output when the ENC-Z input signal is input to the driver from the encoder. Normally the ENC-Z input signal is input every time the motor output shaft turns one revolution.
memo - The ZSG output signal will not be output correctly unless the ENC-Z input remains ON for at least 1 ms .

- The ZSG output delays behind motor movement by up to 3 ms . The output may be used to verify the stop position of the motor.

- MBC output

When the electromagnetic brake is released, the MBC output turns ON.

- Response output

The response output is the output signal that shows the ON/OFF status corresponding to the input signals. The following tables show the correspondence between the input signals and output signals.

Input signal	Output signal
FWD	FWD_R
RVS	RVS_R
HOME	HOME_R
START	START_R
SSTART	SSTART_R
+JOG	+JOG_R
-JOG	-JOG_R
MS0	MSO_R
MS1	MS1_R

Input signal	Output signal
MS2	MS2_R
MS3	MS3_R
MS4	MS4_R
MS5	MS5_R
FREE	FREE_R
AWO	AWO_R
STOP	STOP_R
M0	M0_R
M1	M1_R

Input signal	Output signal
M2	M2_R
M3	M3_R
M4	M4_R
M5	M5_R
+LS	+LS_R
-LS	-LS_R
HOMES	HOMES_R
SLIT	SLIT_R

memo The response output is the output signal to return the status of the input signal. Therefore, the output signals corresponding to the input signals for motor operation (START_R output etc.) do not show the movement of the motor itself.

3-5 Sensor input

- Internal input circuit

■ +LS input, -LS input
These signals are input from the applicable limit sensors. The +LS input is for the + side sensor and the -LS input is for the-side sensor.

- Return-to-home operationWhen the +LS or -LS input is detected, perform the return-to-home operation according to the setting of the "home-seeking mode" parameter.
- Any other operation. \qquad Detect the hardware overtravel and stop the motor. See p. 112 for hardware overtravel.

Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
I/O	Hardware overtravel	Sets whether to enable or disable the hardware overtravel detection using \pm LS inputs. [Setting range] 0: Disable 1: Enable	1
	Overtravel action	Sets how to stop the motor when the overtravel alarm has occurred. [Setting range] 0: Immediate stop 1: Deceleration stop	0
	\pm LS logic level	Sets the logic for \pm LS input. [Setting range] 0 : Normally open 1: Normally closed	0

HOMES input
The HOMES input is the input for the mechanical home sensor when setting the "home-seeking mode" operation parameter to the 3-sensor mode. See p. 98 for return-to-home operation.

Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
I/O	HOMES logic level	Sets the logic for HOMES input. [Setting range $]$ $0:$ Normally open $1:$ Normally closed	0

SLIT input

Connect the SLIT input when using the sensor equipped with a slit.
When detecting the home, use of the SLIT input in addition to the HOMES will increase the accuracy of home detection. See p. 98 for return-to-home operation.

Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
I/O	SLIT logic level	Sets the logic for the SLIT input. [Setting range $]$ $0:$ Normally open $1:$ Normally closed	0

3-6 General signals (R0 to R15)

R0 to R15 are general signals that enable control via RS-485 communication.
Using R0 to R15, I/O signals for the external device can be controlled by the master device via the driver. The direct I/O of the driver can be used as an I/O unit.
See the following example for setting of the general signals.

- When outputting the signals from the master device to the external device

Assign the general signal RO to the OUTO output and NET-INO.
When setting the NET-INO to 1 , the OUTO output turns ON. When setting the NET-INO to 0 , the OUTO output turns OFF.

- When inputting the output of the external device to the master device

Assign the general signal R1 to the IN7 input and NET-OUT15.
When turning the IN7 input ON by the external device, the NET-OUT15 becomes 1 . When turning the IN7 input OFF, the NET-OUT15 becomes 0 . The logic level of the IN7 input can be set using "IN7 input logic level setting" parameter.

$3 \quad$ Operation type and setting

This part explains the operation functions and the details of parameters.

Table of contents

1 Guidance 76
2 Adjustment and setting 79
2-1 Resolution 79
2-2 Operating current 80
2-3 Standstill current 80
2-4 Acceleration/deceleration rate and acceleration/deceleration time 81
2-5 Speed filter 82
2-6 Moving average filter 82
2-7 When a motor with an encoder is used 83
3 Operation type and function list 87
4 Positioning operation 88
4-1 Operation data 88
4-2 Starting method of positioning operation
4-3 Operation function 94
5 Return-to-home operation 98
5-1 About description of return-to-home operation 98
5-2 Operation sequence 101
5-3 Position preset 104
6 Continuous operation 105
6-1 Operation data 105
6-2 Starting method of continuous operation. 106
6-3 Variable speed operation 108
7 Other operation 110
7-1 JOG operation 110
7-2 Test operation 111
7-3 Stop operation 112
8 Coordinate management 114
8-1 Position coordinate management 114
8-2 Wrap function 114
9 Operation data 116
10 Parameter 117
10-1 Parameter list 117
10-2 I/O parameter 119
10-3 Motor parameter 120
10-4 Operation parameter. 120
10-5 Home operation parameter 121
10-6 Alarm parameter 122
10-7 Warning parameter 122
10-8 Coordinates parameter. 122
10-9 Common parameter 123
10-10 I/O function [Input] parameter 124
10-11 I/O function [Output] parameter. 124
10-12 I/O function [RS-485] parameter 125
10-13 Communication parameter 126

1 Guidance

If you are new to the RKII Series, read this section to understand the operating methods along with the operation flow. This chapter explains how to perform positioning operation using the MEXEO2.

Check the factory setting

Setting item	Factory setting
Resolution	$500 \mathrm{P} / \mathrm{R}\left(0.72^{\circ} /\right.$ step $)$
Operating current	$1,000$ (based on the rated current being $100 \%)$.
Speed filter	1 ms
Home position	Motor position at power on

Note Before operating the motor, check the condition of the surrounding area to ensure safety.

STEP 1 Make preparations for operation

1. Wire the driver by reference to the figure. Be sure to connect a 24 VDC power supply.

*1 Included with the product or sold separately.
*2 This cable is provided as our product. Purchase it separately.
2. Start the MEXEO2 and turn on the main power supply to the driver.

Refer to the operating manual of the MEXEO2 for how to start or use the MEXEO2.

STEP 2 Set the operation data using the MEXEO2

1. Using the MEXEO2, set the operation data of No. 1 as follows.

	Operation mode	Position [step]	Operating speed [Hz]	Operation function	Dwell time $[\mathrm{s}]$	Sequential positioning	Acceleration $[\mathrm{ms} / \mathrm{kHz}]$ or $[\mathrm{s}]$	Deceleration $[\mathrm{ms} / \mathrm{kHz}]$ or $[\mathrm{s}]$
$\# 0$	Incremental (INC)	0	1000	Single-motion	0.000	Disable	30.000	30.000
$\# 1$	Incremental (INC)	1000	2000	Single-motion	0.000	Disable	20.000	

2. Click the [Teaching, remote operation] short-cut button in the left side of the screen.

The teaching/remote operation window appears.

3. Click "Start the teaching remote operation."

Since the pop-up window (Warning) is displayed, click [Yes].

4. Write the edited data to the driver.

Click "Writing all data. (PC -> Product)," and click [OK]. The contents of the data No. 1 will be written to the driver.

5. Select the operation data No.1.

STEP 3 Operate the motor

1. Click [Start positioning operation].

Since the pop-up window (Warning) is displayed, click [Yes].
The motor starts the positioning operation.

2. Check the command position has been 1,000 on the MEXEO2, and the motor output shaft has rotated by 1,000 steps.
If the motor is operated while the resolution remains the initial value, 1,000 steps are equivalent to 2 revolutions of the motor output shaft.

I上 New1* - Teaching, remote operation				-
∇ Start the teaching remote operation.				
Driver Status				
Command Position(CPOS)	1000 [step]	INPUT	OUTPUT	
		\square AWO	\square ALM	
Command Speed	0 [Hz$]$	\square FREE	\square MOVE	
		\square STOP		
Encoder Counter	0 [step]			

3. To end the teaching/remote operation, unselect "Start the teaching remote operation."

The process has been completed.

2 Adjustment and setting

This chapter explains how to adjust/set the motor and driver functions. When a parameter is changed, the timing the new value becomes effective varies depending on the parameter. See p. 117 for details.

2-1 Resolution

Set the resolution when using the motor in combination with a mechanism component such as a gear, actuator, or others.
When the "electronic gear A" and "electronic gear B" parameters are set, the resolution per one rotation of the motor output shaft can be set. Note that the calculated value must fall within the setting range specified below:
Resolution setting range: 200 to 200,000 P/R
Resolution $=500 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}$

Related parameters

MEXEO2 tree view	Parameter name	Description	Initial value
	Electronic gear A	This is the denominator of electric gear. [Setting range] 1 to 65,535	
	Electronic gear B	This is the numerator of electric gear. [Setting range] 1 to 65,535	1

- If the value outside of the setting range is set, the "electronic gear setting error warning" will generate. If the power is cycled or the configuration is executed while the "electronic gear setting error warning" is present, an "electronic gear setting error alarm" will generate.
- When the TIM output is used, set the "electronic gear" parameters to be an integral multiple of 50 .

Calculation of electronic gear A and B

Calculation of electronic gear A and B is explained with examples of a ball screw and rotary table.

- Example: Ball screw

Ball screw lead: 10 mm (0.39 in .)
Minimum travel amount: 0.01 mm (0.000394 in.)
Gear ratio: 1 (No speed reduction mechanism between the motor and ball screw)
Resolution $=500 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{\text { Ball screw lead }}{\text { Minimum travel amount }} \times$ Gear ratio
In this example: $500 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{10 \mathrm{~mm}}{0.01 \mathrm{~mm}} \times 1$
Result: $\frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{10}{5}=\frac{2}{1}$
Therefore, the electronic gear A and B are 1 and 2 respectively, and the resolution will be $1,000 P / R$.

- Example: Rotary table

Step angle per one rotation: 360°
Minimum step angle: 0.01°
Gear ratio: 7.2 [Using the geared motor (gear ratio 7.2:1)]
Resolution $=500 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{\text { Minimum step angle }}{\text { Step angle per one rotation }} \times$ Gear ratio
In this example: $500 \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{360^{\circ}}{0.01^{\circ}} \times \frac{1}{7.2}$
Result: $\frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{360}{36}=\frac{10}{1}$
Therefore, the electronic gear A and B are 1 and 10 respectively, and the resolution will be $5,000 \mathrm{P} / \mathrm{R}$.

2-2 Operating current

The maximum driver operating current can be changed using the "RUN current" parameter. If the load is small and there is an ample allowance for torque, the motor temperature rise can be suppressed by setting a lower operating current.

Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
Motor	RUN current	Sets the motor operating current based on the rated current being 100%. lSetting range] 0 to $1,000(1=0.1 \%)$	1,000

Note Excessively low operating current may cause a problem in starting the motor or holding the load in position. Do not lower the operating current more than necessary.

2-3 Standstill current

When the motor stops, the current cutback function will be actuated to lower the motor current to the standstill current. The standstill current is a value in which the set value of the "STOP current" is multiplied by the rated current (100\%). The standstill current does not change even when the "RUN current" parameter has been changed.
Related parameters

MEXE02 tree view	Parameter name	Description	Initial value
Motor	STOP current	Sets the motor standstill current based on the rated current being 100%. [Setting range] $]$ 0 to $600(1=0.1 \%)$	500

2-4 Acceleration/deceleration rate and acceleration/deceleration time

Acceleration/deceleration unit

Set the acceleration/deceleration unit using the "acceleration/deceleration unit" parameter. Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be set.

VS: Starting speed VR: Operating speed TA: Acceleration
TD: Deceleration

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Operation	Acceleration/deceleration unit	Sets the acceleration/deceleration rate or acceleration/deceleration time. [Setting range] $0: \mathrm{ms} / \mathrm{kHz}$ 1: s	0

Common setting and separate setting of the acceleration/deceleration

The acceleration/deceleration for positioning operation or continuous operation can be set as follows using the "acceleration/deceleration type" parameter:
Separate: The acceleration/deceleration set under the applicable operation data No. will be followed.
Common: The setting of the "common acceleration" and "common deceleration" parameter will be followed.
memo - When performing linked operation, the acceleration/deceleration for the starting linked operation data No. is applied even when the "acceleration/deceleration type" parameter is set to "separate".

- See p. 108 for the acceleration/deceleration when performing variable speed operation.

Related parameter

MEXEO2 tree view	Parameter name	Description	Initial value
Operation	Acceleration/ deceleration type	Sets whether to use the common acceleration/deceleration or the acceleration/deceleration specified for the operation data. [Setting range] 0: Common $1:$ Separate	1

2-5 Speed filter

The motor response can be adjusted by setting the "speed filter" parameter when selecting the "speed filter" with the "filter selection" parameter.
When the speed filter level is raised, vibration can be suppressed during low-speed operation, and starting/stopping of the motor will become smooth. Note, however, that an excessively high filter level will result in lower synchronicity with commands. Set an appropriate value according to the specific load and purpose.
Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Motor	Filter selection	Sets the filter function to adjust the motor response. [Setting range] 0: Speed filter 1: Moving average filter	0
	Speed filter	Adjusts the motor response. [Setting range] 0 to 200 ms	1

- When the "speed filter" parameter is set to 0 ms .

- When the "speed filter" parameter is set to 200 ms .

memo When setting the value of the "speed filter" parameter to " 0 ," this function will be invalid.

Moving average filter

The motor response can be adjusted by setting the "moving average time" parameter when selecting the "moving average filter" with the "filter selection" parameter.
The positioning time can be shortened by suppressing the residual vibration for the positioning operation. Optimum value for the "moving average time" parameter varies depending on the load or operation condition. Set a suitable value based on the load or application.
Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Motor	Filter selection	Sets the filter function to adjust the motor response. [Setting range] 0: Speed filter $1:$ Moving average filter	0
	Moving average time	Sets the time constant for the moving average filter. [Setting range] 0 to 200 ms	1

2-7 When a motor with an encoder is used

This chapter explains the useful functions when an encoder is connected.

Position control

- The driver has an internal oscillating-pulse counter. The command position in the driver counter can be checked using the MEXE02, OPX-2A or RS-485 communication. The control range of the command position is $-2,147,483,648$ to $2,147,483,647$.
- The command position will be cleared to 0 once the return-to-home operation ends successfully. If a preset is performed using the P-PRESET input, the command position will change to the value set in the "preset position" parameter.
- If an encoder is connected and the "stepout detection" parameter is set to "enable", the command position will be refreshed by the encoder counter value while the motor is not excited.

Encoder input

- You can read the 90° phase difference signal that is input from the encoder. The monitored value is of two types: One is the encoder counter value and the other is the feedback position.
- The encoder resolution is $500 \mathrm{P} / \mathrm{R}$. The 90° phase difference signal is output four times while the motor rotates 0.72°. Therefore, the encoder counter value becomes "the command position $\times 4$ " approximately.
- Executing the "preset encoder counter" changes the encoder counter value to the one set as the "encoder preset value".
- When an encoder is connected, the misstep detection function becomes available. Take note that the encoder input is counted even when the misstep detection function is not used.
memo - The encoder counter value and feedback position may deviate from the actual motor position. Use them to check the position at which the motor stopped.
- Perform a counter clear or encoder counter preset while the motor is stopped.

- Misstep detection function

This function becomes effective when an encoder is connected. Specifically, the deviation between the command position and encoder counter is monitored.
The sub-functions specified below become available when the "stepout detection" parameter is set to "enable".

- Deviation error detection

When the deviation reaches the value set in the "stepout detection band" parameter (initial value: 7.2°), a deviation error will be recognized.
If the base step angle of the motor is 0.72°, set the value of the "stepout detection band" parameter to 7.2°.
Deviation error detection will start after the motor has remained excited for 500 ms . This function is disabled during return to mechanical home operation.

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Coordinates	Stepout detection	Sets whether to enable or disable the detection function for the loss of synchronism. [Setting range] 0: Disable 1: Enable	0
	Stepout detection band	Sets the detection condition for the loss of synchronism by the deviation (angle) between the command position and encoder position. [Setting range] 1 to $3,600\left(1=0.1^{\circ}\right)$	72
	Encoder resolution	Sets the resolution of the connected encoder. [Setting range] 100 to $10,000 \mathrm{P} / \mathrm{R}$	500

memo When the misstep detection function is used, set the encoder resolution to an integral multiple of 50 .

- Alarm/warning

You can cause an alarm or warning to be generated upon detection of a deviation error.

- Generate an excessive position deviation alarm: Set the "stepout detection action" parameter to "alarm".
- Generate an excessive position deviation warning: Set the "stepout detection action" parameter to "warning".
- Do not generate an alarm or warning: Set the "stepout detection action" parameter to "no operation".

Related parameter

MEXE02 tree view	Parameter name	Description	Initial value
Coordinates		Sets how to operate when the deviation between the command position and encoder position reached the detection band for the loss of synchronism. action	[Setting range] 0: No operation 1: Warning 2: Alarm

- STEPOUT output

This signal notifies a deviation error. Assign the STEPOUT output to one of the OUTO to OUT5 outputs.

- Command position update

The command position is corrected by the encoder counter while the motor is not excited. The command position will still be refreshed even when the output shaft is turned by an external force while the motor excitation is stopped.

- How to reset the deviation error

Perform one of the following operations to reset the deviation error:

- Stop the motor excitation.
- Perform return to mechanical home.
- Clear the counter.

When the "stepout detection action" parameter is set to "alarm"

When a deviation error is detected, an excessive position deviation alarm will generate. In this case, reset the alarm by following the procedure below:

1. Turn the ALM-RST input ON to reset the alarm.
2. Perform one of the above operations to reset the deviation error.
memo If an excessive position deviation alarm generates, turning the ALM-RST input ON alone will not reset the alarm. First reset the alarm by the ALM-RST input without fail, then reset the deviation error.

- Setting the encoder resolution

Even when the motor resolution and encoder resolution are not same, the deviation error can be detected if the encoder resolution is set. The encoder resolution is used to check the deviation error, and it does not affect the encoder counter value.

Related parameter

MEXE02tree view	Parameter name	Description	Initial value
Coordinates	Encoder resolution	Sets the resolution of the connected encoder. lSetting range $]$ 100 to $10,000 \mathrm{P} / \mathrm{R}$	500

Monitor function

memo The encoder counter value and feedback position may deviate from the actual motor position. Use them to check the position at which the motor stopped.

- Monitor the encoder counter

The 90° phase difference signal that is input from the encoder can be read from the "encoder counter" using the MEXE02, OPX-2A or RS-485 communication. The read value becomes "the command position $\times 4$ " approximately.

- When changing the encoder counter value

Perform encoder counter preset using the MEXE02, OPX-2A or RS-485 communication.
The encoder counter value becomes the value in the "encoder preset value" parameter.
Related parameter

MEXE02tree view	Parameter name	Description	Initial value
Coordinates	Encoder preset value	Sets the preset value of the encoder. [Setting range] $-8,388,608$ to 8,388,607 step	0

- Monitor the feedback position

The 90° phase difference signal that is input from the encoder can be read from the "feedback position" via RS-485 communication.

- The read value becomes almost the same value as the command position.
- If the wrap function is set to enable, the feedback position also becomes zero since the actual position returns to zero when the motor rotates one revolution. Therefore, the feedback position is read in a range of " 0 to (wrap setting value-1)."
- Although the command position is reset to zero when return-to-home operation has been completed, the feedback position may not be reset to zero depending on the load or operation condition. At this time, if the position preset is performed, the command position can be matched with the feed back position.

- When changing the feedback position

When turning the P-PRESET input ON, the command position and feedback position becomes the value of the "preset position" parameter.

Related parameter

MEXE02tree view	Parameter name	Description	Initial value
Coordinates	Preset position	Sets the preset position. [Setting range] $-8,388,608$ to $8,388,607$ step	0
	Electronic gear A	This is the denominator of electric gear. [Setting range] 1 to 65,535	1
	Electronic gear B	This is the numerator of electric gear. [Setting range] 1 to 65,535	
	Encoder resolution	Sets the resolution of the connected encoder. [Setting range] 100 to 10,000 P/R	500

Z-phase output signal of encoder

When the ENC-Z signal from the encoder is input to the driver, the ZSG signal will be output from the driver. Usually, the ENC-Z signal is input whenever the motor output shaft rotates one revolution. When performing return-to-home operation, use of the HOMES input in addition to the ENC-Z signal will increase the accuracy of home detection.
Related parameter

MEXE02tree view	Parameter name	Description	Initial value
Home operation	TIM signal detection with home-seeking	Sets whether or not to concurrently use the TIM (ZSG) output for return-to-home operation. [Setting range] 0: Disable $1:$ TIM signal enable 2: ZSG signal enable *	0

* This signal is used when an encoder is connected.

3 Operation type and function list

Operation

[Setting by operation data and parameters]

Positioning operation

Function

[Setting by parameters]

- Stop operation	- Protective function	- Return-to-home function	- Motor function
STOP input action	Alarm detection	Home position offset	Operating current
Overtravel action	Warning detection	External sensor signal detection	Standstill current
- I/O function	- Misstep detection function	- Coordination setting	Speed filter
Input function	Stepout detection action	Resolution (Electronic gear)	Moving average filter
Input logic level	Stepout detection band	Wrap function	
Output function	Encoder resolution	Motor rotation direction	

4 Positioning operation

Positioning operation is one in which motor operating speed, position (travel amount) and other items are set as operation data and then executed. When the positioning operation is executed, the motor begins at the starting speed and accelerates until the operating speed is reached. Then, once the operating speed is reached, that speed is maintained. The motor decelerates when the stopping position approaches, and finally comes to a stop. The operation function can also be set in operation data. The operation function is how to operate consecutive operation data (example: operation data No.0, No.1, No.2).

4-1 Operation data

The following data are the operation data for positioning operation.
Up to 64 operation data can be set. (data Nos. 0 to 63)

MEXEO2 tree view	Name	Description	Initial value
Operation data	Position	Sets the position (travel amount) for positioning operation. [Setting range] $-8,388,608 \text { to }+8,388,607 \text { step }$	0
	Operating speed	This is the operating speed for positioning operation and continuous operation. [Setting range] 0 to $1,000,000 \mathrm{~Hz}$	1,000
	Acceleration	Sets the acceleration rate (or acceleration time) for positioning operation and continuous operation. [Setting range] 1 to $1,000,000$ ($1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}$)	30,000
	Deceleration	Sets the deceleration rate (or deceleration time) for positioning operation and continuous operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}$)	
	Operation mode	Sets the operation mode for positioning operation. [Setting range] 0: INC (incremental) 1: ABS (absolute)	0
	Operation function	This is used to set how to operate consecutive operation data. [Setting range] 0 : Single-motion 1: Linked-motion 2: Linked-motion 2	0
	Dwell time	Sets the waiting time between the first operation data and second operation data in linked-motion operation 2. [Setting range] 0 to 50,000 ($1=0.001 \mathrm{~s}$)	0
	Sequential positioning	Sets whether to enable or disable sequential positioning operation. [Setting range] 0 : Disable 1: Enable	0

Position, operating speed, acceleration, deceleration

The acceleration/deceleration for positioning operation can be set as follows using the "acceleration/deceleration type" parameter:
Separate: The acceleration/deceleration rate set under the applicable operation data No. will be followed.
(Each 64 data for acceleration and deceleration)
Common: The setting of the "common acceleration" and "common deceleration" parameter will be followed. (Each 1 data for acceleration and deceleration)

When the starting speed < operating speed

When the starting speed \geq operating speed

- Operation mode

The following two operation modes are available:

- Absolute (ABS) mode

The position (distance) from home is set [Absolute positioning].
Example: When positioning operation is performed with setting the starting point to 1,000 and setting the destination to $+3,000$ and $-3,000$

- Incremental (INC) mode

Each motor destination becomes the starting point for the next movement. This mode is suitable when the same position (distance) is repeatedly used [Incremental positioning].
Example: When positioning operation is performed with setting the starting point to 1,000 and setting the destination to $+3,000$
 and $-3,000$

- Operation function, dwell time

The following three operation functions are available:

Name	Description	Ref.
Single-motion	A single operation data set is executed.	p. 94
Linked-motion	Multiple sets of operation data are linked to perform multi-variable speed operation	p. 95
Linked-motion 2	Dwell time (stop waiting time) can be set between operation data. Operation data whose rotation direction is different can also be linked.	p. 96

4-2 Starting method of positioning operation

The following three types are available in the starting method.

Name	Description
Data number selecting operation	When the START input is turned ON with selecting the operation data No. by a combination of the M0 to M5 inputs, the positioning operation will perform.
Direct positioning operation	When any of the MS0 to MS5 inputs is turned ON, the positioning operation corresponding to the input data No. will perform.
Sequential positioning operation	Positioning operation is performed to the next operation data No. every time a SSTART input signal is input.

- Data number selecting operation

Select an operation data based on a combination of ON/OFF status of the M0 to M5 inputs. See p. 62 for details.

Operation data No.	M5	M4	M3	M2	M1	M0
0	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
\cdots						
61	ON	ON	ON	ON	OFF	ON
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

- Operating method

1) Check the READY output is ON
2) Select the operation data No. by a combination of the M0 to M5 inputs and turn the START input ON.
3) The motor starts positioning operation.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the positioning operation is completed, the READY output will be turned ON.

[^2]
- Direct positioning operation

When any of the MS0 to MS5 inputs is turned ON, the positioning operation corresponding to the input data No. will perform. Since the positioning operation is enabled by turning any of the MSO to MS5 inputs ON, you can save the step of selecting the operation data No.
The operation data assigning to the MS0 to MS5 inputs will be set by parameters.

- Related parameters

MEXE02tree view	Parameter name	Description	Initial value
I/O	MS0 operation No. selection	Sets the operation data number corresponding to the MS0 to MS5 input. [Setting range] 0 to 63	0
	MS1 operation No. selection		1
	MS2 operation No. selection		2
	MS3 operation No. selection		3
	MS4 operation No. selection		4
	MS5 operation No. selection		5

- Operating method

1) Check the READY output is ON.
2) Turn the MSO input ON.
3) The motor starts positioning operation.
4) Check that the READY output has been turned OFF and turn the MSO input OFF.
5) When the positioning operation is completed, the READY output will be turned ON.

- Sequential positioning operation

In sequential positioning operation, whenever turning the SSTART input ON, the positioning operation for the following operation data No. will be performed. This function is useful when multiple positioning operations must be performed sequentially, because there is no need to select each data number.
When the "sequential positioning" of operation data is executed up to the data No. set to "disable", the operation returns to the original data No. that was selected before starting the sequential positioning operation. And the sequential positioning operation will start again.
If the starting point for the sequential positioning operation is changed using the M0 to M5 inputs or the MS0 to MS5 inputs, multiple sequential positioning operations can be set. It is convenient for setting a different operating pattern for each component or each process of works.

- When the operating pattern is one type

1) The positioning operation for the operation data No. 0 is performed by turning the SSTART input ON.
2) After the operation 1) is completed, when turning the SSTART input ON again, the positioning operation for the operation data No. 1 will be performed.
3) After the operation 2) is completed, when turning the SSTART input ON again, the positioning operation for the operation data No. 2 will be performed.
4) After the operation 3) is completed, when turning the SSTART input ON again, the positioning operation will be performed by returning to the operation data No. 0 because the sequential positioning for the operation data No. 3 has been set to "disable."

> - Setting example

Operation data	Sequential positioning
No. 0	Enable
No. 1	
No. 2	Disable
No. 3	

- When the operating patterns are multiple

1) After selecting the operation data No. 3 that is the starting point for the sequential positioning operation, the positioning operation will be performed by turning the START input ON.
2) After the operation 1) is completed, when turning the SSTART input ON again, the positioning operation for the operation data No. 4 will be performed.
3) After the operation 2) is completed, when turning the SSTART input ON again, the positioning operation for the operation data No. 5 will be performed.
4) After the operation 3) is completed, when turning the SSTART input ON again, the positioning operation will be performed by returning to the operation data No. 3 because the sequential positioning for the operation data No. 6 has been set to "disable."
5) After the operation 4) is completed, the positioning operation is performed by selecting the operation No. 7 and turning the START input ON.
The operation data No. 7 becomes a starting point for a new sequential positioning operation.
6) After the operation 5) is completed, when turning the SSTART input ON again, the positioning operation for the operation data No. 8 will be performed.
7) When turning the SSTART input ON again after the operation 6) is completed, the positioning operation will be performed by returning to the operation data No. 7 because the sequential positioning for the operation data No. 9 has been set to "disable."

- Setting example

Operation data	Sequential positioning
No. 3	Enable
No. 4	
No. 5	Disable
No. 6	Enable
No. 7	
No. 8	
No. 9	

- Operating method

1) Check the READY output is ON.
2) Turn the SSTART input ON.
3) The motor starts positioning operation.
4) Check that the READY output has been turned OFF and turn the SSTART input OFF.
5) When the positioning operation is completed, the READY output will be turned ON.

- Key points about sequential positioning operation

When performing any of the following operations while sequential positioning operation is performed, the starting point for sequential positioning will be changed to the operation data No.O. And the current operation data No. is set to " -1 ".

- When the 24 VDC power supply is turned ON
- When operations other than the positioning operation are performed (return-to home operation, continuous operation, etc.)
- When an alarm is generated and reset
- When the STOP input is turned ON
- When the command to turn the motor excitation OFF, such as the FREE input or AWO input, was input
- When the P-PRESET is executed
- When a configuration is executed
memo Set "enable" the "sequential positioning" even when sequential positioning is performed by the operation data being set to "Linked-motion" or "Linked-motion 2" in the "operation function."

4-3 Operation function

Single-motion

The positioning operation is performed only once using a single operation data set.

- Example of single-motion operation

	Operation mode	Position [step]	Operating speed [Hz]	Operation function	Dwell time [s]	Sequential positioning	Acceleration [ms/kHz] or [s]	Deceleration [ms/kHz] or [s]
\#n	Incremental (IINC)	0	$1 \mathrm{n} \cap \mathrm{n}$	Sinale-mation	กก⿺ก	Disable	$30 \mathrm{n} \cap \mathrm{n}$	$30 \mathrm{n} \cap \mathrm{n}$
\#1	Incremental (INC)	5000	5000	Single-motion	0.000	Disable	30.000	30.000

Operation example

Operating method

1) Check the READY output is ON.
2) Select the operation data No. 1 by turning the MO input ON, and turn the START input ON.
3) The motor starts positioning operation of the operation data No.1.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the positioning operation is completed, the READY output will be turned ON.

* In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In network I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.

Linked-motion operation

When the "operation function" is set to "linked-motion" using operation data, positioning operation based on the next data number will be performed without stopping the motor.
If operation data includes data for which "single-motion" is set, the motor will stop after the positioning with respect to the "single" operation data is completed.
A maximum of four operation data can be linked. Note that only operation data of the same direction can be linked.
memo - Multiple operation data of different directions cannot be linked. An abnormal operation data alarm will generate during operation.

- Up to four sets of operation data can be linked. When combining the linked-motion operation and the linked-motion operation2, make sure the total number of linked operation data sets does not exceed four. When linked-motion operation is performed with five or more sets of operation data linked together, an abnormal operation data alarm will generate upon start of operation.
- No. 0 will not be linked even when "linked-motion" is set for data No.63, because the operation pertaining to No. 63 will be processed independently.
- The acceleration/deceleration in linked-motion operation corresponds to the acceleration/ deceleration specified for the operation data No. with which the linked-motion operation is started.

- Example of linked-motion operation

	Operation mode	Position [step]	Operating speed [Hz]	Operation function	Dwell time [s]	Sequential positioning	Acceleration [ms/kHz] or [s]	Deceleration [$\mathrm{ms} / \mathrm{kHz}$] or [s]
\#	Incremental (INC)	0	1000	Sinale.mation	0ก⿺ก	Disable	$30 \mathrm{n} \cap \mathrm{n}$	30 non
$\# 1$	Incremental (INC)	5000	5000	Linked-motion	0.000	Disable	30.000	30.000
\#2	Incremental (INC)	20000	10000	Single-motion	0.000	Disable	30.000	30.000

Operation example
Operating speed of No.2: 10,000 Speed

Operating method

1) Check the READY output is ON.
2) Select the operation data No. 1 by turning the MO input ON and turn the START input ON.
3) The motor starts the positioning operation in which the operation data No. 1 and No. 2 are linked.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the positioning operation is completed, the READY output will be turned ON.

[^3]
Linked-motion operation2

By setting the "operation function" of operation data to "Linked-motion 2," an operation data whose rotation direction is different can be linked. In this case, the system stops for the dwell time after each positioning operation, and then performs operation according to the next operation data. If operation data includes data for which "single-motion" is set, the motor will stop after the positioning with respect to the "single" operation data is completed.
memo - Up to four sets of operation data can be linked. When combining the linked-motion operation and the linked-motion operation2, make sure the total number of linked operation data sets does not exceed four. When linked-motion operation is performed with five or more sets of operation data linked together, an abnormal operation data alarm will generate upon start of operation.

- No. 0 will not be linked even when "linked-motion 2 " is set for data No.63, because the operation pertaining to No. 63 will be processed independently.
- Example of linked-motion operation2

	Operation mode	Position [step]	Operating speed [Hz]	Operation function	Dwell time [s]	Sequential positioning	Acceleration [ms/kHz] or [s]	Deceleration [ms/kHz] or [s]
HO	Incremental (INC)	0	1000	Sinale.mation	000\%	nisable	30 nOn	30 n 0 n
\#1	Incremental (INC)	5000	5000	Linked-motion 2	1.000	Disable	30.000	30.000
\#2	Incremental (1 NC)	-3000	3000	Single-motion	0.000	Disable	30.000	30.000

Operation example

Operating method

1) Check the READY output is ON.
2) Select the operation data No. 1 by turning the MO input ON and turn the START input ON.
3) The motor starts the positioning operation for the operation data No.1.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the positioning operation 3) is completed, the MOVE output will be turned OFF.
6) When the dwell time has passed, the positioning operation for the operation data No. 2 will automatically start. At the same time, the MOVE output will be turned ON.
7) When the positioning operation for the operation data No. 2 is completed, the READY output will be turned ON.

* In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In network I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.

- Example of linked-motion operation2;

When combining the linked-motion operation and the linked-motion operation2

	Operation mode	Position [step]	Operating speed [Hz]	Operation function	Dwell time [s]	Sequential positioning	Acceleration [ms/kHz] or [s]	Deceleration [ms/kHz] or [s]
\#0	Incremental (INC)	0	1000	Single-motion	0.000	Disable	30.000	30.000
\#1	Incremental (INC)	5000	3000	Linked-motion	0.000	Disable	30.000	30.000
\#2	Incremental (INC)	10000	5000	Linked-motion	0.000	Disable	30.000	30.000
\#3	Incremental (INC)	25000	7000	Linked-motion 2	1.000	Disable	30.000	30.000
\#4	Absolute (ABS)	0	7000	Single-motion	0.000	Disable	30.000	30.000

Operation example

Operating method

1) Check the READY output is ON.
2) Select the operation data No. 1 by turning the MO input ON and turn the START input ON.
3) The motor starts the positioning operation in which the operation data from No. 1 to No. 3 are linked.
4) Check that the READY output has been turned OFF and turn the START input OFF.
5) When the positioning operation 3) is completed, the MOVE output will be turned OFF.
6) When the dwell time has passed, the positioning operation for the operation data No. 4 will automatically start. At the same time, the MOVE output will be turned ON.
7) When the positioning operation for the operation data No. 4 is completed, the READY output will be turned ON.

[^4]
5 Return-to-home operation

5-1 About description of return-to-home operation

Return-to-home is an operation in which the reference point of positioning (mechanical home position) is detected automatically. Return-to-home operation is performed to return to the home position from the current position when the power supply is turned on or the positioning operation is completed.
Return-to-home operation can be performed in the following three modes:

Item	Description	Feature
3-sensor mode	$\begin{array}{l}\text { The motor operates at the "operating speed of home-seeking." } \\ \text { When the ON edge of the HOME sensor is detected, the motor will } \\ \text { stop. The motor rotates in the reverse direction after stopping, } \\ \text { and it will stop again when the ON edge of the HOME sensor is } \\ \text { detected, then the position at which the motor stopped will } \\ \text { become the home. }\end{array}$	$\begin{array}{l}\text { •3 external sensors are } \\ \text { needed* } \\ \text { - Operating speed is high } \\ \text { (Operating speed of } \\ \text { return-to-home) }\end{array}$
2-sensor mode	$\begin{array}{l}\text { The motor operates at the "starting speed of home-seeking." } \\ \text { When the limit sensor is detected, the motor will rotate in the } \\ \text { reverse direction and pull out of the limit sensor. After pulling out } \\ \text { of the sensor, the motor rotates to stop according to the set value } \\ \text { in the "backward steps in 2-sensor mode home-seeking" } \\ \text { parameter, then the position at which the motor stopped will } \\ \text { become the home. }\end{array}$	$\begin{array}{l}\text {-2 external sensors are } \\ \text { needed }\end{array}$
•Operating speed is low		
(Starting speed of return-		
to-home)		

* In the case of a rotating mechanism, even when using one external sensor, the home position can be detected. Set to the 3-sensor mode, and connect the HOME sensor only.

Additional function

Item	2-sensor mode 3-sensor mode	Position preset	Related parameter
Home offset	Possible	Not possible	\bullet Position offset of home-seeking
External sensor (signal) detection	Possible	Not possible	\bullet SLIT detection with home-seeking \bullet TIM signal detection with home-seeking
Command position after returning to home	The position becomes "0"	Any position	\bullet Preset position

- Home offset

This is a function to perform positioning operation of the offset amount set by the parameter after return-to-home operation and to set the stop position to the home position. The position set by the home offset is called "electrical home" in distinction from the usual home position.
If the amount of offset from mechanical home is " 0 ," the mechanical home and electrical home will become the same.

- Detecting the external sensor (signal)

When detecting the home, use of the SLIT input and/or TIM (ZSG) signal will increase the accuracy of home detection.
memo When the TIM output is used, set the resolution to be an integral multiple of 50 .

- Command position after returning to home

When executing the P-PRESET input at the position that the motor stops, the command position will be the value of the "preset position" parameter.

Parameters related to return-to-home operation

MEXEO2 tree view	Parameter name	Description	Initial value
Home operation	Home-seeking mode	Sets the mode for return-to-home operation. [Setting range] 0: 2-sensor mode 1:3-sensor mode	1
	Operating speed of home-seeking	This is the operating speed for return-to-home operation. [Setting range] $1 \text { to } 1,000,000 \mathrm{~Hz}$	1,000
	Acceleration/ deceleration of homeseeking	This is the acceleration/deceleration rate (or acceleration/ deceleration time) for return-to-home operation. [Setting range] $1 \text { to } 1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s})^{*} 1$	30,000
	Starting speed of homeseeking	This is the starting speed for return-to-home operation. [Setting range] $1 \text { to } 1,000,000 \mathrm{~Hz}$	100
	Position offset of home-seeking	This is the amount of offset from mechanical home. [Setting range] $-8,388,608 \text { to } 8,388,607 \text { step }$	0
	Starting direction of home-seeking	Sets the starting direction for home detection. [Setting range] 0 : Negative direction 1: Positive direction	1
	Backward steps in 2-sensor mode homeseeking	Sets the travel amount after pulling out of the LS in 2-sensor mode return-to-home operation. [Setting range] 0 to 32,767 step	200
	SLIT detection with home-seeking	Sets whether or not to concurrently use the SLIT input for return-to-home operation. [Setting range] 0 : Disable 1: Enable	
	TIM signal detection with home-seeking	Sets whether or not to concurrently use the TIM (ZSG) output for return-to-home operation. [Setting range] 0 : Disable 1:TIM signal enable 2: ZSG signal enable *2	0

[^5]
- Operation example (when using 3-sensor mode)

- Operating sequence in seeing a time axis

- Operating sequence in seeing a travel amount

Operating method

1) Check the READY output is ON.
2) Turn the HOME input ON.
3) Return-to-home operation will be started.
4) Check that the READY output has been turned OFF and turn the HOME input OFF.
5) When return-to-home operation is completed, the HOME-P output will be turned ON.

5-2 Operation sequence

3-sensor mode - Explanation of labels
VS: Starting speed of home-seeking
VR: Operating speed of home-seeking
VL: Last speed of return-to-home (When VS $<500 \mathrm{~Hz}$: VS, When VS $\geq 500 \mathrm{~Hz}: 500 \mathrm{~Hz}$)
--- Broken line indicates a home offset move.

Starting position of return-to-home operation
Starting direction of return-to-home
operation: Positive side
:---:
operation: Negative side

- When using the HOME sensor only

If the limit sensor is not used, such as a rotating mechanism or others, the operation sequence is as follows.

Starting position of return-to-home operation	Starting direction of return-to-home operation: Positive side	Starting direction of return-to-home operation: Negative side
HOMES		
Other than HOMES		

Note
After the HOME sensor was detected, a load (moving part) may decelerate to a stop beyond the HOME sensor depending on the setting value of the "Acceleration/deceleration of home-seeking" parameter. Since the load (moving part) may contact with the mechanical end if the distance between the mechanical end and the HOME sensor is close, take an enough distance between them.

- When concurrently using the external sensor (signal)

After the ON edge of the HOME sensor is detected, the return-to-home operation will continue until the external sensor (signal) will be detected. If the external sensor (signal) is detected while the HOME sensor is ON, the return-tohome operation will complete.
When selecting "ZSG signal enable" in the "TIM signal detection with home-seeking" parameter, the TIM signal in the figure becomes the ZSG signal.

Operation sequence after detecting the ON edge of the HOME sensor

Signal type	Starting direction of return-to-home operation: Positive side	Starting direction of return-to-home operation: Negative side
SLIT input		
TIM signa		
SLIT input and TIM signal		

- 2-sensor mode •Explanation of labels

VS: Starting speed of home-seeking
VR: Operating speed of home-seeking
VL: Last speed of return-to-home (When VS < 500 Hz : VS, When VS $\geq 500 \mathrm{~Hz}: 500 \mathrm{~Hz}$)
--- Broken line indicates a home offset move.

Starting position of return-to-home operation	Starting direction of return-to-home operation: Positive side	Starting direction of return-to-home operation: Negative side
-LS		
+LS		
Between -LS and +LS		

[^6]
- When concurrently using the external sensor (signal)

When the limit sensor is detected, the motor will rotate in the reverse direction and pull out of the limit sensor. After pulling out of the limit sensor, the motor rotates to stop according to the set value in the "backward steps in 2-sensor mode home-seeking" parameter. Then, the motor operation will continue until the external sensor (signal) will be detected. When the external sensor (signal) is detected, return-to-home operation will complete. When selecting "ZSG signal enable" in the "TIM signal detection with home-seeking" parameter, the TIM signal in the figure becomes the ZSG signal.

Operation sequence after detecting the ON edge of the limit sensor

Signal type	Starting direction of return-to-home operation: Positive side	Starting direction of return-to-home operation: Negative side
SLIT input		
TIM sign		
SLIT input and TIM signal		

* After pulling out of the limit sensor, the motor rotates according to the set value in the "backward steps in 2-sensor mode home-seeking" parameter.

5-3 Position preset

When the P-PRESET input is turned ON, the command position is set as the value of the "preset position" parameter. However, the preset will not execute in the following conditions.

- When the motor is operating
- When an alarm is present
- Related parameters

MEXE02tree view	Parameter name	Description	Initial value
Coordinates	Preset position	Sets the preset position. [Setting range] $-8,388,608$ to 8,388,607 step	0

- Operating method

1) Check the READY output is ON.
2) Turn the P-PRESET input ON
3) When the driver internal processing is completed, the HOME-P output will be turned ON.
4) Check the HOME-P output has been turned ON, and then turn the P-PRESET input OFF.

6 Continuous operation

The motor operates continuously while the FWD or RVS input is ON.
Operation is performed based on the FWD or RVS input and the operating speed corresponding to the selected operation data No.
When the operation data No. is changed during continuous operation, the speed will change to the speed specified by the new operation data No.
When the FWD or RVS input is turned OFF, the motor will decelerate to a stop. If the signal of the same direction is turned ON again during deceleration, the motor will accelerate and continue operating.
If the FWD and RVS inputs are turned ON simultaneously, the motor will decelerate to a stop.

6-1 Operation data

Operation data for continuous operation are as follows.

MEXE02tree view	Name	Description	Initial value
	Operating speed	This is the operating speed for continuous operation. [Setting range] 0 to $1,000,000 \mathrm{~Hz}$	1,000
Operation data	Acceleration	Sets the acceleration rate (or acceleration time) for continuous operation. * [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s})$	
	Deceleration	Sets the deceleration rate (or deceleration time) for continuous operation. * [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s})$	30,000

[^7]

6-2 Starting method of continuous operation

When selecting the operation data No. and turning the FWD input or RVS input ON, continuous operation will be started. Select an operation data based on a combination of ON/OFF status of the M0 to M5 inputs. See p. 62 for details.

Operation data No.	M5	M4	M3	M2	M1	M0
0	OFF	OFF	OFF	OFF	OFF	OFF
1	OFF	OFF	OFF	OFF	OFF	ON
2	OFF	OFF	OFF	OFF	ON	OFF
\cdots						
61	ON	ON	ON	ON	OFF	ON
62	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON

- Operating method

1) Check the READY output is ON.
2) Select the operation data No. by a combination of the M0 to M5 inputs and turn the FWD input ON.
3) The motor starts continuous operation. The READY output will be turned OFF.
4) Select the operation data No. 1 by turning the MO input ON. The motor accelerates to the operating speed of the operation data No.1.
5) Select the operation data No. 0 by turning the MO input OFF. The motor decelerates to the operating speed of the operation data No.O.
6) Turn the FWD input OFF.
7) The motor will decelerate to a stop and the READY output will be turned ON.

* In direct I/O, turn the FWD input or RVS input ON after setting the M0 to M5 inputs. In network I/O, the operation will be performed even when turning the M0 to M5 inputs and the FWD (RVS) input ON simultaneously.

- Operating method; When combining the FWD input and RVS input

1) Check the READY output is ON.
2) Select the operation data No. by a combination of the M0 to M5 inputs and turn the FWD input ON.
3) The motor starts continuous operation. The READY output will be turned OFF.
4) Turn the FWD input OFF. The motor will decelerate.
5) Turn the FWD input $O N$ while the motor is decelerating. The motor accelerates again.
6) Turn the FWD input OFF. The motor will decelerate.
7) Turn the RVS input ON while the motor is decelerating. The motor will stop once, and start rotating in the reverse direction.
8) When turning the FWD input ON while the RVS input is ON, the motor will decelerate.
9) The motor will decelerate to a stop and the MOVE output will be turned OFF.
10) When turning both the FWD input and RVS input OFF, the READY output will be turned ON.

* In direct I/O, turn the FWD input or RVS input ON after setting the M0 to M5 inputs. In network I/O, the operation will be performed even when turning the M0 to M5 inputs and the FWD (RVS) input ON simultaneously.

6-3 Variable speed operation

When acceleration/deceleration is "separate"

Acceleration/deceleration unit: ms/kHz

Acceleration/deceleration unit: s
When accelerating

- Explanation of labels

VS: Starting speed (Hz)
VR1: Operating speed of operation data No. $1(\mathrm{~Hz})$
VR2: Operating speed of operation data No. 2 (Hz)
TA1: Acceleration of operation data No. 1
TA2: Acceleration of operation data No. 2
TD2: Deceleration of operation data No. 2
TAR1: Acceleration rate of operation data No. $1(\mathrm{~Hz} / \mathrm{s})$
TAR2: Acceleration rate of operation data No. $2(\mathrm{~Hz} / \mathrm{s})$
TDR2: Deceleration rate of operation data No. 2 (Hz / s)

When decelerating

When decelerating

- Calculation method for acceleration/deceleration rate

TAR1 $=($ VR1 -VS$) /$ TA1
TAR2 $=($ VR2 -VS$) /$ TA2
TDR2 $=($ VR2 -VS$) /$ TD2

When acceleration/deceleration is "common"

- Acceleration/deceleration unit: $\mathrm{ms} / \mathrm{kHz}$

When accelerating

When decelerating

When decelerating

Calculation method for acceleration/deceleration rate TAR1 $=($ VR1 - VS) $/$ TAC
TAR2 $=($ VR2 $-V S) /$ TAC
TDR2 $=($ VR2 -VS$) /$ TDC

7 Other operation

7-1 JOG operation

JOG operation is a function to perform positioning operation of the travel amount set in the "JOG travel amount" parameter.
When the +JOG signal to ON, JOG operation is in the positive direction.
When the -JOG signal to ON, JOG operation is in the negative direction.
This function is convenient for fine adjustment of the position.

- Related parameters

MEXE02tree view	Parameter name	Description	Initial value
Operation	JOG travel amount	This is the travel amount for JOG operation. [Setting range] 1 to $8,388,607$ step	1
	JOG operating speed	This is the operating speed for JOG operation. [Setting range] 1 to $1,000,000 \mathrm{~Hz}$	1,000
	JOG acceleration/ deceleration rate	This is the acceleration/deceleration rate (or acceleration/deceleration time) for JOG operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s})^{*}$	30,000
	JOG starting speed	This is the starting speed for JOG operation. [Setting range] 0 to $1,000,000 \mathrm{~Hz}$	100

* Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "Acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).
- Operation example

- Operating method

1) Check the READY output is ON.
2) Turn the +JOG input ON.
3) The motor starts positioning operation.
4) Check the READY output has been turned OFF and turn the +JOG input OFF.
5) When the positioning operation is completed, the READY output will be turned ON.

7-2 Test operation

Test operation is performed using the MEXEO2 or OPX-2A. JOG operation and teaching function can be performed. Refer to the operating manual of the MEXE02 for details about the MEXE02, and p. 245 for details about the OPX2A.

JOG operation

Connection condition or operation status for the motor and driver can be checked using JOG operation.
Example: When performing test operation with the OPX-2A

- Teaching function

This is a function to move the motor using the MEXE02 or OPX-2A and set the current position as the position (travel amount) of the operation data. When the position (travel amount) is set using teaching function, the "operation mode" will always be the absolute mode. The operating speed, acceleration/deceleration and starting speed of teaching function are same as those of JOG operation.
memo Perform teaching function when the position origin is set. See p. 114 for setting the position origin.

7-3 Stop operation

STOP action

When the STOP input is turned ON or STOP is commanded via RS-485 communication while the motor is operating, the motor will stop. The stopping mode is determined by the setting of the "STOP input action" parameter.
For example, the operation when setting "STOP input action" parameter to "deceleration stop" is shown in the figure.

Related parameters

MEXEO2 tree view	Parameter name	Description	Initial value
I/O	STOP input action	Sets how to stop the motor when the STOP input has turned ON. [Setting range] 0: Immediate stop 1: Deceleration stop 2: 1 Imediate stop + current OFF 3: Deceleration stop + current OFF	

Hardware overtravel

Hardware overtravel is the function that limits the operation range by installing the limit sensor ($\pm \mathrm{LS}$) at the upper and lower limit of the operation range. If the "hardware overtravel" parameter is set to "enable", the motor can be stopped when detecting the limit sensor. The stopping mode is determined by the setting of "overtravel action" parameter.
The operation examples are shown in the figure.

- Immediate stop

- Deceleration stop

Related parameters

MEXE02tree view	Parameter name	Description	Initial value
I/O	Hardware overtravel	Sets whether to enable or disable the hardware overtravel detection using \pm LS inputs. [Setting range] 0: Disable 1: Enable	1
	Overtravel action	Sets how to stop the motor when the overtravel alarm has occurred. lSetting range] 0: Immediate stop $1:$ Deceleration stop	0

Note When the "overtravel action" parameter is set to "deceleration stop," consider the distance to stop from the start of deceleration in order to avoid contact of a load with the mechanical end.

Software overtravel

The software overtravel is a function that limits the range of movement via software settings. If the "software overtravel" parameter is set to "enable", the motor can be stopped when exceeding the software limit. The stopping mode is determined by the setting of "overtravel action" parameter.
The operation examples are shown in the figure when an operation where a software limit is to be exceeded is started.

- Immediate stop

- Deceleration stop

Related parameters

MEXE02 tree view	Parameter name	\quad Description	Initial value
I/O	Overtravel action	Sets how to stop the motor when the overtravel alarm has occurred. [Setting range] 0: Immediate stop 1: Deceleration stop	0
	Software overtravel	Sets whether to enable or disable the software overtravel detection using the soft limits. [Setting range] $0:$ Disable $1:$ Enable	
	Positive software limit	Sets the value of the software limit in positive direction. [Setting range] -8,388,608 to 8,388,607 step	$8,388,607$
	Negative software limit	Sets the value of the software limit in negative direction. [Setting range] $-8,388,608$ to $8,388,607$ step	$-8,388,608$

memo - Software overtravel will become effective after the position origin is set. See p. 114 for setting the position origin.

- When the value of the software limit is changed while the motor is operating, the motor will stop according to the setting of the "overtravel action" parameter.

Escape from the limit sensor

It is possible to escape in the negative direction when detecting the positive direction limit, and possible to escape in the positive direction when detecting the negative direction limit.
The following operations can be used when escaping from the limit sensor.

Types of operation	Limit sensors (\pm LS)	Software limit
Positioning operation	Will not operate (unable to escape)	
Continuous operation Test operation Return-to-home operation	Allowed to operate (able to escape)	Allowed to operate (able to escape)

8 Coordinate management

8-1 Position coordinate management

The driver manages the motor position information.
The position origin will be set whenever one of the following operations is executed:

- Return-to-home operation
- P-PRESET input is turned ON

The position origin will not be set whenever one of the following operations is executed:

- When the 24 VDC power supply is turned ON
- When the motor becomes in non-excitation state while the "stepout detection" parameter is set to "disable."
- When a configuration is executed

If the "return-to-home incomplete alarm" parameter is set to "enable", positioning operations can be prohibited while the position origin has not been set.
The return-to-home incomplete alarm will generate if the START input, SSTART input or the MS0 to MS5 inputs are turned ON while the position origin has not been set. See p. 277 for alarm.

Related parameters

MEXEO2 tree view	Parameter name	Description	Initial value
Alarm	Return-to-home incomplete alarm	When the positioning operation is started while the position origin has not been set, sets whether the alarm generates or not. [Setting range] 0: Disable 1: Enable	0

Wrap function

The wrap function is a function that resets the command position or multi-rotation data to 0 whenever the command position exceeds the set value by the "wrap setting range" parameter. The command position varies in a range of " 0 to (wrap setting value-1)."

Related parameters

MEXE02tree view	Parameter name	Description	Initial value
Coordinates	Wrap setting	Sets whether to enable or disable the wrap function. [Setting range] 0: Disable $1:$ Enable	0
	Wrap setting range	Wrap setting range. [Setting range] 1 to $8,388,607$ step	500

memo When setting the "wrap setting" parameter to "enable", the software overtravel will be disabled. (It is disabled even when setting the "software overtravel" parameter to "enable".)

- Example for wrap function

Example of operation when the positioning operation is performed in the following conditions.

- Wrap setting range: 3,600
- Resolution: $500 \mathrm{P} / \mathrm{R}$ (electronic gear $A=1$, electronic gear $B=1$)
- Command position: 900
Position

9 Operation data

Up to 64 operation data can be set (data Nos. 0 to 63).
If the data is changed, a recalculation and setup will be performed after the operation is stopped.

Name	Description	Initial value
Position No. 0 to Position No. 63	Sets the position (travel amount) for positioning operation. [Setting range] $-8,388,608 \text { to }+8,388,607 \text { step }$	0
Operating speed No. 0 to Operating speed No. 63	This is the operating speed for positioning operation and continuous operation. [Setting range] 0 to $1,000,000 \mathrm{~Hz}$	1,000
Operation mode No. 0 to Operation mode No. 63	Sets the operation mode for positioning operation. [Setting range] 0: Incremental (INC) 1: Absolute (ABS)	0
Operation function No. 0 to Operation function No. 63	This is used to set how to operate consecutive operation data. [Setting range] 0 : Single-motion 1: Linked-motion 2: Linked-motion 2	0
Acceleration No. 0 to Acceleration No. 63	Sets the acceleration rate (or acceleration time) for positioning operation and continuous operation. *1 [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}) ~ * 2$	30,000
Deceleration No. 0 to Deceleration No. 63	Sets the deceleration rate (or deceleration time) for positioning operation and continuous operation. *1 [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s})$ *2	30,000
Sequential positioning No. 0 to Sequential positioning No. 63	Sets whether to enable or disable sequential positioning operation. [Setting range] 0 : Disable 1: Enable	0
Dwell time No. 0 to Dwell time No. 63	Sets the waiting time between the first operation data and second operation data in linked-motion operation 2. [Setting range] 0 to 50,000 ($1=0.001 \mathrm{~s}$)	0

*1 This item is effective when the "acceleration/deceleration type" parameter is set to "separate". If this parameter is set to "common", the values of the "common acceleration" and "common deceleration" parameters will be used (initial value: separate).
*2 Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

Parameters are stored in the RAM or non-volatile memory. The data saved in the RAM are erased once the 24 VDC power supply is shut off, but the parameters in the non-volatile memory are remained to store even if the 24 VDC power supply is shut off.
When the 24 VDC power supply is turned on, the parameters stored in the non-volatile memory will be sent to the RAM, and the recalculation and setup for the parameters will be executed in the RAM.

Parameters set via RS-485 communication or industrial network are stored in the RAM. To save the parameters stored in the RAM to the non-volatile memory, execute the "Write batch NV memory" of the maintenance command. The parameters having set in the MEXE02 is saved in the non-volatile memory when the data writing is performed.
When a parameter is changed, the timing to update the new value varies depending on the parameter. For details about timing to update, check on "Notation rules."
memo - Parameters set via the RS-485 communication or industrial network are stored in the RAM. For parameters required for turning on the 24 VDC power supply again, be sure to save them in the non-volatile memory before turning off the power.

- The non-volatile memory can be rewritten approximately 100,000 times.

Notation rules
In this part, each update timing is represented in an alphabet.

Notation	Description
A	Recalculation and setup are immediately executed when the parameter is written.
B	Recalculation and setup are executed when the operation is stopped.
C	Recalculation and setup are executed after Configuration is executed or the 24 VDC power supply is turned on again.
D	Recalculation and setup are executed after the 24 VDC power supply is turned on again.

I/O parameter (p.119)	- STOP input action - Hardware overtravel - Overtravel action - AREA1 positive direction position - AREA1 negative direction position - AREA2 positive direction position - AREA2 negative direction position - AREA3 positive direction position - AREA3 negative direction position - Minimum ON time for MOVE output	$\bullet \pm$ LS logic level - HOMES logic level - SLIT logic level - MSO operation No. selection - MS1 operation No. selection - MS2 operation No. selection - MS3 operation No. selection - MS4 operation No. selection - MS5 operation No. selection - HOME-P output function selection
Motor parameter (p.120)	- RUN current - STOP current - Speed filter	- Moving average time - Filter selection
Operation parameter (p.120)	- Common acceleration - Common deceleration - Starting speed - JOG operating speed - JOG acceleration/deceleration rate	- JOG starting speed - Acceleration/deceleration type - Acceleration/deceleration unit - JOG travel amount

Home operation parameter (p.121)	- Home-seeking mode - Operating speed of home-seeking - Acceleration/deceleration of homeseeking - Starting speed of home-seeking - Position offset of home-seeking	- Starting direction of home-seeking - SLIT detection with home-seeking - TIM signal detection with homeseeking - Backward steps in 2-sensor mode home-seeking
Alarm parameter (p.122)	- Return-to-home incomplete alarm	
Warning parameter (p.122)	- Overheat warning - Overvoltage warning - Undervoltage warning	
Coordinates parameter (p.122)	- Electronic gear A - Electronic gear B - Motor rotation direction - Software overtravel - Positive software limit - Negative software limit - Preset position	- Wrap setting - Wrap setting range - Encoder resolution - Encoder preset value - Stepout detection - Stepout detection band - Stepout detection action
Common parameter (p.123)	- Data setter speed display - Data setter edit	
I/O function [Input] parameter (p.124)	- IN0 to IN7 input function selection - IN0 to IN7 input logic level setting	
I/O function [Output] parameter (p.124)	- OUT0 to OUT5 output function selec	
I/O function [RS-485] parameter (p.125)	- NET-INO to NET-IN15 input function s - NET-OUTO to NET-OUT15 output functia	ction n selection
Communication parameter (p.126)	- Communication timeout - Communication error alarm - Communication parity	- Communication stop bit - Transmission waiting time

10-2 I/O parameter

Parameter name	Description	Initial value	Update (p.117)
STOP input action	Sets how to stop the motor when the STOP input has turned ON. [Setting range] 0: Immediate stop 1: Deceleration stop 2: Immediate stop + current OFF 3: Deceleration stop + current OFF	1	A
Hardware overtravel	Sets whether to enable or disable the hardware overtravel detection using \pm LS inputs. [Setting range] 0: Disable 1: Enable	1	
Overtravel action	Sets how to stop the motor when the overtravel alarm has occurred. [Setting range] 0: Immediate stop 1: Deceleration stop	0	
AREA1 positive direction position	This is the position of AREA1 to AREA3 positive direction. [Setting range]$-8,388,608 \text { to 8,388,607 step }$	0	
AREA2 positive direction position			
AREA3 positive direction position			
AREA1 negative direction position	This is the position of AREA1 to AREA3 negative direction.	0	
AREA2 negative direction position			
AREA3 negative direction position	$-8,388,608$ to $8,388,607$ step		
Minimum ON time for MOVE output	Sets the output time for the MOVE signal. [Setting range] 0 to 255 ms	0	
\pm LS logic level	Sets the logic for \pm LS input. [Setting range] 0: Normally open 1: Normally closed	0	C
HOMES logic level	Sets the logic for HOMES input. [Setting range] 0 : Normally open 1: Normally closed	0	
SLIT logic level	Sets the logic for the SLIT input. [Setting range] 0: Normally open 1: Normally closed	0	
MS0 operation No. selection	Sets the operation data number corresponding to the MSO to MS5 input. [Setting range] 0 to 63	0	B
MS1 operation No. selection		1	
MS2 operation No. selection		2	
MS3 operation No. selection		3	
MS4 operation No. selection		4	
MS5 operation No. selection		5	
HOME-P output function selection	Sets the timing to output the HOME-P output. [Setting range] 0: Home output 1: Return-to-home complete output	0	A

10-3 Motor parameter

Parameter name	Description	Initial value	Update (p.117)
RUN current	Sets the motor operating current rate based on the rated current being 100%. [Setting range] 0 to 1,000 ($1=0.1 \%$)	1,000	A
STOP current	Sets the motor standstill current based on the rated current being 100%. [Setting range] 0 to 600 ($1=0.1 \%$)	500	
Speed filter	Adjusts the motor response. [Setting range] 0 to 200 ms	1	B
Moving average time	Sets the time constant for the moving average filter. [Setting range] 0 to 200 ms	1	
Filter selection	Sets the filter function to adjust the motor response. [Setting range] 0 : Speed filter 1: Moving average filter	0	C

10-4 Operation parameter

Parameter name	Description	Initial value	Update (p.117)
Common acceleration	This is the common acceleration rate (or common acceleration time) for positioning operation and continuous operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}) * 1 * 2$	30,000	B
Common deceleration	This is the common deceleration rate (or common deceleration time) for positioning operation and continuous operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}) * 1 * 2$		
Starting speed	This is the starting speed for positioning operation and continuous operation. The motor will operate at the starting speed if the operating speed is below the starting speed. [Setting range] 0 to $1,000,000 \mathrm{~Hz}$	100	
JOG operating speed	This is the operating speed for JOG operation. [Setting range] $1 \text { to } 1,000,000 \mathrm{~Hz}$	1,000	
JOG acceleration/ deceleration rate	This is the acceleration/deceleration rate (or acceleration/deceleration time) for JOG operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}) * 2$	30,000	
JOG starting speed	This is the starting speed for JOG operation. [Setting range] 0 to $1,000,000 \mathrm{~Hz}$	100	
Acceleration/ deceleration type	Sets whether to use the common acceleration/deceleration or the acceleration/deceleration specified for the operation data. [Setting range] 0 : Common 1: Separate	1	

| Parameter name | | Description | Initial value |
| :--- | :--- | :---: | :---: | \(\left.\begin{array}{l}Update

(p .117)\end{array}\right]\)
*1 This item is effective when the "acceleration/deceleration type" parameter is set to "common." (initial value: separate).
*2 Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "acceleration/deceleration unit" parameter. (initial value: acceleration/deceleration rate).

10-5 Home operation parameter

Parameter name	Description	Initial value	Update (p.117)
Home-seeking mode	Sets the mode for return-to-home operation. [Setting range] 0: 2-sensor mode 1:3-sensor mode	1	
Operating speed of homeseeking	This is the operating speed for return-to-home operation. [Setting range] 1 to $1,000,000 \mathrm{~Hz}$	1,000	
Acceleration/deceleration of home-seeking	This is the acceleration/deceleration rate (or acceleration/deceleration time) for return-to-home operation. [Setting range] 1 to $1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}) * 1$	30,000	
Starting speed of homeseeking	This is the starting speed for return-to-home operation. [Setting range] 1 to $1,000,000 \mathrm{~Hz}$	100	
Position offset of homeseeking	This is the amount of offset from mechanical home. [Setting range] $-8,388,608 \text { to } 8,388,607 \text { step }$	0	
Starting direction of homeseeking	Sets the starting direction for home detection. [Setting range] 0 : Negative direction 1: Positive direction	1	B
SLIT detection with homeseeking	Sets whether or not to concurrently use the SLIT input for return-tohome operation. [Setting range] 0: Disable 1: Enable	0	
TIM signal detection with home-seeking	Sets whether or not to concurrently use the TIM (ZSG) output for return-to-home operation. [Setting range] 0: Disable 1: TIM signal enable 2: ZSG signal enable *2	0	
Backward steps in 2-sensor mode home-seeking	Sets the travel amount after pulling out of the LS in 2-sensor mode return-to-home operation. [Setting range] 0 to 32,767 step	200	

[^8]
10-6 Alarm parameter

Parameter name	Description	Initial value	Update $(p .117)$
Return-to-home incomplete alarm	When the positioning operation is started while the position origin has not been set, sets whether the alarm generates or not. [Setting range] 0: Disable 1: Enable	0	

10-7 Warning parameter

Parameter name	Description	Initial value	Update (p.117)
Overheat warning	Sets the temperature at which a main circuit overheat warning generates. [Setting range] 40 to $85^{\circ} \mathrm{C}\left(104\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	85	
Overvoltage warning	Sets the voltage at which an overvoltage warning generates. [Setting range] 120 to 450 V	435	A
Undervoltage warning	Sets the voltage at which an undervoltage warning generates. [Setting range] 120 to 280 V	120	

10-8 Coordinates parameter

| Parameter name | | Description | Initial value |
| :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Update

(p.117)\end{array}\right]\)

Parameter name	Description	Initial value	Update (p.117)
Wrap setting	Sets whether to enable or disable the wrap function. [Setting range] 0: Disable 1: Enable	0	
Wrap setting range	Wrap setting range. [Setting range] 1 to 8,388,607 step	500	C
Encoder resolution	Sets the resolution of the connected encoder. [Setting range] 100 to 10,000 P/R	500	
Encoder preset value	Sets the preset value of the encoder. [Setting range] $-8,388,608 \text { to } 8,388,607 \text { step }$	0	A
Stepout detection	Sets whether to enable or disable the detection function for the loss of synchronism. [Setting range] 0: Disable 1: Enable	0	C
Stepout detection band	Sets the detection condition for the loss of synchronism by the deviation (angle) between the command position and encoder position. [Setting range] 1 to $3,600\left(1=0.1^{\circ}\right)$	72	
Stepout detection action	Sets how to operate when the deviation between the command position and encoder position reached the detection band for the loss of synchronism. [Setting range] 0 : No operation 1:Warning 2: Alarm	0	A

10-9 Common parameter

Parameter name	Description	Initial value	Update (p.117)
Data setter speed display	Sets the display method of the speed monitor for the OPX-2A. [Setting range] 0: Signed 1: Absolute value	0	
Data setter edit	Sets whether to enable to edit using the OPX-2A. lSetting range] 0: Disable $1:$ Enable	1	A

10-10 I/O function [Input] parameter

Parameter name	Description	Initial value	Update (p.117)
IN0 input function selection	Assigns the input signal to the input terminal INO to IN7. [Setting range] See table next.	3: HOME	C
IN1 input function selection		4: START	
IN2 input function selection		48: M0	
IN3 input function selection		49: M1	
IN4 input function selection		50: M2	
IN5 input function selection		16: FREE	
IN6 input function selection		18: STOP	
IN7 input function selection		24: ALM-RST	
IN0 input logic level setting	Changes the logic level setting for the input terminal INO to IN7. [Setting range] 0 : Normally open 1: Normally closed	0	
IN1 input logic level setting			
IN2 input logic level setting			
IN3 input logic level setting			
IN4 input logic level setting			
IN5 input logic level setting			
IN6 input logic level setting			
IN7 input logic level setting			

- Setting range for IN input function selection

0: Not used	7: -JOG	16: FREE	33: R1	40: R8	47: R15
1: FWD	8: MS0	17: AWO	34: R2	41: R9	48: M0
2: RVS	9: MS1	18: STOP	35: R3	42: R10	49: M1
3: HOME	10: MS2	24: ALM-RST	36: R4	43: R11	50: M2
4: START	11: MS3	25: P-PRESET	37: R5	44: R12	51: M3
5: SSTART	12: MS4	27: HMI	38: R6	45: R13	52: M4
6: +JOG	13: MS5	32: R0	39: R7	46: R14	53: M5

10-11 I/O function [Output] parameter

Parameter name	Description	Initial value	Update (p.117)
OUTO output function selection	Assigns the output signal to the output terminal OUT0 to OUT5. [Setting range] See table next.	70: HOME-P	C
OUT1 output function selection		68: MOVE	
OUT2 output function selection		73: AREA1	
OUT3 output function selection		67: READY	
OUT4 output function selection		66: WNG	
OUT5 output function selection		65: ALM	

- Setting range for OUT output function selection

0 : Not used	10: MS2_R	35: R3	45: R13	61: -LS_R	74: AREA2
1:FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	75: AREA3
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	80: S-BSY
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	82: MPS
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	83: STEPOUT
5: SSTART_R	17: AWO_R	40: R8	50: M2_R	67: READY	84: OH
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	85: ZSG
7: -JOG_R	32: R0	42: R10	52: M4_R	70: HOME-P	86: MBC
8: MSO_R	33: R1	43: R11	53: M5_R	72: TIM	
9: MS1_R	34: R2	44: R12	60: +LS_R	73: AREA1	

10-12 I/O function [RS-485] parameter

Parameter name	Description	Initial value	Update (p.117)
NET-IN0 input function selection	Assigns the input signal to the NET-IN0 to NET-IN15. [Setting range] See table next.	48: M0	C
NET-IN1 input function selection		49: M1	
NET-IN2 input function selection		50: M2	
NET-IN3 input function selection		4: START	
NET-IN4 input function selection		3: HOME	
NET-IN5 input function selection		18: STOP	
NET-IN6 input function selection		16: FREE	
NET-IN7 input function selection		24: ALM-RST	
NET-IN8 input function selection		8: MS0	
NET-IN9 input function selection		9: MS1	
NET-IN10 input function selection		10: MS2	
NET-IN11 input function selection		5: SSTART	
NET-IN12 input function selection		6: +JOG	
NET-IN13 input function selection		7:-JOG	
NET-IN14 input function selection		1: FWD	
NET-IN15 input function selection		2: RVS	
NET-OUT0 output function selection	Assigns the output signal to the NET-OUT0 to NETOUT15. [Setting range] See next page.	48: M0_R	
NET-OUT1 output function selection		49: M1_R	
NET-OUT2 output function selection		50: M2_R	
NET-OUT3 output function selection		4: START_R	
NET-OUT4 output function selection		70: HOME-P	
NET-OUT5 output function selection		67: READY	
NET-OUT6 output function selection		66:WNG	
NET-OUT7 output function selection		65: ALM	
NET-OUT8 output function selection		80: S-BSY	
NET-OUT9 output function selection		73: AREA1	
NET-OUT10 output function selection		74: AREA2	
NET-OUT11 output function selection		75: AREA3	
NET-OUT12 output function selection		72: TIM	
NET-OUT13 output function selection		68: MOVE	
NET-OUT14 output function selection		0: Not used	
NET-OUT15 output function selection		83: STEPOUT	

- Setting range for NET-IN input function selection

0: Not used	7: -JOG	16: FREE	33: R1	40: R8	47: R15
1: FWD	8: MSO	17: AWO	34: R2	41: R9	48: MO
2: RVS	9: MS1	18: STOP	35: R3	42: R10	49: M1
3: HOME	10: MS2	24: ALM-RST	36: R4	43: R11	50: M2
4: START	11: MS3	25: P-PRESET	37: R5	44: R12	51: M3
5: SSTART	12: MS4	27: HMI	38: R6	45: R13	52: M4
6: +JOG	13: MS5	32: R0	39: R7	46: R14	53: M5

- Setting range for NET-OUT output function selection

0: Not used	10: MS2_R	35: R3	45: R13	61: -LS_R	74: AREA2
1: FWD_R	11:MS3_R	36: R4	46: R14	62: HOMES_R	75: AREA3
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	80: S-BSY
3: HOME_R	13: MS5_R	38: R6	48: MO_R	65: ALM	82: MPS
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	83: STEPOUT
5: SSTART_R	17: AWO_R	40: R8	50: M2_R	67: READY	84: OH
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	85: ZSG
7:-JOG_R	32: R0	42: R10	52: M4_R	70: HOME-P	86: MBC
8: MSO_R	33: R1	43: R11	53: M5_R	72: TIM	
9: MS1_R	34: R2	44: R12	60: +LS_R	73: AREA1	

10-13 Communication parameter

бu!ұәs pue әdКұ ио!ұеләdо ع

Parameter name	Description	Initial value	Update (p.117)
Communication timeout	Sets the condition in which the communication timeout occurs in RS-485 communication. When setting to zero (0), the driver does not monitor the condition in which the communication timeout occurs. [Setting range] 0 : Not monitored 1 to $10,000 \mathrm{~ms}$	0	A
Communication error alarm	Sets the condition in which the RS-485 communication error alarm generates. The communication error alarm generates after the RS-485 communication error has occurred by the number of times set here. [Setting range] 1 to 10 times	3	
Communication parity	Sets the parity for RS-485 communication. [Setting range] 0 : None 1: Even number 2: Odd number	1	D
Communication stop bit	Sets the stop bit for RS-485 communication. [Setting range] $0: 1$ bit 1:2 bit	0	
Transmission waiting time	Sets the transmission waiting time for RS-485 communication. [Setting range] 0 to 10,000 ($1=0.1 \mathrm{~ms}$)	100	

This part explains when the operation is controlled via I/O after setting the operation data and parameters by the MEXE02 or OPX-2A.

Table of contents

1 Guidance .. 128
2 Operation data ... 130
3 Parameter.. 131
3-1 Parameter list... 131
3-2 I/O parameter... 133
3-3 Motor parameter.. 133
3-4 Operation parameter...................................... 134
3-5 Home operation parameter............................ 134
3-6 Alarm parameter ... 135
3-7 Warning parameter... 135
3-8 Coordinates parameter................................... 135
3-9 Common parameter .. 135
3-10 I/O function [lnput] parameter 136
3-11 I/O function [Output] parameter..................... 136
3-12 I/O function [RS-485] parameter 137
3-13 Communication parameter............................. 138
4 Timing charts... 139

1 Guidance

If you are new to the RKII Series FLEX built-in controller type, read this section to understand the operating methods along with the operation flow.

Note Before operating the motor, check the condition of the surrounding area to ensure safety.

STEP 1 Check the installation and connection

STEP 2 Turn on the power and set the operation data

STEP 3 Operate the motor

2. Confirm that the motor
rotates without problem.

STEP 4 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present?
- Are the power supply and motor connected securely?

For more detailed settings and functions, refer to "3 Operation type and setting."

2 Operation data

Up to 64 operation data can be set (data Nos. 0 to 63).
If the data is changed, a recalculation and setup will be performed after the operation is stopped.

Name	Setting range	Initial value
Position No. 0 to Position No. 63	$-8,388,608$ to $+8,388,607$ step	0
Operating speed No. 0 to Operating speed No. 63	0 to 1,000,000 Hz	1,000
Operation mode No. 0 to Operation mode No. 63	0: Incremental (INC) 1: Absolute (ABS)	0
Operation function No. 0 to Operation function No. 63	0 : Single-motion 1: Linked-motion 2: Linked-motion 2	0
Acceleration No. 0 to Acceleration No. 63	1 to 1,000,000	
Deceleration No. 0 to Deceleration No. 63	($1=0.001 \mathrm{~ms} / \mathrm{kHz}$ or $1=0.001 \mathrm{~s}$)	
$\begin{gathered}\text { Sequential positioning No. } 0 \\ \text { to }\end{gathered}$ $\begin{gathered}\text { Sequential positioning No. } 63\end{gathered}$	0: Disable 1: Enable	0
Dwell time No. 0 to Dwell time No. 63	0 to 50,000 ($1=0.001 \mathrm{~s}$)	0

* Acceleration/deceleration rate (ms/kHz) or acceleration/deceleration time (s) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

3
 Parameter

Parameters are stored in the RAM or non-volatile memory. The data saved in the RAM are erased once the 24 VDC power supply is shut off, but the parameters in the non-volatile memory are remained to store even if the 24 VDC power supply is shut off.
When the 24 VDC power supply is turned on, the parameters stored in the non-volatile memory will be sent to the RAM, and the recalculation and setup for the parameters will be executed in the RAM.

Parameters set via RS-485 communication or industrial network are stored in the RAM. To save the parameters stored in the RAM to the non-volatile memory, execute the "Write batch NV memory" of the maintenance command.
The parameters having set in the MEXEO2 is saved in the non-volatile memory when the data writing is performed.
When a parameter is changed, the timing to update the new value varies depending on the parameter. For details about timing to update, check on "Notation rules."
memo - Parameters set via the RS-485 communication or industrial network are stored in the RAM. For parameters required for turning on the 24 VDC power supply again, be sure to save them in the non-volatile memory before turning off the power.

- The non-volatile memory can be rewritten approximately 100,000 times.

Notation rules

In this part, each update timing is represented in an alphabet.

Notation	Description
A	Recalculation and setup are immediately executed when the parameter is written.
B	Recalculation and setup are executed when the operation is stopped.
C	Recalculation and setup are executed after Configuration is executed or the 24 VDC power supply is turned on again.
D	Recalculation and setup are executed after the 24 VDC power supply is turned on again.

I/O parameter (p.133)	- STOP input action - Hardware overtravel - Overtravel action - AREA1 positive direction position - AREA1 negative direction position - AREA2 positive direction position - AREA2 negative direction position - AREA3 positive direction position - AREA3 negative direction position - Minimum ON time for MOVE output	- \pm LS logic level - HOMES logic level - SLIT logic level - MSO operation No. selection - MS1 operation No. selection - MS2 operation No. selection - MS3 operation No. selection - MS4 operation No. selection - MS5 operation No. selection - HOME-P output function selection
Motor parameter (p.133)	- RUN current - STOP current - Speed filter	- Moving average time - Filter selection
Operation parameters (p.134)	- Common acceleration - Common deceleration - Starting speed - JOG operating speed - JOG acceleration/deceleration rate	- JOG starting speed - Acceleration/deceleration type - Acceleration/deceleration unit - JOG travel amount

Home operation parameter (p.134)	- Home-seeking mode - Operating speed of home-seeking - Acceleration/deceleration of homeseeking - Starting speed of home-seeking - Position offset of home-seeking	- Starting direction of home-seeking - SLIT detection with home-seeking - TIM signal detection with homeseeking - Backward steps in 2-sensor mode home-seeking
Alarm parameter (p.135)	- Return-to-home incomplete alarm	
Warning parameter (p.135)	- Overheat warning - Overvoltage warning - Undervoltage warning	
Coordinates parameter (p.135)	- Electronic gear A - Electronic gear B - Motor rotation direction - Software overtravel - Positive software limit - Negative software limit - Preset position	- Wrap setting - Wrap setting range - Encoder resolution - Encoder preset value - Stepout detection - Stepout detection band - Stepout detection action
Common parameter (p.135)	- Data setter speed display - Data setter edit	
I/O function [Input] parameter (p.136)	- INO to IN7 input function selection - IN0 to IN7 input logic level setting	
I/O function [Output] parameter (p.136)	- OUT0 to OUT5 output function selec	
I/O function [RS-485] parameter (p.137)	- NET-INO to NET-IN15 input function s - NET-OUTO to NET-OUT15 output functia	ction n selection
Communication parameter (p.138)	- Communication timeout - Communication error alarm - Communication parity	- Communication stop bit - Transmission waiting time

3-2 I/O parameter

Parameter name	Setting range	Initial value	Update (p.131)
STOP input action	0: Immediate stop 1: Deceleration stop 2: Immediate stop \& Current OFF 3: Deceleration stop \&Current OFF	1	A
Hardware overtravel	0: Disable 1: Enable	1	
Overtravel action	0: Immediate stop 1: Deceleration stop	0	
AREA1 positive direction position	$-8,388,608$ to 8,388,607 step	0	
AREA1 negative direction position			
AREA2 positive direction position			
AREA2 negative direction position			
AREA3 positive direction position			
AREA3 negative direction position			
Minimum ON time for MOVE output	0 to 255 ms	0	
\pm LS logic level	0 : Normally open 1: Normally closed	0	C
HOMES logic level			
SLIT logic level			
MS0 operation No. selection	0 to 63	0	B
MS1 operation No. selection		1	
MS2 operation No. selection		2	
MS3 operation No. selection		3	
MS4 operation No. selection		4	
MS5 operation No. selection		5	
HOME-P output function selection	0: Home output 1: Return-to-home complete output	0	A

3-3 Motor parameter

Parameter name	Setting range	Initial value	Update (p.131)
RUN current	0 to $1,000(1=0.1 \%)$	1,000	A
STOP current	0 to $600(1=0.1 \%)$	500	
Speed filter	0 to 200 ms	B	
Moving average time	$0:$ Speed filter $1:$ Moving average filter	0	C
Filter selection			

3-4 Operation parameter

Parameter name	Setting range	Initial value	Update (p.131)
Common acceleration	$\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) * 1 * 2 \end{aligned}$	30,000	B
Common deceleration			
Starting speed	0 to 1,000,000 Hz	100	
JOG operating speed	1 to 1,000,000 Hz	1,000	
JOG acceleration/deceleration rate	$\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) * 2 \end{aligned}$	30,000	
JOG starting speed	0 to $1,000,000 \mathrm{~Hz}$	100	
Acceleration/deceleration type	0 : Common 1: Separate	1	
Acceleration/deceleration unit	$\begin{aligned} & \text { 0: } \mathrm{ms} / \mathrm{kHz} \\ & \text { 1:s } \end{aligned}$	0	C
JOG travel amount	1 to 8,388,607 step	1	B

*1 This item is effective when the "acceleration/deceleration type" parameter is set to "common." (initial value: separate).
*2 Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

3-5 Home operation parameter

Parameter name	Setting range	Initial value	Update (p.131)
Home-seeking mode	0: 2-sensor mode 1:3-sensor mode	1	B
Operating speed of home-seeking	1 to 1,000,000 Hz	1,000	
Acceleration/deceleration of homeseeking	$\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s})^{*} \end{aligned}$	30,000	
Starting speed of home-seeking	1 to 1,000,000 Hz	100	
Position offset of home-seeking	-8,388,608 to 8,388,607 step	0	
Starting direction of home-seeking	0 : Negative direction 1: Positive direction	1	
SLIT detection with home-seeking	0: Disable 1: Enable	0	
TIM signal detection with home-seeking	0 : Disable 1:TIM signal enable 2: ZSG signal enable	0	
Backward steps in 2-sensor mode homeseeking	0 to 32,767 step	200	

[^9]
3-6 Alarm parameter

Parameter name	Setting range	Initial value	Update (p.131)
Return-to-home incomplete alarm	0: Disable $1:$ Enable	0	C

3-7 Warning parameter

Parameter name	Setting range	Initial value	Update (p.131)
Overheat warning	40 to $85^{\circ} \mathrm{C}\left(104\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	85	A
Overvoltage warning	120 to 450 V	435	
Undervoltage warning	120 to 280 V	120	

3-8 Coordinates parameter

Parameter name	Setting range	Initial value	Update (p.131)
Electronic gear A	1 to 65,535	1	C
Electronic gear B			
Motor rotation direction	0 : Positive direction=CCW 1: Positive direction=CW	1	
Software overtravel	0: Disable 1: Enable	1	A
Positive software limit	-8,388,608 to 8,388,607 step	8,388,607	
Negative software limit		-8,388,608	
Preset position		0	
Wrap setting	0: Disable 1: Enable	0	C
Wrap setting range	1 to 8,388,607 step	500	
Encoder resolution	100 to 10,000 P/R	500	
Encoder preset value	-8,388,608 to 8,388,607 step	0	A
Stepout detection	0: Disable 1: Enable	0	C
Stepout detection band	1 to 3,600 (1=0.1 ${ }^{\circ}$)	72	
Stepout detection action	0 : No operation 1: Warning 2: Alarm	0	A

3-9 Common parameter

Parameter name	Setting range	Initial value	Update (p.131)
Data setter speed display	0: Signed $1:$ Absolute value	0	A
Data setter edit	0: Disable $1:$ Enable	1	

3-10 I/O function [Input] parameter

Parameter name	Setting range	Initial value	Update (p.131)
IN0 input function selection	See table next.	3: HOME	C
IN1 input function selection		4: START	
IN2 input function selection		48: M0	
IN3 input function selection		49: M1	
IN4 input function selection		50: M2	
IN5 input function selection		16: FREE	
IN6 input function selection		18: STOP	
IN7 input function selection		24: ALM-RST	
IN0 input logic level setting	0 : Normally open 1: Normally closed	0	
IN1 input logic level setting			
IN2 input logic level setting			
IN3 input logic level setting			
IN4 input logic level setting			
IN5 input logic level setting			
IN6 input logic level setting			
IN7 input logic level setting			

- Setting range for IN input function selection

0: Not used	7: -JOG	16: FREE	33: R1	40: R8	47: R15
1: FWD	8: MSO	17: AWO	34: R2	41: R9	48: M0
2: RVS	9: MS1	18: STOP	35: R3	42: R10	49: M1
3: HOME	10: MS2	24: ALM-RST	36: R4	43: R11	50: M2
4: START	11: MS3	25: P-PRESET	37: R5	44: R12	51: M3
5: SSTART	12: MS4	27: HMI	38: R6	45: R13	52: M4
6: +JOG	13: MS5	32: R0	39: R7	46: R14	53: M5

3-11 I/O function [Output] parameter

Parameter name	Setting range	Initial value	Update (p.131)
OUTO output function selection	See table next.	70: HOME-P	C
OUT1 output function selection		68: MOVE	
OUT2 output function selection		73: AREA1	
OUT3 output function selection		67: READY	
OUT4 output function selection		66: WNG	
OUT5 output function selection		65: ALM	

- Setting range for OUT output function selection

0: Not used	10: MS2_R	35: R3	45: R13	61: -LS_R	74: AREA2
1:FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	75: AREA3
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	80: S-BSY
3: HOME_R	13: MS5_R	38: R6	48: MO_R	65: ALM	82: MPS
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	83: STEPOUT
5: SSTART_R	17: AWO_R	40: R8	50: M2_R	67: READY	84: OH
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	85: ZSG
7:-JOG_R	32: R0	42: R10	52: M4_R	70: HOME-P	86: MBC
8: MSO_R	33: R1	43: R11	53: M5_R	72: TIM	
9: MS1_R	34: R2	44: R12	60: +LS_R	73: AREA1	

3-12 I/O function [RS-485] parameter

- Setting range for NET-IN input function selection

0: Not used	7: -JOG	16: FREE	33: R1	40: R8	47: R15
1: FWD	8: MSO	17: AWO	34: R2	41: R9	48: MO
2: RVS	9: MS1	18: STOP	35: R3	42: R10	49: M1
3: HOME	10: MS2	24: ALM-RST	36: R4	43: R11	50: M2
4: START	11: MS3	25: P-PRESET	37: R5	44: R12	51: M3
5: SSTART	12: MS4	27: HMI	38: R6	45: R13	52: M4
6: +JOG	13: MS5	32: R0	39: R7	46: R14	53: M5

- Setting range for NET-OUT output function selection

0: Not used	10: MS2_R	35: R3	45: R13	61: -LS_R	74: AREA2
1:FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	75: AREA3
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	80: S-BSY
3: HOME_R	13: MS5_R	38: R6	48: MO_R	65: ALM	82: MPS
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	83: STEPOUT
5: SSTART_R	17: AWO_R	40: R8	50: M2_R	67: READY	84: OH
6: +JOG_R	18: STOP_R	41: R9	51:M3_R	68: MOVE	85: ZSG
7: -JOG_R	32: R0	42: R10	52: M4_R	70: HOME-P	86: MBC
8: MSO_R	33: R1	43: R11	53: M5_R	72: TIM	
9: MS1_R	34: R2	44: R12	60: +LS_R	73: AREA1	

3-13 Communication parameter

Parameter name	Setting range	Initial value	Update (p.131)
Communication timeout	0: Not monitored 1 to 10,000 ms	0	A
Communication error alarm	1 to 10 times	3	
Communication parity	0 : None 1: Even number 2: Odd number	1	D
Communication stop bit	$0: 1$ bit 1:2 bit	0	
Transmission waiting time	0 to 10,000 ($1=0.1 \mathrm{~ms}$)	100	

4 Timing charts

- When the power supply is turned ON

* 2.2 sec or less for the electromagnetic brake type

STOP input

- When the "STOP input action" parameter is immediate stop.

- When the "STOP input action" parameter is deceleration stop.

* The specific time varies depending on the operating speed, speed filter, moving average time and other.
- When the "STOP input action" parameter is current OFF after immediate stop.

*1 The specific time varies depending on the operating speed, speed filter, moving average time and other.
*2 1.2 sec or less for the electromagnetic brake type
- When the "STOP input action" parameter is current OFF after deceleration stop.

*1 The specific time varies depending on the operating speed, speed filter, moving average time and other.
*2 1.2 sec or less for the electromagnetic brake type

- FREE input

Electromagnetic brake
Hold

* 1.2 sec or less for the electromagnetic brake type

AWO input

[^10]
ALM-RST input

- When an alarm generates and the motor maintains excitation

* ALM output is normally closed. It is ON during normal operation and it turns OFF when an alarm generates.
- When an alarm generates and the motor does not maintain excitation

*1 ALM output is normally closed. It is ON during normal operation and it turns OFF when an alarm generates.
*2 1.3 sec or less for the electromagnetic brake type

- HMI input

P-PRESET input

Single-motion operation (positioning operation)

- Linked-motion operation (positioning operation)

■ Linked-motion operation 2 (positioning operation)

* This is the value of the dwell time to be set in operation data No. 1.

Direct positioning operation

- Sequential operation

Continuous operation

JOG operation

Return-to-home operation

5
 Method of control via Modbus RTU (RS-485 communication)

This part explains how to control from the master controller via RS-485 communication. The protocol for the RS-485 communication is the Modbus protocol.

- Table of contents

1 Guidance 148
2 Communication specifications 153
3 Setting the switches 155
4 Setting the RS-485 communication 158
5 Communication mode and communication timing 159
5-1 Communication mode 159
5-2 Communication timing 159
6 Message 160
6-1 Query 160
6-2 Response. 162
7 Function code 164
7-1 Reading from a holding register(s) [03h] 164
7-2 Writing to a holding register [06h] 165
7-3 Diagnosis [08h] 166
7-4 Writing to multiple holding registers [10h].. 167
8 Register address list 169
8-1 Operation commands 169
8-2 Maintenance commands 171
8-3 Monitor commands 172
8-4 Parameter R/W commands 175
9 Group send. 184
10 Example for setting of the operation 186
10-1 Positioning operation. 186
10-2 Continuous operation 189
10-3 Return-to-home operation. 191
11 Detection of communication errors 193
11-1 Communication errors 193
11-2 Alarms and warnings 193
12 Timing charts 194

1 Guidance

If you are new to the RKII Series FLEX built-in controller type, read this section to understand the operating methods along with the operation flow.
This is an example how to operate the motor based on the operation data and parameters set to the driver by the master controller.

- Operating condition

Here, the motor is supposed to be operated under the following conditions.

> | - Number of connected driver: 1 unit |
| :--- |
| - Address number: 1 |
| - Transmission rate: 115,200 bps |
| - Termination resistor: Enable |

Note Before operating the motor, check the condition of the surrounding area to ensure safety.

STEP 1 Check the installation and connection

[^11]
STEP 2 Set the switches

Set the following with the switches. The status becomes as shown in the following figures after setting.

Setting item	Switch	Factory setting
Protocol: Modbus protocol	SW1-No.2: ON	OFF
Address number: 1	SW1-No.1: OFF ID: 1	SW1-No.1: OFF ID: 0
Transmission rate: 115,200 bps	BAUD: 4	7
Termination resistor: ON	TERM.-Nos.1 and 2: ON	OFF

STEP 3 Turn on the power and set the communication parameters

Set the following communication parameters using the MEXEO2.
If communication cannot be established, review the communication parameters of the driver.

MEXE02 tree view	Parameter name
Communication	\bullet Communication parity [initial value: 1 (even number)]
	\bullet Communication stop bit [initial value: $0(1$ bit)]
	\bullet •Transmission waiting time [initial value: $100(10.0 \mathrm{~ms})]$

memo Set the transmission interval of frames sent from the master to be longer than the silent interval of the driver. When the transmission rate is $115,200 \mathrm{bps}$, the silent interval of the driver is 2.5 ms .

STEP $4 \quad$ Cycle the power

The switches of the driver and the communication parameters are enabled after the power is cycled.

STEP 5 Send a message and operate the motor

As an example, here is a description how to execute the following positioning operation.

1. Send the following five queries and set the operation data.

- Operation type of the operation data No. 0

Field name		Data	Description
Slave address		01 h	Slave address 1
Function code	06 h	Write to a holding register	
	Register address (upper)	05 h	Operation mode No.0 (0501h)
	Register address (lower)	01 h	
	Write value (upper)	00 h	Incremental (0000h)
	Write value (lower)	00 h	
Error check (lower)		D8h	Calculation result of CRC-16
Error check (upper)			

- Position of the operation data No. 0

Field name		Data	Description
Slave address		01h	Slave address 1
Function code		06h	Write to a holding register
Data	Register address (upper)	04h	Position No. 0 (0401h)
	Register address (lower)	01h	
	Write value (upper)	21h	8,500 step (2134h)
	Write value (lower)	34h	
Error check (lower)		COh	Calculation result of CRC-16
Error check (upper)		BDh	

- Operating speed of the operation data No. 0

Field name		Data	Description
Slave address		01 h	Slave address 1
Function code	06 h	Write to a holding register	
	Register address (upper)		Operating speed No.0 (0481h)
	Register address (lower)	81 h	
	Write value (upper)	07 h	$2,000 \mathrm{~Hz}$ (07DOh)
	Write value (lower)	DOh	
Error check (lower)			

- Acceleration of the operation data No. 0

Field name		Data	Description
Slave address		01h	Slave address 1
Function code		06h	Write to a holding register
Data	Register address (upper)	06h	Acceleration No. 0 (0601h)
	Register address (lower)	01h	
	Write value (upper)	4Eh	$20 \mathrm{~ms} / \mathrm{kHz}$ (4E20h)
	Write value (lower)	20h	
Error check (lower)		ECh	Calculation result of CRC-16
Error check (upper)		FAh	

- Deceleration of the operation data No. 0

Field name		Data	Description
Slave address		01h	Slave address 1
Function code		06h	Write to a holding register
Data	Register address (upper)	06h	Deceleration No. 0 (0681h)
	Register address (lower)	81h	
	Write value (upper)	4Eh	$20 \mathrm{~ms} / \mathrm{kHz}$ (4E20h)
	Write value (lower)	20h	
Error check (lower)		EDh	Calculation result of CRC-16
Error check (upper)		12h	

2. Send the following two queries and execute operation.

- START input ON (operation data No. 0 operation start)

Field name		Data	Description
Slave address			01 h
Function code	Slave address 1		
	Register address (upper)	00 h	Driver input command (007Dh)
	Register address (lower)	7 Dh	
	Write value (upper)	00 h	Write to a holding register
	Write value (lower)	08 h	
Error check (lower)			(0008h)
Error check (upper)			

- START input OFF

Field name		Data	Description
Slave address		01h	Slave address 1
Function code		06h	Write to a holding register
Data	Register address (upper)	00h	Driver input command (007Dh)
	Register address (lower)	7Dh	
	Write value (upper)	00h	START OFF (0000h)
	Write value (lower)	00h	
Error check (lower)		19h	Calculation result of CRC-16
Error check (upper)		D2h	

3. Confirm that the motor rotates without any problem.

STEP 6 Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present?
- Are the power supply, motor and RS-485 communication cable connected securely?
- Are the slave address, transmission rate and termination resistor set correctly?
- Is the C-DAT/C-ERR LED turned off? Or is it lit in red? (A communication error has occurred)

2 Communication specifications

Electrical characteristics	In conformance with EIA-485, straight cable Use a shielded twisted pair cable (TIA/EIA-568B CAT5e or higher is recommended) and keep the total wiring distance including extension to $50 \mathrm{~m}(164 \mathrm{ft}$. .) or less.
Communication mode	Half duplex, Asynchronous mode (data: 8 bits, stop bit: 1 bit/2 bits, parity: none/even number/odd number)
Transmission rate	Selectable from 9,600 bps, 19,200 bps, $38,400 \mathrm{bps}, 57,600 \mathrm{bps}$ and 115,200 bps.
Protocol	Modbus RTU mode
Connection pattern	Up to 31 drivers can be connected to one master controller.

- Connection example

*1 Termination resistor 120Ω
*2 Turn the termination resistor (TERM.-No. 1 and No.2) to ON.

3 Setting the switches

memo Be sure to turn off the driver power before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the driver power is cycled.

Protocol

Set the SW1-No. 2 of the function setting switch to ON. The Modbus protocol is selected.

Factory setting OFF

SW1-No.2	Protocol
ON	Modbus RTU protocol
OFF	Connect to the network converter

Address number (slave address)

Set the address number (slave address) using the address number setting switch (ID) and SW1-No. 1 of the function setting switch. Make sure each address number (slave address) you set for each driver is unique.
Address number (slave address) 0 is reserved for broadcasting, so do not use this address.
Factory setting ID: 0, SW1-No.1: OFF

ID	SW1-No. 1	Address number (slave address)	ID	SW1-No. 1	Address number (slave address)
0	OFF	Not used	0	ON	16
1		1	1		17
2		2	2		18
3		3	3		19
4		4	4		20
5		5	5		21
6		6	6		22
7		7	7		23
8		8	8		24
9		9	9		25
A		10	A		26
B		11	B		27
C		12	C		28
D		13	D		29
E		14	E		30
F		15	F		31

Transmission rate

Set the transmission rate using transmission rate setting switch (BAUD).
The transmission rate to be set should be the same as the transmission rate of the master controller.

Factory setting 7

BAUD	Transmission rate (bps)
0	9,600
1	19,200
2	38,400
3	57,600
4	115,200
5 to F	Not used

memo Do not set BAUD to positions 5 to F .

Termination resistor

Use a termination resistor for the driver located farthest away (position at end) from the master controller.
Turn the termination resistor setting switch (TERM.-No. 1 and No.2) ON to set the termination resistor for RS-485 communication (120Ω).

Factory setting No. 1 and No.2: Both OFF (termination resistor disabled)

TERM.-No.1, No. 2	Termination resistor (120Ω)
Both are OFF	Disabled
Both are ON	Enabled

memo If only one of No. 1 or No. 2 is turned ON, a communication error may occur.

4 Setting the RS-485 communication

Set parameters required to use via RS-485 communication beforehand.
When a parameter is changed, the timing to reflect the new value varies depending on the parameter. Refer to p. 175 for the update timing of each parameter.

Parameters set with the MEXE02 or OPX-2A
Set the following parameters using the MEXEO2 or OPX-2A since they cannot be set via RS-485 communication.

MEXEO2 tree view	Parameter name	Description	Initial value
Communication	Communication parity	Sets the parity for RS-485 communication. [Setting range] 0: None 1: Even number 2: Odd number	1
	Communication stop bit	Sets the stop bit for RS-485 communication. [Setting range] 0: 1 bit 1: 2 bit	0
	Transmission waiting time	Sets the transmission waiting time for RS-485 communication. [Setting range] 0 to 10,000 ($1=0.1 \mathrm{~ms}$)	100

Parameters set with the MEXE02, OPX-2A or via RS-485 communication
Set the following parameters using the MEXE02, OPX-2A or via RS-485 communication.

MEXEO2 tree view	Parameter name	Description	Initial value
Communication	Communication timeout	Sets the condition in which the communication timeout occurs in RS-485 communication. When setting to zero (0), the driver does not monitor the condition in which the communication timeout occurs. [Setting range] 0 to $10,000 \mathrm{~ms}$	0
	Communication error alarm	Sets the condition in which the RS-485 communication error alarm generates. The communication error alarm generates after the RS-485 communication error has occurred by the number of times set here. [Setting range] 1 to 10	3

5 Communication mode and communication timing

5-1 Communication mode

Modbus protocol communication is based on the single-master/multiple-slave method.
Only the master can issue a query (command). Each slave executes the process requested by query and returns a response message.
The RKII Series supports only the RTU mode as a transmission mode. It does not support the ASCII mode.
Under this protocol, messages are sent in one of two methods.

- Unicast mode

The master sends a command to only one slave.
The slave executes the process and returns a response.

- Broadcast mode

If slave address 0 is specified on the master, the master can send a command to all slaves. Each slave executes the process, but
does not return a response.

5-2 Communication timing

The communication time monitored by the driver and the communication timing of the master are as follows.

Character	Name	Description
Tb1	Communication timeout	Intervals between received messages are monitored. If no message could be received after the time set in the "communication timeout" parameter, a RS-485 communication timeout alarm generates.
Tb2	Transmission waiting time	The time after the slave switches its communication line to the transmission mode upon receiving a query from the master, until it starts sending a response. Sets using the "transmission waiting time" parameter. The actual transmission waiting time corresponds to the silent interval (C3.5) + transmission waiting time (Tb2).
Tb3	Broadcasting interval	The time until the next query is sent in broadcasting. A time equivalent to or longer than the silent interval (C3.5) plus 5 ms is required.
C3.5	Silent interval	Be sure to provide a waiting time of 3.5 characters or more. If this waiting time is less than 3.5 characters long, the driver cannot respond. See the following table for transmission waiting time.

Transmission rate (bps)	Silent interval	Frame interval of master (reference)
9,600	4 ms or more	5.0 ms or more
19,200		
38,400	2.5 ms or more	3.0 ms or more
57,600		
115,200		

The message format is shown below.

6-1 Query

The query message structure is shown below.

Slave address	Function code	Data	Error check
8 bits	8 bits	$\mathrm{N} \times 8$ bits	16 bits

Slave address

Specify the slave address (unicast mode).
If the slave address is set to 0 , the master can send a query to all slaves (broadcast mode).

- Function code

The function codes and message lengths supported by the RKII Series FLEX built-in controller type are as follows.

Function code	Description		Message length	
		Query	Response	
03h	Read from a holding register(s).	8	7 to 37	Impossible
06 h	Write to a holding register.	8	8	Possible
08h	Perform diagnosis.	8	8	Impossible
10h	Write to multiple holding registers.	11 to 41	8	Possible

Data

Set data associated with the selected function code. The specific data length varies depending on the function code.

■ Error check

In the Modbus RTU mode, error checks are based on the CRC-16 method. The slave calculates a CRC-16 of each received message and compares the result against the error check value included in the message. If the calculated CRC-16 value matches the error check value, the slave determines that the message is normal.

- CRC-16 calculation method

1. Calculate an exclusive-OR (XOR) value of the default value of FFFFh and slave address (8 bits).
2. Shift the result of step 1 to the right by 1 bit. Repeat this shift until the overflow bit becomes "1."
3. Upon obtaining " 1 " as the overflow bit, calculate an XOR of the result of step 2 and A001h.
4. Repeat steps 2 and 3 until a shift is performed eight times.
5. Calculate an XOR of the result of step 4 and function code (8 bits).

Repeat steps 2 to 4 for all bytes.
The final result gives the result of CRC-16 calculation.

- Example of CRC-16 calculation

The following table is a calculation example when setting the slave address of the first byte to 02 h and setting the function code of the second byte to 07 h .
The result of actual CRC-16 calculation is calculated including the data on and after the third byte.

Description	Result	Overflow digit
Default value in CRC register FFFFh	1111111111111111	-
First byte 02h	0000000000000010	-
XOR with default value FFFFh	1111111111111101	-
First shift to right	0111111111111110	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1101111111111111 \end{aligned}$	-
Second shift to right	0110111111111111	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1100111111111110 \end{aligned}$	-
Third shift to right	0110011111111111	0
Fourth shift to right	0011001111111111	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1001001111111110 \end{aligned}$	-
Fifth shift to right	0100100111111111	0
Sixth shift to right	0010010011111111	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1000010011111110 \end{aligned}$	-
Seventh shift to right	0100001001111111	0
Eighth shift to right	0010000100111111	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1000000100111110 \end{aligned}$	-
XOR with next byte 07h	$\begin{aligned} & 0000000000000111 \\ & 1000000100111001 \end{aligned}$	-
First shift to right	0100000010011100	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1110000010011101 \end{aligned}$	-
Second shift to right	0111000001001110	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1101000001001111 \end{aligned}$	-
Third shift to right	0110100000100111	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1100100000100110 \end{aligned}$	-
Fourth shift to right	0110010000010011	0
Fifth shift to right	0011001000001001	1
XOR with A001h	$\begin{aligned} & 1010000000000001 \\ & 1001001000001000 \end{aligned}$	-
Sixth shift to right	0100100100000100	0
Seventh shift to right	0010010010000010	0
Eighth shift to right	0001001001000001	0
Result of CRC-16	0001001001000001	-

6-2 Response

Slave-returned responses are classified into three types: normal response, no response, and exception response. The response message structure is the same as the command message structure.

Slave address	Function code	Data	Error check
8 bits	8 bits	$\mathrm{N} \times 8$ bits	16 bits

Normal response

Upon receiving a query from the master, the slave executes the requested process and returns a response corresponding to the function code.

- No response

The slave may not return a response to a query sent by the master. This condition is referred to as "No response." The causes of no response are explained below.

- Transmission error

The slave discards the query and does not return a response if any of the following transmission errors is detected.

Cause of transmission error	Description
Framing error	Stop bit 0 was detected.
Parity error	A mismatch with the specified parity was detected.
Mismatched CRC	The calculated value of CRC-16 was found not matching the error check value.
Invalid message length	The message length exceeded 256 bytes.

- Other than transmission error

A response may not be returned without any transmission error being detected.

Cause	Description
Broadcast	If the query was broadcast, the slave executes the requested process but does not return a response.
Mismatched slave address	The slave address in the query was found not matching the slave address of the driver.

- Exception response

An exception response is returned if the slave cannot execute the process requested by the query. Appended to this response is an exception code indicating why the process cannot be executed. The message structure of exception response is as follows.

Slave address	Function code	Exception code	Error check
8 bits	8 bits	8 bits	16 bits

- Function code

The function code in the exception response is a sum of the function code in the query and 80 h .

Function code in the query	Exception response
03 h	83 h
06 h	86 h
08 h	88 h
10 h	90 h

- Example of exception response
Master

Slave address				01 h
Function code	10 h			
	Register address (upper)	02 h		
	Register address (lower)	42 h		
	Number of registers (upper)	00 h		
	Number of registers (lower)	02 h		
	Number of data bytes	04 h		
	Value written to register address (upper)	00 h		
	Value written to register address (lower)	00 h		
	Value written to register address+1 (upper)	03 h		
	Value written to register address+1 (lower)	20 h		
Error check (lower)	6 Eh			
Error check (upper)	0 Eh			

Query	Slave		
Response	Slave address		01h
	Function code		90h
	Data	Exception code	04h
	Error	heck (lower)	4Dh
	Error	heck (upper)	C3h

- Exception code

This code indicates why the process cannot be executed.

Exception code	Communication error code	Cause	Description
01h	88h	Invalid function	The process could not be executed because the function code was invalid. - The function code is not supported. -The sub-function code for diagnosis (08 h) is other than 00 h .
02h		Invalid data address	The process could not be executed because the data address was invalid. -The address is not supported (other than 0000h to 1 FFFh). - Register address and number of registers are 2000 h or more in total.
03h	8Ch	Invalid data	The process could not be executed because the data was invalid. - The number of registers is 0 or more than 17. -The number of bytes is other than twice the number of registers. -The data length is outside the specified range.
04h	89h 8Ah 8Ch 8Dh	Slave error	The process could not be executed because an error occurred at the slave. - User I/F communication in progress (89h) - Downloading or initialization is in progress using the MEXEO2 - Downloading, initializing or teaching function is in progress using the OPX-2A - Non-volatile memory processing in progress (8Ah) - Internal processing was in progress. (S-BSY is ON.) - An EEPROM error alarm was present. - Outside the parameter setting range (8Ch) The value write is outside the setting range. - Command execute disable (8Dh)

7 Function code

This chapter explains the function codes supported by the RKII Series drivers.
Note that the function code cannot be executed if function codes other than those introduced here are sent.

7-1 Reading from a holding register(s) [03h]

This function code is used to read a register (16 bits). Up to 16 successive registers (16×16 bits) can be read.
Read the upper and lower data at the same time. If they are not read at the same time, the value may be invalid. If multiple holding registers are read, they are read in order of register addresses.

- Example of read

Read operation data for positions Nos. 1 and 2 of slave address 1.

Description	Register address	Value read	Corresponding decimal
Operation data position No. 1 (upper)	0402 h	0000 h	10,000
Operation data position No. 1 (lower)	0403 h	2710 h	
Operation data position No.2 (upper)	0404 h	FFFFh	$-10,000$
Operation data position No.2 (lower)	0405 h	D8F0h	

- Query

Field name		Data	Description
Slave address		01h	Slave address 1
Function code		03h	Reading from holding registers
Data	Register address (upper)	04h	Register address to start reading from
	Register address (lower)	02h	
	Number of registers (upper)	00h	Number of registers to be read from the starting register address (4 registers $=0004 \mathrm{~h}$)
	Number of registers (lower)	04h	
Error check (lower)		E4h	Calculation result of CRC-16
Error check (upper)		F9h	

- Response

Field name		Data	Description
Slave address		01h	Same as query
Function code		03h	Same as query
Data	Number of data bytes	08h	Twice the number of registers in the query
	Value read from register address (upper)	00h	Value read from register address 0402h
	Value read from register address (lower)	00h	
	Value read from register address+1 (upper)	27h	Value read from register address 0403h
	Value read from register address+1 (lower)	10h	
	Value read from register address+2 (upper)	FFh	Value read from register address 0404h
	Value read from register address+2 (lower)	FFh	
	Value read from register address+3 (upper)	D8h	Value read from register address 0405h
	Value read from register address+3 (lower)	F0h	
Error check (lower)		08h	Calculation result of CRC-16
Error check (upper)		A3h	

7-2 Writing to a holding register [06h]

This function code is used to write data to a specified register address.
However, since the result combining the upper and lower may be outside the data range, write the upper and lower at the same time using the "multiple holding registers (10h)."

Example of write

Write 80 (50h) as speed filter to slave address 2.

Description	Register address	Value write	Corresponding decimal
Speed filter	024Bh	50 h	80

- Query

Field name		Data	Description
Slave address		02 h	Slave address 2
Function code	06 h	Writing to a holding register	
	Register address (upper)	02 h	Register address to be written
	Register address (lower)	4 Bh	
	Value write (upper)	00 h	Value written to the register address
	Value write (lower)	50 h	
Error check (lower)		E.	
Error check (upper)			

- Response

Field name		Data	Description
Slave address		02h	Same as query
Function code		06h	Same as query
Data	Register address (upper)	02h	Same as query
	Register address (lower)	4Bh	
	Value write (upper)	00h	Same as query
	Value write (lower)	50h	
Error check (lower)		F8h	Calculation result of CRC-16
Error check (upper)		6Bh	

7-3 Diagnosis [08h]

This function code is used to diagnose the communication between the master and slave. Arbitrary data is sent and the returned data is used to determine whether the communication is normal. 00h (reply to query) is the only subfunction supported by this function code.

Example of diagnosis

Send arbitrary data (1234h) to the slave for diagnosis.

- Query

Field name		Data	Description
Slave address		03 h	Slave address 3
Function code	08 h	Diagnosis	
	Sub-function code (upper)	00 h	Return the query data
	Sub-function code (lower)	00 h	
	Data value (upper)	12 h	Arbitrary data (1234h)
	Data value (lower)	34 h	
Error check (lower)		ECh	
Error check (upper)			

- Response

Field name		Data	Description
Slave address		03h	Same as query
Function code		08h	Same as query
Data	Sub-function code (upper)	00h	Same as query
	Sub-function code (lower)	00h	
	Data value (upper)	12h	Same as query
	Data value (lower)	34h	
Error check (lower)		ECh	Same as query
Error check (upper)		9Eh	

7-4 Writing to multiple holding registers [10h]

This function code is used to write data to multiple successive registers. Up to 16 registers can be written. Write the data to the upper and lower at the same time. If not, an invalid value may be written.
Registers are written in order of register addresses. Note that even when an exception response is returned because some data is invalid as being outside the specified range, etc., other data may have been written properly.

- Example of write

Set the following data as acceleration Nos. 2 to 4 as part of operation data at slave address 4 .

Description	Register address	Value written	Corresponding decimal
Operation data acceleration No. 2 (upper)	0604h	0000h	10,000
Operation data acceleration No. 2 (lower)	0605h	2710h	
Operation data acceleration No. 3 (upper)	0606h	0000h	20,000
Operation data acceleration No. 3 (lower)	0607h	4E20h	
Operation data acceleration No. 4 (upper)	0608h	0007h	500,000
Operation data acceleration No. 4 (lower)	0609h	A120h	

- Query

Field name		Data	Description
Slave address		04h	Slave address 4
Function code		10h	Writing to multiple holding registers
Data	Register address (upper)	06h	Register address to start writing from
	Register address (lower)	04h	
	Number of registers (upper)	00h	Number of registers to be written from the starting register address (6 registers $=0006 \mathrm{~h}$)
	Number of registers (lower)	06h	
	Number of data bytes	0Ch	Twice the number of registers in the command
	Value written to register address (upper)	00h	Value written to register address 0604h
	Value written to register address (lower)	00h	
	Value written to register address+1 (upper)	27h	Value written to register address 0605h
	Value written to register address+1 (lower)	10h	
	Value written to register address+2 (upper)	00h	Value written to register address 0606h
	Value written to register address+2 (lower)	00h	
	Value written to register address+3 (upper)	4Eh	Value written to register address 0607h
	Value written to register address+3 (lower)	20h	
	Value written to register address+4 (upper)	00h	Value written to register address 0608h
	Value written to register address+4 (lower)	07h	
	Value written to register address+5 (upper)	A1h	Value written to register address 0609h
	Value written to register address+5 (lower)	20h	
Error check (lower)		1Dh	Calculation result of CRC-16
Error check (upper)		A9h	

- Response

Field name		Data	Description
Slave address		04h	Same as query
Function code		10h	Same as query
Data	Register address (upper)	06h	Same as query
	Register address (lower)	04h	
	Number of registers (upper)	00h	Same as query
	Number of registers (lower)	06h	
Error check (lower)		01h	Calculation result of CRC-16
Error check (upper)		17h	

8 Register address list

All data used by the driver is 32 -bit wide. Since the register for the Modbus protocol is 16 -bit wide, one data is described by two registers. Since the address assignment is big endian, the even number addresses become the upper and the odd number addresses become the lower.

8-1 Operation commands

Commands related to motor operation. Operation commands are not saved in the non-volatile memory.

Register address		Name	Description	READ/ WRITE	Setting range
Dec	Hex				
48	0030h	Group (upper)	Sets the group address.	R/W	-1: No group specification (Group send is not performed) 1 to 31: Group address (Address number of parent slave)
49	0031h	Group (lower)			
124	007Ch	Driver input command (upper)	Sets the input command to the driver.	R/W	See next page.
125	007Dh	Driver input command (lower)			
126	007Eh	Driver output command (upper)	Read the output status of the driver.	R	See next page.
127	007Fh	Driver output command (lower)			

Group (0030h/0031h)
Multiple slaves are made into a group and a query is sent to all slaves in the group at once. See p. 184 for group details.
The initial value is -1 . When performing read or write for setting a group, set the upper and lower simultaneously.

Address (Hex)	Description of address *							
0030h	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
	[FFFFh]							
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	[FFFFh]							

* []: Initial value

Address (Hex)	Description of address *							
0031h	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
	1 to 31: Sets the address number for the group send. [FFFFh]							
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	1 to 31: Sets the address number for the group send. [FFFFh]							

* []: Initial value

■ Driver input command (007Ch/007Dh)

These are the driver input signals that can be accessed via RS-485 communication. See p. 61 for each input signal.

Address (Hex)	Description of address							
007Ch	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
	-	-	-	-	-	-	-	-
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	-	-	-	-	-	-	-	-
Address (Hex)	Description of address *							
007Dh	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
	NET-IN15 [RVS]	NET-IN14 [FWD]	$\begin{aligned} & \hline \text { NET-IN13 } \\ & {[-\mathrm{JOG}]} \end{aligned}$	$\begin{aligned} & \hline \text { NET-IN12 } \\ & {[+\mathrm{JOG}]} \end{aligned}$	NET-IN11 [SSTART]	NET-IN10 [MS2]	NET-IN9 [MS1]	NET-IN8 [MSO]
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	NET-IN7 [ALM-RST]	NET-IN6 [FREE]	NET-IN5 [STOP]	NET-IN4 [HOME]	NET-IN3 [START]	NET-IN2 [M2]	NET-IN1 [M1]	NET-INO [M0]

* []: Initial value

Driver output command (007Eh/007Fh)

These are the driver output signals that can be received via RS- 485 communication. See p .67 for each output signal.

Address (Hex)	Description of address							
007Eh	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
	-	-	-	-	-	-	-	-
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	-	-	-	-	-	-	-	-
Address (Hex)	Description of address *							
007Fh	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
	NET-OUT15 [STEPOUT]	NET-OUT14 [Not used]	NET-OUT13 [MOVE]	NET-OUT12 [TIM]	NET-OUT11 [AREA3]	NET-OUT10 [AREA2]	NET-OUT9 [AREA1]	$\begin{aligned} & \text { NET-OUT8 } \\ & {[\mathrm{S}-\mathrm{BSY}]} \end{aligned}$
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	NET-OUT7 [ALM]	NET-OUT6 [WNG]	NET-OUT5 [READY]	NET-OUT4 [HOME-P]	NET-OUT3 [START_R]	$\begin{aligned} & \text { NET-OUT2 } \\ & {[\text { M2_R] }} \end{aligned}$	NET-OUT1 [M1_R]	$\begin{aligned} & \text { NET-OUTO } \\ & {\left[M 0 _R\right]} \end{aligned}$

8-2 Maintenance commands

These commands are used to reset alarms and warnings. They are also used to execute the batch processing for the non-volatile memory. All commands can be written (WRITE). Executes when writing from 0 to 1.

Register address		Name	Description	Setting range
Dec	Hex			
384	0180h	Reset alarm (upper)	Resets the alarms that are present. Some alarms cannot be reset with the "reset alarm."	0,1
385	0181h	Reset alarm (lower)		
388	0184h	Clear alarm records (upper)	Clears alarm records.	
389	0185h	Clear alarm records (lower)		
390	0186h	Clear warning records (upper)	Clears warning records.	
391	0187h	Clear warning records (lower)		
392	0188h	Clear communication error records (upper)	Clears the communication error records.	
393	0189h	Clear communication error records (lower)		
394	018Ah	P-PRESET execute (upper)	Presets the command position and feedback position.	
395	018Bh	P-PRESET execute (lower)		
396	018Ch	Configuration (upper)	Executes the parameter recalculation and the setup.	
397	018Dh	Configuration (lower)		
398	018Eh	All data initialization (upper)	Resets the operation data and parameters saved in the non-volatile memory, to their defaults.	
399	018Fh	All data initialization (lower)		
400	0190h	Batch NV memory read (upper)	Reads the parameters saved in the non-volatile memory, to the RAM. All operation data and parameters previously saved in the RAM are overwritten.	
401	0191h	Batch NV memory read (lower)		
402	0192h	Batch NV memory write (upper)	Writes the parameters saved in the RAM to the nonvolatile memory. The non-volatile memory can be rewritten approximately 100,000 times.	
403	0193h	Batch NV memory write (lower)		
404	0194h	Encoder counter preset (upper)	Update the encoder counter to the value of the "encoder preset value" parameter.	
405	0195h	Encoder counter preset (lower)		

■ Configuration (018Ch/018Dh)

Configuration will be executed when all of the following conditions are satisfied:

- An alarm is not present.
- The motor is not operated.
- The MEXE02 is in other status than downloading, I/O test, test operation or teaching function.
- The OPX-2A is in other modes than the test mode or copy mode.

Shows the driver status before and after executing the configuration.

Item	Configuration is ready to execute	Configuration is executing	Configuration is completed
PWR LED	Lit	Lit	Based on the driver condition.
ALM LED	OFF	OFF	
Electromagnetic brake	Hold/release	Hold	
Motor excitation	Excitation/no excitation	No excitation	
Output signals	Allowed	Indeterminate	Allowed
Input signals		Not allowed	
Sensor input		Not allowed	
Command position	Based on the driver condition.	Indeterminate	0
Feedback position			0 *
Encoder counter			Continues the count before performing the configuration.

* This may not become zero (0) depending on the load or operation condition.
memo The correct monitor value may not return even when the monitor is executed while executing the configuration.

8-3 Monitor commands

Monitor the command position, command speed, alarm and warning records, etc. All commands can be read (READ).

Register address		Name	Description	Range
Dec	Hex			
128	0080h	Present alarm (upper)	Monitors the present alarm code.	OOh to FFh
129	0081h	Present alarm (lower)		
130	0082h	Alarm record 1 (upper)	Monitors the alarm records.	00h to FFh
131	0083h	Alarm record 1 (lower)		
132	0084h	Alarm record 2 (upper)		
133	0085h	Alarm record 2 (lower)		
134	0086h	Alarm record 3 (upper)		
135	0087h	Alarm record 3 (lower)		
136	0088h	Alarm record 4 (upper)		
137	0089h	Alarm record 4 (lower)		
138	008Ah	Alarm record 5 (upper)		
139	008Bh	Alarm record 5 (lower)		
140	008Ch	Alarm record 6 (upper)		
141	008Dh	Alarm record 6 (lower)		
142	008Eh	Alarm record 7 (upper)		
143	008Fh	Alarm record 7 (lower)		
144	0090h	Alarm record 8 (upper)		
145	0091h	Alarm record 8 (lower)		
146	0092h	Alarm record 9 (upper)		
147	0093h	Alarm record 9 (lower)		
148	0094h	Alarm record 10 (upper)		
149	0095h	Alarm record 10 (lower)		
150	0096h	Present warning (upper)	Monitors the present warning code.	OOh to FFh
151	0097h	Present warning (lower)		

Register address		Name	Description	Range
Dec	Hex			
152	0098h	Warning record 1 (upper)	Monitors the warning records.	OOh to FFh
153	0099h	Warning record 1 (lower)		
154	009Ah	Warning record 2 (upper)		
155	009Bh	Warning record 2 (lower)		
156	009Ch	Warning record 3 (upper)		
157	009Dh	Warning record 3 (lower)		
158	009Eh	Warning record 4 (upper)		
159	009Fh	Warning record 4 (lower)		
160	00A0h	Warning record 5 (upper)		
161	00A1h	Warning record 5 (lower)		
162	00A2h	Warning record 6 (upper)		
163	00A3h	Warning record 6 (lower)		
164	00A4h	Warning record 7 (upper)		
165	00A5h	Warning record 7 (lower)		
166	00A6h	Warning record 8 (upper)		
167	00A7h	Warning record 8 (lower)		
168	00A8h	Warning record 9 (upper)		
169	00A9h	Warning record 9 (lower)		
170	00AAh	Warning record 10 (upper)		
171	00ABh	Warning record 10 (lower)		
172	00ACh	Communication error code (upper)	Monitors the last received communication error code.	00h to FFh
173	00ADh	Communication error code (lower)		
174	00AEh	Communication error code record 1 (upper)	Monitors the communication error records that have occurred in the past.	00h to FFh
175	00AFh	Communication error code record 1 (lower)		
176	00B0h	Communication error code record 2 (upper)		
177	00B1h	Communication error code record 2 (lower)		
178	00B2h	Communication error code record 3 (upper)		
179	00B3h	Communication error code record 3 (lower)		
180	00B4h	Communication error code record 4 (upper)		
181	00B5h	Communication error code record 4 (lower)		
182	00B6h	Communication error code record 5 (upper)		
183	00B7h	Communication error code record 5 (lower)		
184	00B8h	Communication error code record 6 (upper)		
185	00B9h	Communication error code record 6 (lower)		

Register address		Name	Description	Range
Dec	Hex			
186	00BAh	Communication error code record 7 (upper)	Monitors the communication error records that have occurred in the past.	00h to FFh
187	00BBh	Communication error code record 7 (lower)		
188	00BCh	Communication error code record 8 (upper)		
189	00BDh	Communication error code record 8 (lower)		
190	OOBEh	Communication error code record 9 (upper)		
191	00BFh	Communication error code record 9 (lower)		
192	00COh	Communication error code record 10 (upper)		
193	00C1h	Communication error code record 10 (lower)		
194	00C2h	Present selected data No. (upper)	Monitors the operation data No. currently selected.	0 to 63
195	00C3h	Present selected data No. (lower)		
196	00C4h	Present operation data No. (upper)	Monitors the operation data No. corresponding to the data used in the current positioning operation. This address is used in linkedmotion operation and sequential operation. While the motor is stopped, the last used operation data number is indicated. " -1 " is indicated until the positioning operation is performed after turning the power ON.	-1 to 63
197	00C5h	Present operation data No. (lower)		
198	00C6h	Command position (upper)	Monitors the command position.	$\begin{aligned} & -2,147,483,648 \text { to } \\ & 2,147,483,647 \text { step } \end{aligned}$
199	00C7h	Command position (lower)		
200	00C8h	Command speed (upper)	Monitors the current command speed. (r/min)	$\begin{aligned} & \text {-9,600 to }+9,600 \\ & \text { r/min } \\ & \text { +: Forward } \\ & \text {-: Reverse } \\ & 0: \text { Stop } \end{aligned}$
201	00C9h	Command speed (lower)		
202	00CAh	Command speed (upper)	Monitors the current command speed. (Hz)	$\begin{aligned} & -1,000,000 \text { to } \\ & +1,000,000 \mathrm{~Hz} \end{aligned}$
203	00CBh	Command speed (lower)		
204	00CCh	Feedback position (upper)	Monitors the feedback position. The value that was applied the resolution having set by the electronic gears is shown. *	$\begin{aligned} & -2,147,483,648 \text { to } \\ & 2,147,483,647 \text { step } \end{aligned}$
205	00CDh	Feedback position (lower)		
210	00D2h	Remaining dwell time (upper)	Monitors how much of the dwell time used in the linked-motion operation 2 remains.	$\begin{aligned} & 0 \text { to } 50,000 \\ & (1=0.001 \mathrm{~s}) \end{aligned}$
211	00D3h	Remaining dwell time (lower)		
212	00D4h	Direct I/O and electromagnetic brake status (upper)	Monitors the each direct I/O signal and electromagnetic brake status.	See next table.
213	00D5h	Direct I/O and electromagnetic brake status (lower)		
256	0100h	Encoder counter (upper)	Monitors the encoder counter. *	$\begin{array}{\|l} -2,147,483,648 \text { to } \\ 2,147,483,647 \text { step } \end{array}$
257	0101h	Encoder counter (lower)		

* When an encoder is equipped.

Direct I/O and electromagnetic brake status (00D4h/00D5h)

Address (Hex)		bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
00D4h	Upper	-	-	-	-	-	-	-	MB
	Lower	-	-	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
00D5h	Upper	-	-	-	-	SLIT	HOMES	- LS	+LS
	Lower	IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0

8-4 Parameter R/W commands

Write or read parameters. All commands can be read and written (READ/WRITE). For details on parameters, see p. 117 and later.
When a parameter is changed, the timing to update the new value varies depending on the parameter. See the following four types. In this part, each update timing is represented in an alphabet.

Notation	Description
A	Recalculation and setup are immediately executed when the parameter is written.
B	Recalculation and setup are executed when the operation is stopped.
C	Recalculation and setup are executed after Configuration is executed or the 24 VDC power supply is turned on again.
D	Recalculation and setup are executed after the 24 VDC power supply is turned on again.

Operation data

Register address		Name	Setting range	Initial value	Effective (p.175)
Dec	Hex				
$\begin{gathered} 1024 \\ 1025 \\ \text { to } \\ 1150 \\ 1151 \end{gathered}$	$\begin{aligned} & 0400 \mathrm{~h} \\ & 0401 \mathrm{~h} \\ & \text { to } \\ & 047 \mathrm{Eh} \\ & \text { 047Fh } \end{aligned}$	Position No. 0 (upper) Position No. 0 (lower) to Position No. 63 (upper) Position No. 63 (lower)	$\begin{aligned} & -8,388,608 \text { to } 8,388,607 \\ & \text { step } \end{aligned}$	0	
$\begin{gathered} 1152 \\ 1153 \\ \text { to } \\ 1278 \\ 1279 \end{gathered}$	0480h 0481h to 04FEh 04FFh	Operating speed No. 0 (upper) Operating speed No. 0 (lower) to Operating speed No. 63 (upper) Operating speed No. 63 (lower)	0 to 1,000,000 Hz	1,000	
$\begin{gathered} 1280 \\ 1281 \\ \text { to } \\ 1406 \\ 1407 \end{gathered}$	$\begin{aligned} & \text { 0500h } \\ & \text { 0501h } \\ & \text { to } \\ & \text { 057Eh } \\ & \text { 057Fh } \end{aligned}$	Operation mode No. 0 (upper) Operation mode No. 0 (lower) to Operation mode No. 63 (upper) Operation mode No. 63 (lower)	0: Incremental (INC) 1: Absolute (ABS)	0	
$\begin{gathered} 1408 \\ 1409 \\ \text { to } \\ 1534 \\ 1535 \end{gathered}$	$\begin{aligned} & \text { 0580h } \\ & \text { 0581h } \\ & \text { to } \\ & \text { 05FEh } \\ & \text { 05FFh } \end{aligned}$	Operation function No. 0 (upper) Operation function No. 0 (lower) to Operation function No. 63 (upper) Operation function No. 63 (lower)	0 : Single-motion 1: Linked-motion 2: Linked-motion 2	0	
$\begin{gathered} 1536 \\ 1537 \\ \text { to } \\ 1662 \\ 1663 \end{gathered}$	$\begin{aligned} & \text { 0600h } \\ & \text { 0601h } \\ & \text { to } \\ & \text { 067Eh } \\ & \text { 067Fh } \end{aligned}$	Acceleration No. 0 (upper) Acceleration No. 0 (lower) to Acceleration No. 63 (upper) Acceleration No. 63 (lower)	$1 \text { to 1,000,000 }$		
$\begin{gathered} 1664 \\ 1665 \\ \text { to } \\ 1790 \\ 1791 \end{gathered}$	$\begin{aligned} & \text { 0680h } \\ & \text { 0681h } \\ & \text { to } \\ & \text { 06FEh } \\ & \text { 06FFh } \end{aligned}$	Deceleration No. 0 (upper) Deceleration No. 0 (lower) to Deceleration No. 63 (upper) Deceleration No. 63 (lower)	$1=0.001 \text { s) *1 *2 }$	30,000	

Register address		Name	Setting range	Initial value	Effective(p.175)
Dec	Hex				
1920	0780h	Sequential positioning No. 0 (upper)	0 : Disable 1: Enable	0	B
$\begin{gathered} 1921 \\ \text { to } \end{gathered}$	$\begin{aligned} & 0781 \mathrm{~h} \\ & \text { to } \end{aligned}$	Sequential positioning No. 0 (lower) to			
2046	07FEh	Sequential positioning No. 63 (upper)			
2047	07FFh	Sequential positioning No. 63 (lower)			
2048	0800h	Dwell time No. 0 (upper)	0 to 50,000 ($1=0.001 \mathrm{~s}$)	0	
$\begin{gathered} 2049 \\ \text { to } \end{gathered}$	$\begin{aligned} & 0801 \mathrm{~h} \\ & \text { to } \end{aligned}$	Dwell time No. 0 (lower) to			
2174	087Eh	Dwell time No. 63 (upper)			
2175	087Fh	Dwell time No. 63 (lower)			

*1 This item is effective when the "acceleration/deceleration type" parameter is set to "separate". If this parameter is set to "common", the values of the "common acceleration" and "common deceleration" parameters will be used (initial value: separate).
*2 Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

■ User parameters

Register address		Name	Setting range	Initial value	Effective (p.175)
Dec	Hex				
512	0200h	STOP input action (upper)	0: Immediate stop 1: Deceleration stop		
513	0201h	STOP input action (lower)	3: Deceleration stop+current OFF		
514	0202h	Hardware overtravel (upper)	0: Disable		
515	0203h	Hardware overtravel (lower)	1: Enable	1	
516	0204h	Overtravel action (upper)	0: Immediate stop		
517	0205h	Overtravel action (lower)	1: Deceleration stop	0	
522	020Ah	AREA1 positive direction position (upper)			
523	020Bh	AREA1 positive direction position (lower)			
524	020Ch	AREA1 negative direction position (upper)			
525	020Dh	AREA1 negative direction position (lower)			A
526	020Eh	AREA2 positive direction position (upper)			
527	020Fh	AREA2 positive direction position (lower)		0	
528	0210h	AREA2 negative direction position (upper)	-8,388,608 to 8,388,607 s	0	
529	0211h	AREA2 negative direction position (lower)			
530	0212h	AREA3 positive direction position (upper)			
531	0213h	AREA3 positive direction position (lower)			
532	0214h	AREA3 negative direction position (upper)			
533	0215h	AREA3 negative direction position (lower)			
534	0216h	Minimum ON time for MOVE output (upper)	0 to 255 ms	0	
535	0217h	Minimum ON time for MOVE output (lower)			
536	0218h	\pm LS logic level (upper)			
537	0219h	\pm LS logic level (lower)			
538	021Ah	HOMES logic level (upper)	0 : Normally open	0	C
539	021Bh	HOMES logic level (lower)	1: Normally closed	0	C
540	021Ch	SLIT logic level (upper)			
541	021Dh	SLIT logic level (lower)			

Register address		Name	Setting range	Initial value	Effective(p.175)
Dec	Hex				
4096	1000h	MS0 operation No. selection (upper)	0 to 63	0	B
4097	1001h	MS0 operation No. selection (lower)			
4098	1002h	MS1 operation No. selection (upper)		1	
4099	1003h	MS1 operation No. selection (lower)			
4100	1004h	MS2 operation No. selection (upper)		2	
4101	1005h	MS2 operation No. selection (lower)			
4102	1006h	MS3 operation No. selection (upper)		3	
4103	1007h	MS3 operation No. selection (lower)			
4104	1008h	MS4 operation No. selection (upper)		4	
4105	1009h	MS4 operation No. selection (lower)			
4106	100Ah	MS5 operation No. selection (upper)		5	
4107	100Bh	MS5 operation No. selection (lower)			
4108	100Ch	HOME-P output function selection (upper)	0 : Home output 1: Return-to-home complete output	0	A
4109	100Dh	HOME-P output function selection (lower)			
576	0240h	RUN current (upper)	0 to 1,000 ($1=0.1 \%$)	1,000	
577	0241h	RUN current (lower)			
578	0242h	STOP current (upper)	0 to 600 (1=0.1\%)	500	A
579	0243h	STOP current (lower)			
586	024Ah	Speed filter (upper)	0 to 200 ms	1	B
587	024Bh	Speed filter (lower)			
588	024Ch	Moving average time (upper)			
589	024Dh	Moving average time (lower)			
4128	1020h	Filter selection (upper)	0 : Speed filter 1: Moving average filter	0	C
4129	1021h	Filter selection (lower)			
640	0280h	Common acceleration (upper)	$\begin{aligned} & 1 \text { to } 1,000,000 \text { * } \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) \end{aligned}$	30,000	B
641	0281h	Common acceleration (lower)			
642	0282h	Common deceleration (upper)			
643	0283h	Common deceleration (lower)			
644	0284h	Starting speed (upper)	0 to 1,000,000 Hz	100	
645	0285h	Starting speed (lower)			
646	0286h	JOG operating speed (upper)	1 to $1,000,000 \mathrm{~Hz}$	1,000	
647	0287h	JOG operating speed (lower)	1 1,000,000 Hz		
648	0288h	JOG acceleration/deceleration rate (upper)	$\begin{aligned} & 1 \text { to } 1,000,000{ }^{*} \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) \end{aligned}$	30,000	
649	0289h	JOG acceleration/deceleration rate (lower)			
650	028Ah	JOG starting speed (upper)	0 to 1,000,000 Hz	100	
651	028Bh	JOG starting speed (lower)			
652	028Ch	Acceleration/deceleration type (upper)	0: Common	1	
653	028Dh	Acceleration/deceleration type (lower)	1: Separate	1	
654	028Eh	Acceleration/deceleration unit (upper)	$\begin{aligned} & 0: \mathrm{ms} / \mathrm{kHz} \\ & 1: \mathrm{s} \end{aligned}$	0	C
655	028Fh	Acceleration/deceleration unit (lower)			
4168	1048h	JOG travel amount (upper)	1 to 8,388,607 step	1	B
4169	1049h	JOG travel amount (lower)	, to 8,388,607 step		
704	02C0h	Home-seeking mode (upper)	0: 2-sensor mode	1	
705	02C1h	Home-seeking mode (lower)	1:3-sensor mode	1	
706	02C2h	Operating speed of home-seeking (upper)	1 to 1,000,000 Hz	1,000	
707	02C3h	Operating speed of home-seeking (lower)			

Register address		Name	Setting range	Initial value	Effective (p.175)
Dec	Hex				
708	02C4h	Acceleration/deceleration of home-seeking (upper)	$\begin{aligned} & 1 \text { to } 1,000,000^{*} \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) \end{aligned}$	30,000	B
709	02C5h	Acceleration/deceleration of home-seeking (lower)			
710	02C6h	Starting speed of home-seeking (upper)	1 to 1,000,000 Hz	100	
711	02C7h	Starting speed of home-seeking (lower)			
712	02C8h	Position offset of home-seeking (upper)	-8,388,608 to 8,388,607 step	0	
713	02C9h	Position offset of home-seeking (lower)			
714	02CAh	Starting direction of home-seeking (upper)	0 : Negative direction 1: Positive direction	1	
715	02CBh	Starting direction of home-seeking (lower)			
716	02CCh	SLIT detection with home-seeking (upper)	0: Disable 1: Enable	0	
717	02CDh	SLIT detection with home-seeking (lower)			
718	02CEh	TIM signal detection with home-seeking (upper)	0: Disable 1:TIM signal enable 2: ZSG signal enable	0	
719	02CFh	TIM signal detection with home-seeking (lower)			
4192	1060h	Backward steps in 2-sensor mode homeseeking (upper)	0 to 32,767 step	200	
4193	1061h	Backward steps in 2-sensor mode homeseeking (lower)			
776	0308h	Return-to-home incomplete alarm (upper)	0: Disable 1: Enable	0	C
777	0309h	Return-to-home incomplete alarm (lower)			
832	0340h	Overheat warning (upper)	40 to $85^{\circ} \mathrm{C}$ (104 to $185^{\circ} \mathrm{F}$)	85	A
833	0341h	Overheat warning (lower)			
838	0346h	Overvoltage warning (upper)	120 to 450 V	435	
839	0347h	Overvoltage warning (lower)			
840	0348h	Undervoltage warning (upper)	120 to 280 V	120	
841	0349h	Undervoltage warning (lower)			
896	0380h	Electronic gear A (upper)	1 to 65,535	1	C
897	0381h	Electronic gear A (lower)			
898	0382h	Electronic gear B (upper)			
899	0383h	Electronic gear B (lower)			
900	0384h	Motor rotation direction (upper)	0 : Positive direction=CCW 1: Positive direction=CW	1	
901	0385h	Motor rotation direction (lower)			
902	0386h	Software overtravel (upper)	0: Disable 1: Enable	1	A
903	0387h	Software overtravel (lower)			
904	0388h	Positive software limit (upper)	$-8,388,608$ to 8,388,607 step	8,388,607	
905	0389h	Positive software limit (lower)			
906	038Ah	Negative software limit (upper)		-8,388,608	
907	038Bh	Negative software limit (lower)			
908	038Ch	Preset position (upper)		0	
909	038Dh	Preset position (lower)			
910	038Eh	Wrap setting (upper)	0 : Disable 1: Enable	0	C
911	038Fh	Wrap setting (lower)			
912	0390h	Wrap setting range (upper)	1 to 8,388,607 step	500	
913	0391h	Wrap setting range (lower)			
4288	10C0h	Encoder resolution (upper)	100 to 10,000 P/R	500	
4289	10C1h	Encoder resolution (lower)			

Register address		Name	Setting range	Initial value	Effective(p.175)
Dec	Hex				
4506	119Ah	NET-OUT13 output function selection (upper)	See table on p. 182.	68: MOVE	C
4507	119Bh	NET-OUT13 output function selection (lower)			
4508	119Ch	NET-OUT14 output function selection (upper)		Not us	
4509	119Dh	NET-OUT14 output function selection (lower)		Not us	
4510	119Eh	NET-OUT15 output function selection (upper)		83: STEPOUT	
4511	119Fh	NET-OUT15 output function selection (lower)			
4608	1200h	Communication timeout (upper)	0: Not monitored	0	A
4609	1201h	Communication timeout (lower)	1 to $10,000 \mathrm{~ms}$	0	
4610	1202h	Communication error alarm (upper)	1 to 10 times	3	
4611	1203h	Communication error alarm (lower)			

* Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "acceleration/deceleration unit" parameter. (initial value: acceleration/deceleration rate).

■ Setting range for function selection parameters

- IN input function selection parameter

0: Not used	7: -JOG	16: FREE	33: R1	40: R8	47: R15
1: FWD	8: MS0	17: AWO	34: R2	41: R9	48: M0
2: RVS	9: MS1	18: STOP	35: R3	42: R10	49: M1
3: HOME	10: MS2	24: ALM-RST	36: R4	43: R11	50: M2
4: START	11: MS3	25: P-PRESET	37: R5	44: R12	51: M3
5: SSTART	12: MS4	27: HMI	38: R6	45: R13	52: M4
6: +JOG	13: MS5	32: R0	39: R7	46: R14	53: M5

- OUT output function selection parameter

0: Not used	10: MS2_R	35: R3	45: R13	61: -LS_R	74: AREA2
1:FWD_R	11:MS3_R	36: R4	46: R14	62: HOMES_R	75: AREA3
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	80: S-BSY
3: HOME_R	13: MS5_R	38: R6	48: MO_R	65: ALM	82: MPS
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	83: STEPOUT
5: SSTART_R	17: AWO_R	40: R8	50: M2_R	67: READY	84: OH
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	85: ZSG
7:-JOG_R	32: RO	42: R10	52: M4_R	70: HOME-P	86: MBC
8: MSO_R	33: R1	43: R11	53: M5_R	72: TIM	
9: MS1_R	34: R2	44: R12	60: +LS_R	73: AREA1	

- NET-IN input function selection parameter

0: Not used	7: -JOG	16: FREE	33: R1	40: R8	47: R15
1: FWD	8: MS0	17: AWO	34: R2	41: R9	48: M0
2: RVS	9: MS1	18: STOP	35: R3	42: R10	49: M1
3: HOME	10: MS2	24: ALM-RST	36: R4	43: R11	50: M2
4: START	11: MS3	25: P-PRESET	37: R5	44: R12	51: M3
5: SSTART	12: MS4	27: HMI	38: R6	45: R13	52: M4
6: +JOG	13: MS5	32: R0	39: R7	46: R14	53: M5

- NET-OUT output function selection parameter

0: Not used	10: MS2_R	35: R3	45: R13	61: -LS_R	74: AREA2
1: FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	75: AREA3
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	80: S-BSY
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	82: MPS
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	83: STEPOUT
5: SSTART_R	17: AWO_R	40: R8	50: M2_R	67: READY	84: OH
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	85: ZSG
7: -JOG_R	32: R0	42: R10	52: M4_R	70: HOME-P	86: MBC
8: MS0_R	33: R1	43: R11	53: M5_R	72: TIM	
9: MS1_R	34: R2	44: R12	60:+LS_R	73: AREA1	

9 Group send

Multiple slaves are made into a group and a query is sent to all slaves in the group at once.

- Group composition

A group consists of one parent slave and child slaves and only the parent slave returns a response.

- Group address

To perform a group send, set a group address to the child slaves to be included in the group.
The child slaves to which the group address has been set can receive a query sent to the parent slave.

- Parent slave

No special setting is required on the parent slave to perform a group send. The address of the parent slave becomes the group address. When a query is sent to the parent slave from the master, the parent slave executes the requested process and then returns a response (same as with the unicast mode).

- Child slave

Use a "group" command to set a group address to each child slave. Change the group in the unicast mode. When performing read or write for setting a group, set the upper and lower simultaneously.

Resister address		Name	Description	READ/ WRITE	Setting range
Dec	Hex			-1: No group specification (Group send is not performed) 1 to 31: Group address (Address number of parent slave)	
48	0030 h	Group (upper)	Sets the group address.	R/W	
49	0031 h	Group (lower)			

memo Since the group setting is not saved in the non-volatile memory even when the "batch NV memory write" executes, the group setting will be cleared when turning the driver power OFF.

Function code to execute in a group send

Function code	Function
10 h	Writing to multiple holding registers

Address 1
Address 2
Address 3
"group" command: -1 "group" command: $1 \quad$ "group" command: 1 (individual)

10 Example for setting of the operation

10-1 Positioning operation

As an example, here is a description how to execute the following positioning operation. For details of positioning operatin, refer to p.88.
This section explains data writing using the function code "10h," and remote I/O writing using the function code "06h."

- Setting example
- Slave address: 1
- Position (travel amount): 1,000 step
- Operating speed: 5,000 Hz
- Operating procedure

1. Send the following query to set the position (travel amount) of the operation data No. 0 to 1,000 steps.

Query

Field name		Data	Description
Slave address		01h	Slave address
Function code		10h	Write to multiple holding registers
Data	Register address (upper)	04h	Register address to start writing from =Position No. 0 (0400h)
	Register address (lower)	00h	
	Number of registers (upper)	00h	Number of registers to be written
	Number of registers (lower)	02h	
	Number of data bytes	04h	Twice the number of registers in the query
	Value written to register address (upper)	00h	Value written to register address $=1,000$ step (0000 03E8h)
	Value written to register address (lower)	00h	
	Value written to register address+1 (upper)	03h	
	Value written to register address+1 (lower)	E8h	
Error check (lower)		C1h	Calculation result of CRC-16
Error check (upper)		D1h	

Response

Field name		Data	Description
Slave address		01h	Same as query
Function code		10h	
Data	Register address (upper)	04h	
	Register address (lower)	00h	
	Number of registers (upper)	00h	
	Number of registers (lower)	02h	
Error check (lower)		40h	Calculation result of CRC-16
Error check (upper)		F8h	

2. Send the following query to set the operating speed of the operation data No. 0 to $5,000 \mathrm{~Hz}$.

Query

Field name		Data	Description
Slave address		01h	Slave address
Function code		10h	Write to multiple holding registers
Data	Register address (upper)	04h	Register address to start writing from $=$ Operating speed No. 0 (0480h)
	Register address (lower)	80h	
	Number of registers (upper)	00h	Number of registers to be written
	Number of registers (lower)	02h	
	Number of data bytes	04h	Twice the number of registers in the query
	Value written to register address (upper)	00h	Value written to register address$=5,000 \mathrm{~Hz}(00001388 \mathrm{~h})$
	Value written to register address (lower)	00h	
	Value written to register address+1 (upper)	13h	
	Value written to register address+1 (lower)	88h	
Error check (lower)		C4h	Calculation result of CRC-16
Error check (upper)		59h	

Response

Field name		Data	Description
Slave address		01h	Same as query
Function code		10h	
Data	Register address (upper)	04h	
	Register address (lower)	80h	
	Number of registers (upper)	00h	
	Number of registers (lower)	02h	
Error check (lower)		41h	Calculation result of CRC-16
Error check (upper)		10h	

3. Send the following query to turn START ON.

Positioning operation is started.
Query

Field name		Data	Description
Slave address		01h	Slave address
Function code		06h	Write to a holding register
Data	Register address (upper)	00h	Register address to be written =Driver input command (007Dh)
	Register address (lower)	7Dh	
	Value write (upper)	00h	Value written to register address =START ON (0008h)
	Value write (lower)	08h	
Error check (lower)		18h	Calculation result of CRC-16
Error check (upper)		14h	

Response

Field name		Data		
Slave address		01 h		
Function code				
Data	Register address (upper)	00 h	Same as query	
	Register address (lower)	7 Dh		
	Value write (upper)	00 h		
	Value write (lower)	08 h		
Error check (lower)			18 h	
Calculation result of CRC-16				
	Error check (upper)			14 h

4. When positioning operation is started, send the following query to turn START OFF again.

Query

Field name		Data	Description
Slave address		01h	Slave address
Function code		06h	Writing to a holding register
Data	Register address (upper)	00h	Register address to be written =Driver input command (007Dh)
	Register address (lower)	7Dh	
	Value write (upper)	00h	Value written to register address =START OFF (0000h)
	Value write (lower)	00h	
Error check (lower)		19h	Calculation result of CRC-16
Error check (upper)		D2h	

Response

Field name		Data	Description
Slave address		01h	Same as query
Function code		06h	
Data	Register address (upper)	00h	
	Register address (lower)	7Dh	
	Value write (upper)	00h	
	Value write (lower)	00h	
Error check (lower)		19h	Calculation result of CRC-16
Error check (upper)		D2h	

10-2 Continuous operation

As an example, here is a description how to execute the following continuous operation. For details of continuous operatin, refer to p. 105 .
This section explains data writing using the function code " 10 h, ," and remote I/O writing using the function code "06h."

- Setting example
- Slave address : 1
- Rotation direction: Forward (FWD)
- Operating speed: $5,000 \mathrm{~Hz}$

- Operating procedure

1. Send the following query to set the operating speed of the operation data $\mathrm{No} .0 \mathrm{to} 5,000 \mathrm{~Hz}$.

Query

Field name		Data	Description
Slave address		01h	Slave address
Function code		10h	Write to multiple holding registers
Data	Register address (upper)	04h	Register address to start writing from $=$ Operating speed No. 0 (0480h)
	Register address (lower)	80h	
	Number of registers (upper)	00h	Number of registers to be written
	Number of registers (lower)	02h	
	Number of data bytes	04h	Twice the number of registers in the query
	Value written to register address (upper)	00h	Value written to register address $=5,000 \mathrm{~Hz}(00001388 \mathrm{~h})$
	Value written to register address (lower)	00h	
	Value written to register address+1 (upper)	13h	
	Value written to register address+1 (lower)	88h	
Error check (lower)		C4h	Calculation result of CRC-16
Error check (upper)		59h	

Response

Field name		Data	Description
Slave address		01h	Same as query
Function code		10h	
Data	Register address (upper)	04h	
	Register address (lower)	80h	
	Number of registers (upper)	00h	
	Number of registers (lower)	02h	
Error check (lower)		41h	Calculation result of CRC-16
Error check (upper)		10h	

2. Send the following query to turn FWD ON. Continuous operation is started.

Query

Field name		Data	Description
Slave address		01h	Slave address
Function code		06h	Write to a holding register
Data	Register address (upper)	00h	Register address to be written =Driver input command (007Dh)
	Register address (lower)	7Dh	
	Value write (upper)	40h	Value written to register address =FWD ON (4000h)
	Value write (lower)	00h	
Error check (lower)		28h	Calculation result of CRC-16
Error check (upper)		12h	

Response

Field name		Data	Description
Slave address		01h	Same as query
Function code		06h	
Data	Register address (upper)	00h	
	Register address (lower)	7Dh	
	Value write (upper)	40h	
	Value write (lower)	00h	
Error check (lower)		28h	Calculation result of CRC-16
Error check (upper)		12h	

3. To stop continuous operation, send the following query to turn FWD OFF again. The motor decelerates to a stop.

Query

Field name		Data	Description
Slave address		01 h	Slave address
Function code	06 h	Write to a holding register	
	Register address (upper)	00 h	Register address to be written Register address (lower)
	Value write (upper)	DDh	=Driver input command (007Dh)
	Value write (lower)	00 h	Value written to register address
=FWD OFF (0000h)			

Response

Field name		Data	Description
Slave address		01h	Same as query
Function code		06h	
Data	Register address (upper)	00h	
	Register address (lower)	7Dh	
	Value write (upper)	00h	
	Value write (lower)	00h	
Error check (lower)		19h	Calculation result of CRC-16
Error check (upper)		D2h	

10-3 Return-to-home operation

As an example, here is a description how to execute the following return-to-home operation. For details of return-tohome operatin, refer to p. 98.

- Setting example
- Slave address : 1
- Operation condition : Default
- Operating procedure

1. Send the following query to turn HOME ON. Return-to-home operation is started.

Query

Field name		Data	Description
Slave address		01h	Slave address
Function code		06h	Write to a holding register
Data	Register address (upper)	00h	Register address to be written =Driver input command (007Dh)
	Register address (lower)	7Dh	
	Value write (upper)	00h	Value written to register address $=$ HOME ON (0010h)
	Value write (lower)	10h	
Error check (lower)		18h	Calculation result of CRC-16
Error check (upper)		1Eh	

Response

Field name		Data	Description
Slave address		01h	Same as query
Function code		06h	
Data	Register address (upper)	00h	
	Register address (lower)	7Dh	
	Value write (upper)	00h	
	Value write (lower)	10h	
Error check (lower)		18h	Calculation result of CRC-16
Error check (upper)		1Eh	

2. When return-to-home operation is started, send the following query to turn HOME OFF again.

Query

Field name		Data	Description
Slave address		01h	Slave address
Function code		06h	Write to a holding register
Data	Register address (upper)	00h	Register address to be written =Driver input command (007Dh)
	Register address (lower)	7Dh	
	Value write (upper)	00h	Value written to register address =HOME OFF (0000h)
	Value write (lower)	00h	
Error check (lower)		19h	Calculation result of CRC-16
Error check (upper)		D2h	

Response

Field name		Data	Description
Slave address		01h	Same as query
Function code		06h	
Data	Register address (upper)	00h	
	Register address (lower)	7Dh	
	Value write (upper)	00h	
	Value write (lower)	00h	
Error check (lower)		19h	Calculation result of CRC-16
Error check (upper)		D2h	

11 Detection of communication errors

This function detects abnormalities that may occur during RS-485 communication. The abnormalities that can be detected include alarms, warnings and communication errors.

11-1 Communication errors

A communication error record will be saved in the RAM. You can check the communication errors using the MEXE02 or "communication error record" command via RS-485 communication.
memo The communication error record will be cleared once the driver power is turned off.

Type of communication error	Error code	Cause		
RS-485 communication error	84 h	A transmission error was detected. See "Transmission error" on p.162		
Command not yet defined	88 h	An exception response (exception code 01h, 02h) was detected. See p.163.		
Execution disable due to user I/F communication in progress	89 h	An exception response (exception code 04h) was detected.		
Nen-volatile memory processing in progress	8 Ah	8Ch		An exception response (exception code 03h, 04h) was
:---				
detected. See p.163.				

11-2 Alarms and warnings

When an alarm generates, the ALM output will turn OFF and the motor will stop. At the same time, the ALM LED will start blinking.
When a warning generates, the WNG output will turn ON. The motor will continue to operate. Once the cause of the warning is removed, the WNG output will turn OFF automatically.
memo
You can also clear the warning records by turning off the driver power.

Communication switch setting error (83h)
When setting the transmission rate setting switch (BAUD) to positions 5 to F , the transmission rate setting switch error will occur.

RS-485 communication error (84h)

The table below shows the relationship between alarms and warnings when an RS-485 communication error occurs.

Description of error	Description
Warning	A warning generates when one RS-485 communication error (84h) has been detected. If normal reception occurs while the warning is present, the warning will be reset automatically.
Alarm	An alarm generates when a RS-485 communication error (84h) has been detected consecutively by the number of times set in the "communication error alarm" parameter.

RS-485 communication timeout (85h)

If communication is not established with the master after an elapse of the time set by the "communication timeout" parameter, a RS-485 communication timeout alarm will generate.

12 Timing charts

Communication start

* Tb2 (transmission waiting time) + C3.5 (silent interval)
- Operation start

*1 A message including a query to start operation via RS-485 communication.
*2 Tb2 (transmission waiting time) + C3.5 (silent interval)
*3 C3.5 (silent interval) +4 ms or less
Operation stop, speed change

*1 A message including a query to stop operation and another to change the speed via RS-485 communication.
*2 Tb2 (transmission waiting time) + C3.5 (silent interval)
*3 The specific time varies depending on the command speed.
*4 The deceleration method to be applied at the time of stopping varies according to the value set by the "STOP input action" parameter.

General signals

*1 A message including a query for remote output via RS-485 communication.
*2 Tb2 (transmission waiting time) + C3.5 (silent interval)
*3 C3.5 (silent interval) +4 ms or less

Configuration

*1 A message including a query for configuration via RS-485 communication.
*2 Tb2 (transmission waiting time) + C3.5 (silent interval)
*3 Internal processing time +1 s or less
*4 Execute a query after the driver internal processing is completed.

6
 Method of control via industrial network

This part explains how to control via industrial network using the network converter (sold separately).

Table of contents

1 Setting the switches 198
1-1 Protocol ..
1-2 Address number (slave address)....................... 198
1-3 Transmission rate ... 199
1-4 Termination resistor... 199
2 Method of control via CC-Link
2-1 Guidance.. 200
2-2 Basic operation procedure 205
2-3 Remote register list of NETCO1-CC.............. 209
2-4 Assignment for remote I/O of 6-axes $\begin{aligned} & \text { connection mode....................................... } 209\end{aligned}$
2-5 Assignment for remote I/O of 12-axes $\begin{aligned} & \text { connection mode.................................... } 212\end{aligned}$
3 Method of control via MECHATROLINK communication217
3-1 Guidance 217
3-2 Basic operation procedure 222
3-3 I/O field map for the NETC01-M2 225
3-4 I/O field map for the NETC01-M3 226
3-5 Communication format 227

4 Details of remote I/O................................ 229
4-1 Input signals to the driver................................ 229
4-2 Output signals from the driver........................ 230
5 Command code list.................................... 232
5-1 Group function ... 232
5-2 Maintenance command 233
5-3 Monitor command .. 234
5-4 Operation data... 236
5-5 User parameters .. 237

1 Setting the switches

The following figure shows the status of factory setting.

memo Be sure to turn off the motor power before setting the switches. If the switches are set while the power is still on, the new switch settings will not become effective until the driver power is cycled.

1-1 Protocol

Set the SW1-No. 2 of the function setting switch to OFF. The network converter is selected.
Factory setting OFF

SW1-No.2	Protocol
ON	Modbus RTU protocol
OFF	Connect to the network converter

1-2 Address number (slave address)

Set the address number (slave address) using the address number setting switch (ID) and SW1-No. 1 of the function setting switch. Make sure each address number (slave address) you set for each driver is unique.

Factory setting ID: 0, SW1-No.1: OFF (Address number 0)
■ CC-Link communication
Up to 12 units can be connected.

Address number (slave address)	0	1	2	3	4	5	6	7	8	9	10	11
ID	0	1	2	3	4	5	6	7	8	9	A	B
SW1-No. 1	OFF											
Connection mode			con	tion			12 axes connection mode					

■ MECHATROLINK communication
Up to 16 units can be connected.

Address number (slave address)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ID	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
SW1-No. 1	OFF															
Connection mode	8 axes connection mode								16 axes connection mode							

1-3 Transmission rate

Set the transmission rate to 625,000 bps using the transmission rate setting switch (BAUD).
Factory setting 7 ($625,000 \mathrm{bps}$)

1-4 Termination resistor

Use a termination resistor for the driver located farthest away (positioned at the end) from the network converter. Turn the termination resistor setting switch (TERM.-No. 1 and No.2) ON to set the termination resistor for RS-485 communication (120Ω).

Factory setting No. 1 and No.2: Both OFF (termination resistor disabled)

TERM.-No.1, No.2	Termination resistor (120Ω)
Both are OFF	Disabled
Both are ON	Enabled

memo If only one of No. 1 or No. 2 is turned ON, a communication error may occur.
For example, in the case of the following system, the termination resistor should be set to two drivers.

2 Method of control via CC-Link communication

2-1 Guidance

If you are new to the RKII Series FLEX built-in controller type, read this section to understand the operating methods along with the operation flow.
This section explains how to control via CC-Link communication in combination with the network converter
NETC01-CC.

- Operating condition

Here, the motor is supposed to be operated under the following conditions.

[^12]Note Before operating the motor, check the condition of the surrounding area to ensure safety.

STEP 1 Check the installation and connection

*1 Included with the product or sold separately.
*2 This cable is provided as our product. Purchase it separately.

STEP 2 Set the parameters and switches of the network converter

Setting of parameters

1. Start the MEXEO2 and select the network converter.

2. Set the "Connection (axis \#)" parameter of the driver connected to the network converter to "1: effective" using the MEXE02.

MEXE02 tree view	Parameter name	Description	Initial value
System	Connection (axis \#0)	Enables the address number of the driver connected to the network converter. to	[Setting range] 0: Disable $1:$ Effective

memo - When multiple drivers are connected, set connection parameters as many as the drivers.

- "Connection (axis \#)" parameters will be enabled after the power is cycled.
- Parameters can also be set via CC-Link communication.

Setting of switches

Set the following with the switches of the network converter. For the termination resistor, select "ON" (with termination resistor).

- CC-Link station number
- RS-485 transmission rate
- CC-Link baud rate
- Operation mode
- Termination resistor
memo For the setting method of the network converter, refer to the separate NETC01-CC USER MANUAL.

STEP 3 Set the switches of the driver

Set the following with the switches of the driver. For the protocol, select "OFF" (network converter).
The status becomes as shown in the following figures after setting.

Setting item	Switch	Factory setting
• Protocol: Network converter	SW1-No.2: OFF	OFF
- Address number: 0	SW1-No.1: OFF ID: 0	SW1-No.1: OFF ID: 0
- Termination resistor: ON	TERM.-Nos.1 and 2: ON	OFF
- Transmission rate: 625,000 bps	BAUD: 7	7

memo For the address number, set the one with the "Connection (axis \#)" parameter of the network converter set to "1: effective."

STEP 4 Cycle the power and check the LED

Check that the LED of the driver and network converter are as shown in the figure.

■ Driver

■ Network converter

- When C-DAT/C-ERR LED of the driver or C-ERR LED (red) of the network converter is lit: Check the transmission rate or address number of RS-485 communication.
- When L-ERR (red) of the network converter is lit: Check the type of the CC-Link communication error.

STEP 5 Perform continuous operation via remote I/O of CC-Link communication
Turn FWD of the address number 0 ON with the remote I/O of CC-Link communication. Continuous operation is started.
Initial values of the remote I/O are as follows.

RY (Master to NETC01-CC)		
Device No.	Signal name	Initial value
RY0	NET-IN0	M0
RY1	NET-IN1	M1
RY2	NET-IN2	M2
RY3	NET-IN3	START
RY4	NET-IN4	HOME
RY5	NET-IN5	STOP
RY6	NET-IN6	FREE
RY7	NET-IN7	ALM-RST

RY (Master to NETC01-CC)		
Device No.	Signal name	Initial value
RY8	NET-IN8	MS0
RY9	NET-IN9	MS1
RYA	NET-IN10	MS2
RYB	NET-IN11	SSTART
RYC	NET-IN12	+JOG
RYD	NET-IN13	-JOG
RYE	NET-IN14	FWD
RYF	NET-IN15	RVS

STEP $6 \quad$ Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present in the driver or network converter?
- Are the power supply, motor, and RS-485 communication cable connected securely?
- Are the protocol, address number and termination resistor set correctly?
- Is the "connection (axis \#)" parameter of the network converter set correctly?
- Is the C-DAT/C-ERR LED turned off? Or is it lit in red? (An communication error has occurred)
- Is the operation data set correctly?
- Is the motor excited? Or is the excitation setting correct?
- Are the driver parameters set correctly?
- Is the STOP input of the driver I/O turned ON?

2-2 Basic operation procedure

This section explains the execution methods of positioning operation and monitor function as a basic operation procedure.
As an example, here is an introduction of a procedure to control via CC-Link communication using the NETCO1-CC

Positioning operation

As an example, here is a description how to execute the following positioning operation.

- Setting example
- Address number (slave address): 0
- Operation data No. 3
- Position (travel amount): 3,000 step
- Operating procedure

1. Send the following remote register to set the position (travel amount) of the operation data No. 3 to 3,000 steps.

Remote register of NETCO1-CC

RWw (Master to NETC01-CC)			
Address No.	Description		
RWwn0	Command code of monitor 0		
RWwn1	Address number of monitor 0		
RWwn2	Command code of monitor 1		
RWwn3	Address number of monitor 1		
RWwn4	Command code of monitor 2		
RWwn5	Address number of monitor 2		
RWwn6	Command code of monitor 3		
RWwn7	Address number of monitor 3		
RWwn8	Command code of monitor 4		
RWwn9	Address number of monitor 4		
RWwnA	Command code of monitor 5	Input	escrip
RWwnB	Address number of monitor 5	example	escrip
RWwnC	Command code	1203h *	Write to the position of operation data No. 3
RWwnD	Address number	0	Address number 0
RWwnE	Data (lower)		
RWwnF	Data (upper)	OBB8h	Position (travel smount) 3,000 step

* From the list of p.236, we can see that the command code (WRITE) of "Position No.0" is 1200h. Here, the position is set to the operation data No.3, so the command code (WRITE) is $1200+3=1203 \mathrm{~h}$.

2. Send the following remote I / O to turn the command execution request "D-REQ" ON.

The data set in the remote register is written.
When the data writing is completed, the D-END is turned ON. (response)

Remote I/O of NETCO1-CC

	Command RY (Master to NETC01-CC)		
	Device No.	Signal name	Description
NETC01-CC Control input/status output	RY(n+6)C	D-REQ	Command execution request

3. Check the D-END is turned ON, send the following remote I/O to turn the D-REQ OFF again.

Remote I/O of NETCO1-CC

	Command RY (Master to NETC01-CC)		
	Device No.	Signal name	Description
NETC01-CC	RY(n+6)C	D-REQ	Command execution request

memo - Be sure to turn D-REQ OFF again after turning it ON.

- When the data is written with the D-REQ, the data is saved in the RAM. If the data is saved in the non-volatile memory, execute the "Batch NV memory write" of the maintenance command.

4. Send the following remote I / O and turn M 0 and M 1 of the address number 0 and START ON.

Positioning operation is started. If the motor rotates for 3,000 steps, the positioning operation was successful.
Remote I/O of NETC01-CC (initial value)

	Command RY (Master to NETC01-CC)		
	Device No.	Signal name	Description
	$\mathrm{RY}(\mathrm{n}) 0$	NET-IN0	M0
	$\mathrm{RY}(\mathrm{n}) 1$	NET-IN1	M1
	$\mathrm{RY}(\mathrm{n}) 2$	NET-IN2	M2
	$\mathrm{RY}(\mathrm{n}) 3$	NET-IN3	START
	$\mathrm{RY}(\mathrm{n}) 4$	NET-IN4	HOME
	$\mathrm{RY}(\mathrm{n}) 5$	NET-IN5	STOP
	$\mathrm{RY}(\mathrm{n}) 6$	NET-IN6	FREE
	$\mathrm{RY}(\mathrm{n}) 7$	NET-IN7	ALM-RST
	$\mathrm{RY}(\mathrm{n}) 8$	NET-IN8	MS0
	$\mathrm{RY}(\mathrm{n}) 9$	NET-IN9	MS1
	$\mathrm{RY}(\mathrm{n}) \mathrm{A}$	NET-IN10	MS2
	$\mathrm{RY}(\mathrm{n}) \mathrm{B}$	NET-IN11	SSTART
	$\mathrm{RY}(\mathrm{n}) \mathrm{C}$	NET-IN12	+JOG
	$\mathrm{RY}(\mathrm{n}) \mathrm{D}$	NET-IN13	-JOG
	$\mathrm{RY}(\mathrm{n}) \mathrm{E}$	NET-IN14	FWD
	$\mathrm{RY}(\mathrm{n}) \mathrm{F}$	NET-IN15	RVS

Monitor function

In CC-Link communication, six types of data can be monitored at the same time.

- Setting example

- Address number (slave address): 0
- Monitor item: Present alarm
- Operating procedure

1. Send the following remote register to monitor the present alarm of the address number 0 .

Remote register of NETC01-CC

RWw (Master to NETC01-CC)			
Address No.	Description	Input example	Description
RWwn0	Command code of monitor 0	2040h	Monitor present alarm
RWwn1	Address number of monitor 0	0	Address number 0
RWwn2	Command code of monitor 1		
RWwn3	Address number of monitor 1		
RWwn4	Command code of monitor 2		
RWwn5	Address number of monitor 2		
RWwn6	Command code of monitor 3		
RWwn7	Address number of monitor 3		
RWwn8	Command code of monitor 4		
RWwn9	Address number of monitor 4		
RWwnA	Command code of monitor 5		
RWwnB	Address number of monitor 5		
RWwnC	Command code		
RWwnD	Address number		
RWwnE	Data (lower)		
RWwnF	Data (upper)		

2. Send the following remote I / O to turn the monitor request 0 " $\mathrm{M}-\mathrm{REQ0}$ " ON.

Remote I/O of NETC01-CC

	Command RY (Master to NETC01-CC)		
	Device No.	Signal name	Description
NETC01-CC	RY(n+6)C	M-REQ0	Monitor request 0

The monitor of the present alarm of the address number 0 is started. Monitoring of the present alarm is continued while M-REQ0 is ON.
The read value is reflected to the response area of the remote register.

Remote register of NETC01-CC

RWr (NETC01-CC to master)		Output	Description
Address No.	Description	example	
RWrn0	Data of monitor 0 (lower 16 bit)		Reading-out alarm
RWrn1	Data of monitor 0 (upper 16 bit)		(example: operation data error)
RWrn2	Data of monitor 1 (lower 16 bit)		
RWrn3	Data of monitor 1 (upper 16 bit)		
RWrn4	Data of monitor 2 (lower 16 bit)		
RWrn5	Data of monitor 2 (upper 16 bit)		
RWrn6	Data of monitor 3 (lower 16 bit)		
RWrn7	Data of monitor 3 (upper 16 bit)		
RWrn8	Data of monitor 4 (lower 16 bit)		
RWrn9	Data of monitor 4 (upper 16 bit)		
RWrnA	Data of monitor 5 (lower 16 bit)		
RWrnB	Data of monitor 5 (upper 16 bit)		
RWrnC	Command code response		
RWrnD	Address number response		
RWrnE	Data (lower)		
RWrnF	Data (upper)		

3. To end the monitor, send the following remote I/O to turn the M-REQO OFF again.

Remote I/O of NETC01-CC

	Command RY (Master to NETC01-CC)		
	Device No.	Signal name	Description
NETC01-CC	RY(n+6)C	M-REQ0	Monitor request 0

2-3 Remote register list of NETC01-CC

Remote register is common to 6-axes connection mode and 12-axes connection mode.
"Monitor", "read and write of parameters" and "maintenance command" for the driver or NETC01-CC are executed using remote register. " n " is an address assigned to the master by the CC-Link station number setting.

RWw (Master to NETC01-CC)	
Address No.	Description
RWwn0	Command code of monitor 0
RWwn1	Address number of monitor 0
RWwn2	Command code of monitor 1
RWwn3	Address number of monitor 1
RWwn4	Command code of monitor 2
RWwn5	Address number of monitor 2
RWwn6	Command code of monitor 3
RWwn7	Address number of monitor 3
RWwn8	Command code of monitor 4
RWwn9	Address number of monitor 4
RWwnA	Command code of monitor 5
RWwnB	Address number of monitor 5
RWwnC	Command code
RWwnD	Address number
RWwnE	Data (lower)
RWwnF	Data (upper)

RWr (NETC01-CC to master)	
Address No.	Description
RWrn0	Data of monitor 0 (lower 16 bit)
RWrn1	Data of monitor 0 (upper 16 bit)
RWrn2	Data of monitor 1 (lower 16 bit)
RWrn3	Data of monitor 1 (upper 16 bit)
RWrn4	Data of monitor 2 (lower 16 bit)
RWrn5	Data of monitor 2 (upper 16 bit)
RWrn6	Data of monitor 3 (lower 16 bit)
RWrn7	Data of monitor 3 (upper 16 bit)
RWrn8	Data of monitor 4 (lower 16 bit)
RWrn9	Data of monitor 4 (upper 16 bit)
RWrnA	Data of monitor 5 (lower 16 bit)
RWrnB	Data of monitor 5 (upper 16 bit)
RWrnC	Command code response
RWrnD	Address number response
RWrnE	Data (lower)
RWrnF	Data (upper)

2-4 Assignment for remote I/O of 6-axes connection mode

Remote I/O assignments of the driver are as follows. " n " is an address assigned to the master by the CC-Link station number setting. See the NETC01-CC USER MANUAL for 6-axes connection mode.

Assignment list of remote I/O
Details of remote I/O assignment \Rightarrow p. 211

Command RY (Master to NETC01-CC)	
Device No.	Description
RYn7 to RYn0	Address number "0" remote I/O input
RYnF to RYn8	
$R Y(n+1) 7$ to $\operatorname{RY}(\mathrm{n}+1) 0$	Address number "1" remote I/O input
$R Y(n+1) F$ to $R Y(n+1) 8$	
$R Y(n+2) 7$ to $R Y(n+2) 0$	Address number "2" remote I/O input
$R Y(n+2) F$ to $R Y(n+2) 8$	
$R Y(n+3) 7$ to $R Y(n+3) 0$	Address number "3" remote I/O input
$R Y(n+3) F$ to $R Y(n+3) 8$	
$R Y(n+4) 7$ to $\operatorname{RY}(\mathrm{n}+4) 0$	Address number "4" remote I/O input
$R Y(n+4) F$ to $R Y(n+4) 8$	
$R Y(n+5) 7$ to $\operatorname{RY}(\mathrm{n}+5) 0$	Address number " 5 " remote I/O input
$R Y(n+5) F$ to $R Y(n+5) 8$	
$R Y(n+6) 7$ to $R Y(n+6) 0$	Control input of NETC01-CC
$R Y(n+6) F$ to $R Y(n+6) 8$	
$R Y(n+7) 7$ to $\operatorname{RY}(\mathrm{n}+7) 0$	Control input of system area
$R Y(n+7) F$ to $\operatorname{RY}(\mathrm{n}+7) 8$	

Response RX (NETC01-CC to master)	
Device No.	Description
$\mathrm{RXn7}$ to RXn0	Address number "0" remote I/O output
RXnF to RXn8	
$R X(n+1) 7$ to $R X(n+1) 0$	Address number "1" remote I/O output
$R X(n+1) F$ to $R X(n+1) 8$	
$R X(n+2) 7$ to $R X(n+2) 0$	Address number "2" remote I/O output
$R X(n+2) F$ to $R X(n+2) 8$	
$R X(n+3) 7$ to $R X(n+3) 0$	Address number "3" remote I/O output
$R X(n+3) F$ to $R X(n+3) 8$	
$R X(n+4) 7$ to $R X(n+4) 0$	Address number "4" remote I/O output
$R X(n+4) F$ to $R X(n+4) 8$	
$R X(n+5) 7$ to $R X(n+5) 0$	Address number " 5 " remote I/O output
$R X(n+5) F$ to $R X(n+5) 8$	
$R X(n+6) 7$ to $R X(n+6) 0$	Status output of NETC01-CC
$R X(n+6) F$ to $R X(n+6) 8$	
$R X(n+7) 7$ to $R X(n+7) 0$	Status output of system area
$R X(n+7) F$ to $R X(n+7) 8$	

■ Input/output of remote I/O

- Remote I/O input

Remote I/O output

NETC01-CC
$R X n F$ to $R X n 0$
$R X(n+1) F$ to $R X(n+1) 0$
$R X(n+2) F$ to $R X(n+2) 0$
$R X(n+3) F$ to $R X(n+3) 0$
$R X(n+4) F$ to $R X(n+4) 0$
$R X(n+5) F$ to $R X(n+5) 0$
$R X(n+6) F$ to $R X(n+6) 0$
$R X(n+7) F$ to $R X(n+7) 0$

Driver Address number 0

- Details of remote I/O assignment

[]: Initial value

	Command RY (Master to NETC01-CC)		
	Device No.	Signal name	Description
Address number "0"	RY(n)0	NET-INO	[M0]
	RY(n)1	NET-IN1	[M1]
	$\mathrm{RY}(\mathrm{n}) 2$	NET-IN2	[M2]
	RY(n)3	NET-IN3	[START]
	$\mathrm{RY}(\mathrm{n}) 4$	NET-IN4	[HOME]
	RY(n)5	NET-IN5	[STOP]
	$\mathrm{RY}(\mathrm{n}) 6$	NET-IN6	[FREE]
	RY(n)7	NET-IN7	[ALM-RST]
	$\mathrm{RY}(\mathrm{n}) 8$	NET-IN8	[MSO]
	RY(n)9	NET-IN9	[MS1]
	$\mathrm{RY}(\mathrm{n}) \mathrm{A}$	NET-IN10	[MS2]
	RY(n)B	NET-IN11	[SSTART]
	RY(n)C	NET-IN12	[+JOG]
	RY(n)D	NET-IN13	[-JOG]
	$\mathrm{RY}(\mathrm{n}) \mathrm{E}$	NET-IN14	[FWD]
	RY(n)F	NET-IN15	[RVS]
Address number "1"	$\begin{gathered} \mathrm{RY}(\mathrm{n}+1) 0 \\ \text { to } \\ \mathrm{RY}(\mathrm{n}+1) \mathrm{F} \end{gathered}$	$\begin{aligned} & \text { NET-INO } \\ & \text { to } \\ & \text { NET-IN15 } \end{aligned}$	Same as Address number "0"
Address number "2"	$\begin{gathered} \mathrm{RY}(\mathrm{n}+2) 0 \\ \text { to } \\ \mathrm{RY}(\mathrm{n}+2) \mathrm{F} \end{gathered}$	$\begin{aligned} & \text { NET-INO } \\ & \text { to } \\ & \text { NET-IN15 } \end{aligned}$	Same as Address number "0"
Address number "3"	$\begin{gathered} \operatorname{RY}(n+3) 0 \\ \text { to } \\ \operatorname{RY}(n+3) \mathrm{F} \end{gathered}$	$\begin{aligned} & \text { NET-INO } \\ & \text { to } \\ & \text { NET-IN15 } \end{aligned}$	Same as Address number "0"
Address number "4"	$\begin{gathered} \mathrm{RY}(\mathrm{n}+4) 0 \\ \text { to } \\ \mathrm{RY}(\mathrm{n}+4) \mathrm{F} \end{gathered}$	NET-INO to NET-IN15	Same as Address number "0"
Address number "5"	$\begin{aligned} & \mathrm{RY}(\mathrm{n}+5) 0 \\ & \text { to } \\ & \mathrm{RY}(\mathrm{n}+5) \mathrm{F} \end{aligned}$	NET-INO to NET-IN15	Same as Address number "0"
NETCO1-CC control input/ status output	$\mathrm{RY}(\mathrm{n}+6) 0$	M-REQ0	Monitor request 0
	$\mathrm{RY}(\mathrm{n}+6) 1$	M-REQ1	Monitor request 1
	$\mathrm{RY}(\mathrm{n}+6) 2$	M-REQ2	Monitor request 2
	$\mathrm{RY}(\mathrm{n}+6) 3$	M-REQ3	Monitor request 3
	$\mathrm{RY}(\mathrm{n}+6) 4$	M-REQ4	Monitor request 4
	$\mathrm{RY}(\mathrm{n}+6) 5$	M-REQ5	Monitor request 5
	$\mathrm{RY}(\mathrm{n}+6) 6$	-	-
	$\mathrm{RY}(\mathrm{n}+6) 7$	ALM-RST	Reset alarm
	$\mathrm{RY}(\mathrm{n}+6) 8$	-	-
	$\mathrm{RY}(\mathrm{n}+6) 9$		

Response RX (NETC01-CC to master)		
Device No.	Signal name	Description
RX(n)0	NET-OUTO	[MO_R]
$\mathrm{RX}(\mathrm{n}) 1$	NET-OUT1	[M1_R]
$\mathrm{RX}(\mathrm{n}) 2$	NET-OUT2	[M2_R]
RX(n)3	NET-OUT3	[START_R]
RX(n)4	NET-OUT4	[HOME-P]
RX(n) 5	NET-OUT5	[READY]
$\mathrm{RX}(\mathrm{n}) 6$	NET-OUT6	[WNG]
RX(n)7	NET-OUT7	[ALM]
RX(n)8	NET-OUT8	[S-BSY]
$\mathrm{RX}(\mathrm{n}) 9$	NET-OUT9	[AREA1]
RX(n)A	NET-OUT10	[AREA2]
RX(n)B	NET-OUT11	[AREA3]
RX(n)C	NET-OUT12	[TIM]
RX(n)D	NET-OUT13	[MOVE]
RX(n)E	NET-OUT14	[Not used]
RX(n)F	NET-OUT15	[STEPOUT]
$\begin{gathered} \operatorname{RX}(\mathrm{n}+1) 0 \\ \text { to } \\ \operatorname{RX}(\mathrm{n}+1) \mathrm{F} \end{gathered}$	NET-OUTO to NET-OUT15	Same as Address number "0"
$\begin{gathered} \operatorname{RX}(\mathrm{n}+2) 0 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+2) \mathrm{F} \end{gathered}$	$\begin{aligned} & \text { NET-OUTO } \\ & \text { to } \\ & \text { NET-OUT15 } \end{aligned}$	Same as Address number "0"
$\begin{gathered} \mathrm{RX}(\mathrm{n}+3) 0 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+3) \mathrm{F} \end{gathered}$	NET-OUTO to NET-OUT15	Same as Address number "0"
$\begin{gathered} \mathrm{RX}(\mathrm{n}+4) 0 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+4) \mathrm{F} \end{gathered}$	NET-OUTO to NET-OUT15	Same as Address number "0"
$\begin{gathered} \mathrm{RX}(\mathrm{n}+5) 0 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+5) \mathrm{F} \end{gathered}$	NET-OUTO to NET-OUT15	Same as Address number "0"
$\mathrm{RX}(\mathrm{n}+6) 0$	M-DATO	During execution of monitor 0
$\mathrm{RX}(\mathrm{n}+6) 1$	M-DAT1	During execution of monitor 1
$\mathrm{RX}(\mathrm{n}+6) 2$	M-DAT2	During execution of monitor 2
$R X(n+6) 3$	M-DAT3	During execution of monitor 3
$\mathrm{RX}(\mathrm{n}+6) 4$	M-DAT4	During execution of monitor 4
$\mathrm{RX}(\mathrm{n}+6) 5$	M-DAT5	During execution of monitor 5
RX($\mathrm{n}+6) 6$	WNG	Warning
$\mathrm{RX}(\mathrm{n}+6) 7$	ALM	Alarm
$\mathrm{RX}(\mathrm{n}+6) 8$	C-SUC	During execution of RS-485 communication
$\mathrm{RX}(\mathrm{n}+6) 9$	-	-

	Command RY (Master to NETC01-CC)		
	Device No.	Signal name	Description
NETC01-CC control input/ status output	RY($n+6) \mathrm{A}$	-	-
	$R Y(n+6) B$		
	$R Y(n+6) C$	D-REQ	Command execution request
	RY($\mathrm{n}+6) \mathrm{D}$	-	-
	$R Y(n+6) E$		
	RY($\mathrm{n}+6) \mathrm{F}$		
System area control input/ status output	$\begin{gathered} \mathrm{RY}(\mathrm{n}+7) 0 \\ \text { to } \\ \mathrm{RY}(\mathrm{n}+7) \mathrm{F} \end{gathered}$	-	Cannot be used

Response RX (NETC01-CC to master)		
Device No.	Signal name	Description
$R X(n+6) A$	-	-
$R X(n+6) B$	-	Command processing completion
$R X(n+6) C$	D-END	R-ERR
$R X(n+6) E$	S-BSY	Degister error processing system
$R X(n+6) F$	-	-
$R X(n+7) 0$ to $R X(n+7) A$	-	Cannot be used
$R X(n+7) B$	CRD	Remote station communication ready
$R X(n+7) C$ to $R X(n+7) F$	-	Cannot be used

2-5 Assignment for remote I/O of 12-axes connection mode

Remote I/O assignments of the driver are as follows. " n " is an address assigned to the master by the CC-Link station number setting. See the NETC01-CC USER MANUAL for 12 axes connection mode.

Assignment list of remote I/O

Command RY(Master to NETCO1-CC)	
Device No.	Description
RYn7 to RYn0	Address number "0" remote I/O input
RYnF to RYn8	Address number " 1 " remote I/O input
$\mathrm{RY}(\mathrm{n}+1) 7$ to $\mathrm{RY}(\mathrm{n}+1) 0$	Address number "2" remote I/O input
$\mathrm{RY}(\mathrm{n}+1) \mathrm{F}$ to $\mathrm{RY}(\mathrm{n}+1) 8$	Address number "3" remote I/O input
$\mathrm{RY}(\mathrm{n}+2) 7$ to $\mathrm{RY}(\mathrm{n}+2) 0$	Address number "4" remote I/O input
$\mathrm{RY}(\mathrm{n}+2) \mathrm{F}$ to $\mathrm{RY}(\mathrm{n}+2) 8$	Address number "5" remote I/O input
$\mathrm{RY}(\mathrm{n}+3) 7$ to $\mathrm{RY}(\mathrm{n}+3) 0$	Address number "6" remote I/O input
$\mathrm{RY}(\mathrm{n}+3) \mathrm{F}$ to $\mathrm{RY}(\mathrm{n}+3) 8$	Address number "7" remote I/O input
$\mathrm{RY}(\mathrm{n}+4) 7$ to $\mathrm{RY}(\mathrm{n}+4) 0$	Address number "8" remote I/O input
RY($n+4$) to $\mathrm{RY}(\mathrm{n}+4) 8$	Address number "9" remote I/O input
$\mathrm{RY}(\mathrm{n}+5) 7$ to $\mathrm{RY}(\mathrm{n}+5) 0$	Address number "10" remote I/O input
RY($\mathrm{n}+5$) F to $\mathrm{RY}(\mathrm{n}+5) 8$	Address number "11" remote I/O input

Response RX(NETCO1-CC to master)	
Device No.	Description
RXn7 to RXn0	Address number "0" remote I/O output
RXnF to RXn8	Address number "1" remote I/O output
$R X(n+1) 7$ to $R X(n+1) 0$	Address number "2" remote I/O output
$\mathrm{RX}(\mathrm{n}+1) \mathrm{F}$ to $\mathrm{RX}(\mathrm{n}+1) 8$	Address number "3" remote I/O output
$\mathrm{RX}(\mathrm{n}+2) 7$ to $\mathrm{RX}(\mathrm{n}+2) 0$	Address number "4" remote I/O output
$\mathrm{RX}(\mathrm{n}+2) \mathrm{F}$ to $\mathrm{RX}(\mathrm{n}+2) 8$	Address number "5" remote I/O output
$\mathrm{RX}(\mathrm{n}+3) 7$ to $\mathrm{RX}(\mathrm{n}+3) 0$	Address number "6" remote I/O output
$R X(n+3) F$ to $R X(n+3) 8$	Address number "7" remote I/O output
$\mathrm{RX}(\mathrm{n}+4) 7$ to $\mathrm{RX}(\mathrm{n}+4) 0$	Address number "8" remote I/O output
$R X(n+4) F$ to $R X(n+4) 8$	Address number "9" remote I/O output
$R X(n+5) 7$ to $R X(n+5) 0$	Address number "10" remote I/O output
$\mathrm{RX}(\mathrm{n}+5) \mathrm{F}$ to $\mathrm{RX}(\mathrm{n}+5) 8$	Address number "11" remote I/O output

Command RY(Master to NETC01-CC)	
Device No.	Description
$R Y(n+6) 7$ to $\operatorname{RY}(\mathrm{n}+6) 0$	Control input of NETC01-CC
$R Y(n+6) F$ to $\operatorname{RY}(\mathrm{n}+6) 8$	
$\operatorname{RY}(\mathrm{n}+7) 7$ to $\mathrm{RY}(\mathrm{n}+7) 0$	Control input of system area
RY($n+7$) F to $\mathrm{RY}(\mathrm{n}+7) 8$	

Response RX(NETC01-CC to master)	
Device No.	Description
$R X(n+6) 7$ to $R X(n+6) 0$	Status output of
$R X(n+6) F$ to $R X(n+6) 8$	NETC01-CC
$R X(n+7) 7$ to $R X(n+7) 0$	Status output of system
$R X(n+7) F$ to $R X(n+7) 8$	area

- Input/output of remote I/O
- Remote I/O input

- Remote I/O output

- Details of remote I/O assignment

[]: Initial value

	Command RY(Master to NETCO1-CC)		
	Device No.	Signal name	Description
Address number "0"	$\mathrm{RY}(\mathrm{n}) 0$	NET-INO	[M0]
	$\mathrm{RY}(\mathrm{n}) 1$	NET-IN1	[M1]
	$\mathrm{RY}(\mathrm{n}) 2$	NET-IN2	[M2]
	RY(n)3	NET-IN3	[START]
	$\mathrm{RY}(\mathrm{n}) 4$	NET-IN4	[HOME]
	RY(n) 5	NET-IN5	[STOP]
	$\mathrm{RY}(\mathrm{n}) 6$	NET-IN6	[FREE]
	$\mathrm{RY}(\mathrm{n}) 7$	NET-IN7	[ALM-RST]
Address number "1"	$\mathrm{RY}(\mathrm{n}) 8$	NET-INO	[M0]
	$\mathrm{RY}(\mathrm{n}) 9$	NET-IN1	[M1]
	RY(n)A	NET-IN2	[M2]
	RY(n)B	NET-IN3	[START]
	RY(n)C	NET-IN4	[HOME]
	RY(n)D	NET-IN5	[STOP]
	RY(n)E	NET-IN6	[FREE]
	$\mathrm{RY}(\mathrm{n}) \mathrm{F}$	NET-IN7	[ALM-RST]
Address number "2"	$\begin{aligned} & \operatorname{RY}(\mathrm{n}+1) 0 \\ & \text { to } \\ & \operatorname{RY}(\mathrm{n}+1) 7 \end{aligned}$	NET-INO to NET-IN7	Same as Address number "0"
Address number "3"	$\begin{gathered} \operatorname{RY}(n+1) 8 \\ \text { to } \\ \operatorname{RY}(n+1) F \end{gathered}$	NET-INO to NET-IN7	Same as Address number "1"
Address number "4"	$\begin{gathered} \mathrm{RY}(\mathrm{n}+2) 0 \\ \text { to } \\ \operatorname{RY}(\mathrm{n}+2) 7 \end{gathered}$	NET-INO to NET-IN7	Same as Address number "0"
Address number "5"	$\begin{gathered} \mathrm{RY}(\mathrm{n}+2) 8 \\ \text { to } \\ \operatorname{RY}(\mathrm{n}+2) \mathrm{F} \end{gathered}$	NET-INO to NET-IN7	Same as Address number "1"
Address number "6"	$\begin{gathered} \operatorname{RY}(\mathrm{n}+3) 0 \\ \text { to } \\ \mathrm{RY}(\mathrm{n}+3) 7 \end{gathered}$	NET-INO to NET-IN7	Same as Address number "0"
Address number "7"	$\begin{gathered} \mathrm{RY}(\mathrm{n}+3) 8 \\ \text { to } \\ \operatorname{RY}(\mathrm{n}+3) \mathrm{F} \end{gathered}$	NET-INO to NET-IN7	Same as Address number "1"
Address number "8"	$\begin{aligned} & \mathrm{RY}(\mathrm{n}+4) 0 \\ & \text { to } \\ & \operatorname{RY}(\mathrm{n}+4) 7 \end{aligned}$	NET-INO to NET-IN7	Same as Address number "0"
Address number "9"	$\begin{gathered} \operatorname{RY}(\mathrm{n}+4) 8 \\ \text { to } \\ \operatorname{RY}(\mathrm{n}+4) \mathrm{F} \end{gathered}$	$\begin{aligned} & \text { NET-INO } \\ & \text { to } \\ & \text { NET-IN7 } \end{aligned}$	Same as Address number "1"
Address number "10"	$\begin{gathered} \mathrm{RY}(\mathrm{n}+5) 0 \\ \text { to } \\ \mathrm{RY}(\mathrm{n}+5) 7 \end{gathered}$	$\begin{aligned} & \text { NET-INO } \\ & \text { to } \\ & \text { NET-IN7 } \end{aligned}$	Same as Address number "0"
Address number "11"	$\begin{aligned} & \mathrm{RY}(\mathrm{n}+5) 8 \\ & \text { to } \\ & \operatorname{RY}(\mathrm{n}+5) \mathrm{F} \end{aligned}$	NET-INO to NET-IN7	Same as Address number "1"

Response RX(NETC01-CC to master)		
Device No.	Signal name	Description
$\mathrm{RX}(\mathrm{n}) 0$	NET-OUTO	[M0_R]
$\mathrm{RX}(\mathrm{n}) 1$	NET-OUT1	[M1_R]
$\mathrm{RX}(\mathrm{n}) 2$	NET-OUT2	[M2_R]
RX(n)3	NET-OUT3	[START_R]
RX(n)4	NET-OUT4	[HOME-P]
$\mathrm{RX}(\mathrm{n}) 5$	NET-OUT5	[READY]
RX(n)6	NET-OUT6	[WNG]
RX(n)7	NET-OUT7	[ALM]
RX(n)8	NET-OUTO	[MO_R]
RX(n)9	NET-OUT1	[M1_R]
RX(n)A	NET-OUT2	[M2_R]
RX(n)B	NET-OUT3	[START_R]
$\mathrm{RX}(\mathrm{n}) \mathrm{C}$	NET-OUT4	[HOME-P]
RX(n)D	NET-OUT5	[READY]
$\mathrm{RX}(\mathrm{n}) \mathrm{E}$	NET-OUT6	[WNG]
$\mathrm{RX}(\mathrm{n}) \mathrm{F}$	NET-OUT7	[ALM]
$\begin{aligned} & \mathrm{RX}(\mathrm{n}+1) 0 \\ & \text { to } \\ & \mathrm{RX}(\mathrm{n}+1) 7 \end{aligned}$	NET-OUTO to NET-OUT7	Same as Address number "0"
$\begin{gathered} \mathrm{RX}(\mathrm{n}+1) 8 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+1) \mathrm{F} \end{gathered}$	NET-OUTO to NET-OUT7	Same as Address number "1"
$\begin{gathered} \mathrm{RX}(\mathrm{n}+2) 0 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+2) 7 \end{gathered}$	NET-OUTO to NET-OUT7	Same as Address number " 0 "
$\begin{gathered} \mathrm{RX}(\mathrm{n}+2) 8 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+2) \mathrm{F} \end{gathered}$	NET-OUTO to NET-OUT7	Same as Address number "1"
$\begin{gathered} \mathrm{RX}(\mathrm{n}+3) 0 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+3) 7 \end{gathered}$	NET-OUTO to NET-OUT7	Same as Address number "0"
$\begin{gathered} \mathrm{RX}(\mathrm{n}+3) 8 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+3) \mathrm{F} \end{gathered}$	NET-OUTO to NET-OUT7	Same as Address number "1"
$\begin{aligned} & \mathrm{RX}(\mathrm{n}+4) 0 \\ & \text { to } \\ & \mathrm{RX}(\mathrm{n}+4) 7 \end{aligned}$	NET-OUTO to NET-OUT7	Same as Address number "0"
$\begin{gathered} R X(n+4) 8 \\ \text { to } \\ R X(n+4) F \end{gathered}$	NET-OUTO to NET-OUT7	Same as Address number "1"
$\begin{gathered} R X(n+5) 0 \\ \text { to } \\ R X(n+5) 7 \end{gathered}$	NET-OUTO to NET-OUT7	Same as Address number "0"
$\begin{gathered} \mathrm{RX}(\mathrm{n}+5) 8 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+5) \mathrm{F} \end{gathered}$	NET-OUTO to NET-OUT7	Same as Address number "1"

	Command RY(Master to NETC01-CC)		
	Device No.	Signal name	Description
NETCO1-CC control input/ status output	$\mathrm{RY}(\mathrm{n}+6) 0$	M-REQ0	Monitor request 0
	$\mathrm{RY}(\mathrm{n}+6) 1$	M-REQ1	Monitor request 1
	$\mathrm{RY}(\mathrm{n}+6) 2$	M-REQ2	Monitor request 2
	$\mathrm{RY}(\mathrm{n}+6) 3$	M-REQ3	Monitor request 3
	$\mathrm{RY}(\mathrm{n}+6) 4$	M-REQ4	Monitor request 4
	$\mathrm{RY}(\mathrm{n}+6) 5$	M-REQ5	Monitor request 5
	$\mathrm{RY}(\mathrm{n}+6) 6$	-	-
	$\mathrm{RY}(\mathrm{n}+6) 7$	ALM-RST	Reset alarm
	$\mathrm{RY}(\mathrm{n}+6) 8$	-	-
	$\mathrm{RY}(\mathrm{n}+6) 9$		
	$\mathrm{RY}(\mathrm{n}+6) \mathrm{A}$		
	$\mathrm{RY}(\mathrm{n}+6) \mathrm{B}$		
	RY(n+6)C	D-REQ	Command execution request
	RY(n+6)D	-	-
	$\mathrm{RY}(\mathrm{n}+6) \mathrm{E}$	-	-
	$\mathrm{RY}(\mathrm{n}+6) \mathrm{F}$		
System area control input/ status output	$\begin{aligned} & \mathrm{RY}(\mathrm{n}+7) 0 \\ & \text { to } \\ & \mathrm{RY}(\mathrm{n}+7) \mathrm{F} \end{aligned}$	-	Cannot be used

Response RX(NETC01-CC to master)		
Device No.	Signal name	Description
$\mathrm{RX}(\mathrm{n}+6) 0$	M-DATO	During execution of monitor 0
RX(n+6)1	M-DAT1	During execution of monitor 1
$\mathrm{RX}(\mathrm{n}+6) 2$	M-DAT2	During execution of monitor 2
RX($\mathrm{n}+6) 3$	M-DAT3	During execution of monitor 3
$\mathrm{RX}(\mathrm{n}+6) 4$	M-DAT4	During execution of monitor 4
$\mathrm{RX}(\mathrm{n}+6) 5$	M-DAT5	During execution of monitor 5
$\mathrm{RX}(\mathrm{n}+6) 6$	WNG	Warning
RX($\mathrm{n}+6$) 7	ALM	Alarm
RX($\mathrm{n}+6$) 8	C-SUC	During execution of RS-485 communication
$\mathrm{RX}(\mathrm{n}+6) 9$	-	-
RX($\mathrm{n}+6) \mathrm{A}$		
$\mathrm{RX}(\mathrm{n}+6) \mathrm{B}$		
RX($n+6) \mathrm{C}$	D-END	Command processing completion
RX(n+6) D	R-ERR	Register error
$\mathrm{RX}(\mathrm{n}+6) \mathrm{E}$	S-BSY	During system processing
$\mathrm{RX}(\mathrm{n}+6) \mathrm{F}$	-	-
$\begin{gathered} \mathrm{RX}(\mathrm{n}+7) 0 \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+7) \mathrm{A} \end{gathered}$	-	Cannot be used
RX($n+7$) B	CRD	Remote station communication ready
$\begin{gathered} \mathrm{RX}(\mathrm{n}+7) \mathrm{C} \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+7) \mathrm{F} \end{gathered}$	-	Cannot be used

3 Method of control via MECHATROLINK communication

3-1 Guidance

If you are new to the RKII Series FLEX built-in controller type, read this section to understand the operating methods along with the operation flow.
This section explains how to control via MECHATROLINK-II communication in combination with the network converter NETCO1-M2.

- Operating condition

Here, the motor is supposed to be operated under the following conditions.

[^13]Note Before operating the motor, check the condition of the surrounding area to ensure safety.

STEP 1 Check the installation and connection

*1 Included with the product or sold separately.
*2 This cable is provided as our product. Purchase it separately.

STEP 2 Set the parameters and switches of the network converter

Setting of parameters

1. Start the MEXEO2 and select the network converter.

2. Set the "Communication (address number)" parameter of the driver connected to the network converter to "effective" using the MEXE02.

MEXE02 English Edition - [New2*]		
E File Edit Move View Communication Tool Window Help		
		気部
NETC MECHATROLINK-II compatible Parameter Application . Common . System	System	
	Communication (address number 0)	Effective
	Communication (address number 1)	Disable
	Communication (address number 2)	Disable
	Communication (address number 3)	Disable
	Communication (address number 4)	Disable
	Communication (address number 5)	Disable
	Communication (address number 6)	Disable
	Communication (address number 7)	Disable
	Communication (address number 8)	Disable
	Communication (address number 9)	Disable
	Communication (address number 10)	Disable
	Communication (address number 11)	Disable
	Communication (address number 12)	Disable

MEXE02 tree view	Parameter name	Description	Initial value
System	Communication (address number 0) to Communication (address number 15)	Enables the address number of the driver connected to the network converter. lSetting range] Disable Effective	

memo - Since parameters of the network converter cannot be set via MECHATROLINK communication, set them by using the MEXEO2.

- When multiple drivers are connected, set communication parameters as many as the drivers.
- "Communication (address number)" parameters will be enabled after the power is cycled.

Setting of switches

Set the following with the switches of the network converter.

- MECHATROLINK-II station address
- RS-485 transmission rate
- Remote I/O occupied size
- Number of transmission bytes
memo For the setting method of the network converter, refer to the separate NETCO1-M2 USER MANUAL.

STEP 3 Set the switches of the driver

Set the following with the switches of the driver. For the protocol, select "OFF" (network converter).
The status becomes as shown in the following figures after setting.

Setting item	Switch	Factory setting
• Protocol: Network converter	SW1-No.2: OFF	OFF
- Address number: 0	SW1-No.1: OFF ID: 0	SW1-No.1: OFF ID: 0
- Termination resistor: ON	TERM.-Nos.1 and 2: ON	OFF
- Transmission rate: 625,000 bps	BAUD: 7	7

memo For the address number, select the one with the "Communication (address number)" parameter of the network converter set to "effective."

STEP 4 Cycle the power and check the LED

Check that the LED of the driver and network converter are as shown in the figure.

■ Driver

■ Network converter

- When C-DAT/C-ERR LED of the driver or C-ERR LED (red) of the network converter is lit: Check the transmission rate or address number of RS-485 communication.
- When ERR (red) of the network converter is lit: Check the type of the MECHATROLINK communication error.

STEP 5

Perform continuous operation via remote I/O of MECHATROLINK communication

Turn FWD of the address number 0 ON with the I/O command of MECHATROLINK communication. Continuous operation is started.
Initial values of the I/O commands are as follows.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15 [RVS]	NET-IN14 [FWD]	$\begin{gathered} \hline \text { NET-IN13 } \\ {[-J O G]} \end{gathered}$	$\begin{aligned} & \hline \text { NET-IN12 } \\ & {[+J O G]} \end{aligned}$	NET-IN11 [SSTART]	NET-IN10 [MS2]	NET-IN9 [MS1]	NET-IN8 [MSO]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bito
$\begin{aligned} & \text { NET-IN7 } \\ & \text { [ALM-RST] } \end{aligned}$	NET-IN6 [FREE]	NET-IN5 [STOP]	NET-IN4 [HOME]	NET-IN3 [START]	NET-IN2 [M2]	NET-IN1 [M1]	NET-INO [MO]

STEP $6 \quad$ Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not function, check the following points:

- Is any alarm present in the driver or network converter?
- Are the power supply, motor, and RS-485 communication cable connected securely?
- Are the protocol, address number and termination resistor set correctly?
- Is the "communication (address number)" parameter of the network converter set correctly?
- Is the C-DAT/C-ERR LED turned off? Or is it lit in red? (An communication error has occurred)
- Is the operation data set correctly?
- Is the motor excited? Or is the excitation setting correct?
- Are the driver parameters set correctly?
- Is the STOP input of the driver I/O turned ON?

3-2 Basic operation procedure

This section explains the execution methods of positioning operation and monitor function as a basic operation procedure.
As an example, here is an introduction of a procedure to control via MECHATROLINK-II communication using the NETC01-M2.

Positioning operation

As an example, here is a description how to execute the following positioning operation.

- Setting example
- Address number (slave address): 0
- Operation data No. 1
- Position (travel amount): 5,000 step
- Operating procedure

1. Send the following remote register to set the position (travel amount) of the operation data No. 1 to 5,000 steps. The data set in the remote register is written. When the data writing is completed, the TRIG_R is turned ON.

Remote register of NETC01-M2

Byte	Part	Type	Command		Input example

* From the list of p.236, we can see that the command code (WRITE) of "Position No.1" is 1201 h . Since the command code and the command execute request (TRIG) are written with the same command in MECHATROLINK communication, write "5201h" with the code (4000h) of TRIG added.

2. Check that TRIG_R is turned ON, then send the following remote register and turn TRIG OFF again.

Remote register of NETC01-M2

Byte	Part	Type	Command	Input example	Description
25	Data field	Remote register	Command code + TRIG		
26				0	Turn TRIG OFF

memo - Be sure to turn TRIG OFF again after turning it ON.

- When the data is written with the command execute request TRIG, the data is saved in the RAM. If the data is saved in the non-volatile memory, execute the "Batch NV memory write" of the maintenance command.

3. Send the following remote I / O and turn MO of the address number 0 and START ON.

Positioning operation is started. If the motor rotates for 5,000 steps, the positioning operation was successful.
Remote I/O of NETC01-M2

| Byte | Part | Type | Command |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad| Input example |
| :---: | Description

Communication format (initial value) of remote I/O input

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15 [RVS]	NET-IN14 [FWD]	NET-IN13 [-JOG]	$\begin{aligned} & \hline \text { NET-IN12 } \\ & {[+J O G]} \end{aligned}$	NET-IN11 [SSTART]	NET-IN10 [MS2]	NET-IN9 [MS1]	NET-IN8 [MSO]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
$\begin{gathered} \text { NET-IN7 } \\ \text { [ALM-RST] } \end{gathered}$	NET-IN6 [FREE]	NET-IN5 [STOP]	NET-IN4 [HOME]	NET-IN3 [START]	NET-IN2 [M2]	NET-IN1 [M1]	NET-INO [M0]

Monitor function

- Setting example
- Address number (slave address): 0
- Monitor item: Present alarm
- Operating procedure

1. Send the following remote register to monitor the present alarm of the address number 0 . Monitoring of the present alarm of the address number 0 is started.

Remote register of NETC01-M2

Byte	Part	Type	Command	Input example	Description
23	Data field	Remote register	Register address	0	Address number 0
24			number	0	Address number 0
25			Command code +	$2040 \mathrm{~h}+4000 \mathrm{~h}=$	Monitor present alarm +
26			TRIG	6040h *	TRIG
27			DATA		
28					
29					
30					

* From the list of " $5-3$ Monitor command" on p.234, we can see that the command code (WRITE) of "present alarm" is 2040h. Since the command code and the command execute request (TRIG) are written with the same command in MECHATROLINK communication, write "6040h" with the code (4000h) of TRIG added.

Monitoring of the present alarm is continued while TRIG is ON.
The read value is reflected to the response area of the remote register.
Remote register of NETC01-M2

Byte	Part	Type	Command	Output example	Description

2. To end the monitor, send the following remote I/O to turn the TRIG OFF again.

Remote register of NETC01-M2

Byte	Part	Type	Command	Input example	Description
25	Data field	Remote register	Command code + TRIG	0	Turn TRIG OFF
26					

memo In MECHATROLINK-II communication, only one type of data can be monitored for one driver because of the performance of the network converter. To monitor drivers with multiple axes, change the address number before executing monitoring.

3-3 I/O field map for the NETC01-M2

Update of remote I/O data (asynchronous) is executed by the "DATA_RWA" command (50h). When the remote I/O occupied size is 16-bit mode and the number of transmission bytes is 32 bytes (initial value), I/O field map will be as follows. See the NETC01-M2 USER MANUAL for other I/O field map.

3-4 I/O field map for the NETC01-M3

Update of remote I/O data (asynchronous) is executed by "DATA_RWA" command (20h). When the remote I/O occupied size is 16 -bit mode and the number of transmission bytes is 32 bytes (initial value), I/O field map will be as follows. See the NETC01-M3 USER MANUAL for other I/O field map.

Byte	Type	Command	Response
0	-	DATA_RWA (20h)	DATA_RWA (20h)
1	-	WDT	RWDT
2	-	CMD_CTRL	CMD_STAT

3-5 Communication format

Communication formats to the driver and network converter are as follows.

- Remote I/O input

For details on remote I/O \Rightarrow p. 229

- 8 axes connection mode [16 bit mode]
[]: Initial value

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15 [RVS]	NET-IN14 [FWD]	$\begin{gathered} \text { NET-IN13 } \\ \text { [-JOG] } \end{gathered}$	$\begin{gathered} \text { NET-IN12 } \\ \text { [+JOG] } \end{gathered}$	NET-IN11 [SSTART]	NET-IN10 [MS2]	NET-IN9 [MS1]	NET-IN8 [MSO]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7 [ALM-RST]	NET-IN6 [FREE]	NET-IN5 [STOP]	NET-IN4 [HOME]	NET-IN3 [START]	NET-IN2 [M2]	NET-IN1 [M1]	NET-INO [M0]

- 16 axes connection mode [8 bit mode]
[]: Initial value

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
[ALM-RST $]$	[FREE $]$	$[$ STOP $]$	$[H O M E]$	$[S T A R T]$	$[M 2]$	$[M 1]$	$[M 0]$

■ Remote I/O output
For details on remote I/O \Rightarrow p. 229

- 8 axes connection mode [16 bit mode]
[]: Initial value

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-OUT15 [STEPOUT]	NET-OUT14 [Not used]	NET-OUT13 [MOVE]	NET-OUT12 [TIM]	NET-OUT11 [AREA3]	NET-OUT10 [AREA2]	NET-OUT9 [AREA1]	NET-OUT8 [S-BSY]
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-OUT7	NET-OUT6	NET-OUT5	NET-OUT4	NET-OUT3	NET-OUT2	NET-OUT1	NET-OUT0
[ALM]	[WNG]	[READY]	[HOME-P]	[START_R]	[M2_R]	[M1_R]	[M0_R]

- 16 axes connection mode [8 bit mode]
[]: Initial value

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-OUT7	NET-OUT6	NET-OUT5	NET-OUT4	NET-OUT3	NET-OUT2	NET-OUT1	NET-OUT0
[ALM]	$[$ WNG $]$	[READY]	$[$ HOME-P]	$[$ START_R $]$	$\left[M 2 _R\right]$	$\left[M 1 _R\right]$	$\left[M 0 _R\right]$

Remote register input

- Command [NETC01-M2 (NETC01-M3) to driver]

The blanks are for command codes.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
-	TRIG						
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0

- Explanation

Name	Description	Setting range
Command code	The command sets the command code for "write and read of parameters," "monitor"and "maintenance."	-
TRIG	This is the trigger for handshake to execute the command code. When turning the TRIG from 0 to 1, the command code and DATA will be executed.	0: No motion 1: Execution

Remote register output

- Response [Driver to NETC01-M2 (NETC01-M3)]

The blanks are for command codes.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
STATUS	TRIG_R						
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0

- Explanation

Name	Description	Setting range
TRIG_R	This is the trigger for handshake indicating the completion of the command code. When the command code is completed, the TRIG_R will be turned from 0 to 1.	0: Not processing $1:$ Execution completion
STATUS	This indicates the result that executed the command code.	0: Normal operation $1:$ Error

4 Details of remote I/O

This is common to all network converters.

4-1 Input signals to the driver

The following input signals can be assigned to the NET-IN0 to NET-IN15 of remote I/O using the parameter. See the following table for the assignments of the NET-IN0 to NET-IN15.
For details on parameter, refer to "5-5 User parameters" on p.237.
[]: Initial value

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-IN15 $[$ RVS $]$	NET-IN14 $[F W D]$	NET-IN13 $[-J O G]$	NET-IN12 $[+$ JOG $]$	NET-IN11 $[$ SSTART $]$	NET-IN10 $[M S 2]$	NET-IN9 $[M S 1]$	NET-IN8 $[M S 0]$
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-IN7	NET-IN6	NET-IN5	NET-IN4	NET-IN3	NET-IN2	NET-IN1	NET-IN0
$[$ ALM-RST $]$	$[$ FREE $]$	$[S T O P]$	$[$ HOME $]$	$[$ [START $]$	$[M 2]$	$[M 1]$	$[M 0]$

Signal name	Function	Setting range
Not used	Set when the input terminal is not used.	-
FWD	Continuous operation in the positive direction.	0: Deceleration stop
RVS	Continuous operation in the negative direction.	1: Operation
HOME	Return-to-home operation.	
SSTART	Positioning operation.	

memo - Do not assign the same input signal to multiple input terminals. When the same input signal is assigned to multiple input terminals, the function will be executed if any of the terminals becomes active.

- When the HMI input is not assigned to the input terminal, this input will always be set to ON (1). When assigning to both direct I/O and network I/O, the function will be executed when both of them are set to $\mathrm{ON}(1)$.

4-2 Output signals from the driver

The following output signals can be assigned to the NET-OUT0 to NET-OUT15 of remote I/O using the parameter. See the following table for the assignments of the NET-OUT0 to NET-OUT15.
For details on parameter, refer to "5-5 User parameters" on p.237.
[]: Initial value

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
NET-OUT15 [STEPOUT]	NET-OUT14 [Not used]	NET-OUT13 [MOVE]	NET-OUT12 [TIM]	NET-OUT11 [AREA3]	NET-OUT10 [AREA2]	NET-OUT9 [AREA1]	$\begin{aligned} & \text { NET-OUT8 } \\ & {[S-B S Y]} \end{aligned}$
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
NET-OUT7 [ALM]	NET-OUT6 [WNG]	NET-OUT5 [READY]	NET-OUT4 [HOME-P]	NET-OUT3 [START_R]	NET-OUT2 [M2_R]	NET-OUT1 [M1_R]	NET-OUTO [MO_R]

Signal name	Function	Setting range
Not used	Set when the output terminal is not used.	-
FWD_R	Output in response to the FWD.	$\begin{aligned} & 0: \text { OFF } \\ & \text { 1: ON } \end{aligned}$
RVS_R	Output in response to the RVS.	
HOME_R	Output in response to the HOME.	
START_R	Output in response to the START	
SSTART_R	Output in response to the SSTART.	
+JOG_R	Output in response to the +JOG.	
-JOG_R	Output in response to the -JOG.	
MSO_R to MS5_R	Output in response to the MS0 to MS5.	
FREE_R	Output in response to the FREE.	
AWO_R	Output in response to the AWO.	
STOP_R	Output in response to the STOP.	
R0 to R15	Output the status of the general signal R0 to R15.	
M0_R to M5_R	Output in response to the M0 to M5.	
+LS_R	Output in response to the +LS.	
-LS_R	Output in response to the -LS.	
HOMES_R	Output in response to the HOMES.	
SLIT_R	Output in response to the SLIT.	
ALM	Output the alarm status (normally open).	0: Alarm not present 1: Alarm present
WNG	Output the warning status.	0 : Warning not present 1:Warning present
READY	Output when the driver is ready.	0: Not ready 1: Ready for operation
MOVE	Output when the motor operates.	0 : Motor stopped 1: Motor operating
HOME-P	Output when the motor is in home position.	0 : Not home position 1: Home position
TIM	Output once every 7.2° rotation of the motor output shaft.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
AREA1 to AREA3	Output when the motor is within the area.	0: Outside area 1: Inside area
S-BSY	Output when the motor is in internal processing state.	0 : No internal processing 1: During internal processing
MPS	Output the ON-OFF state of the main power supply.	0: Main power-OFF 1: Main power-ON
STEPOUT	Output when the deviation error occurs.	0: No deviation error 1: During deviation error

Signal name	Function	Setting range
OH	Output when the overheat warning generates.	0: No overheat warning $1:$ During overheat warning
ZSG	Output when the ENC-Z input signal is input from the encoder.	0: ENC-Z input not used $1:$ ENC-Z input used
MBC	Output the electromagnetic brake status.	0: Electromagnetic brake hold $1:$ Electromagnetic brake release

5 Command code list

This is common to all network converters.

5-1 Group function

The driver has a group function. Multiple slaves are made into a group and a operation command is sent to all slaves in the group at once.

Group composition

A group consists of one parent slave and child slaves.

- Group address

To perform a group send, set a group address to the child slaves to be included in the group.
The child slaves to which the group address has been set can receive a command sent to the parent slave. The operation command will be sent to the child slaves in the same group by sending it to the parent slave.

- Parent slave

No special setting is required on the parent slave to perform a group send. The address of the parent slave becomes the group address.

- Child slave

Use a "group" (1018h) to set a group address to each child slave.
memo Only remote I/O input can execute the group function. Read from commands and parameters or write to commands and parameters cannot be executed.

- Group setting

The group setting is not saved in the non-volatile memory even when the maintenance command "batch NV memory write" executes.

Command code		Name	Description	

* Set in the 0 to 11 range when using the NETC01-CC, and set in the 0 to 15 range when using other network converter.

Example for setting of the group function

Set as follows when making a group by setting the driver of address number 0 to the parent slave and by setting the driver of address number 1 and 2 to the child slaves.

This is a timing chart for when assigning the START signal to NET-IN3 (remote I/O) of the driver in the group.

When inputting a command to the parent slave with remote I/O, the motors of the parent slave and child slaves will operate. The motors will not operate if the command is input to the child slaves.

5-2 Maintenance command

These commands are used to clear the alarm records and warning records. They are also used to execute the batch processing for the non-volatile memory.

Command code	Name	Description	Setting range
$\begin{aligned} & 12480 \\ & (30 \mathrm{COh}) \end{aligned}$	Reset alarm	Resets the alarms that are present. Some alarms cannot be reset with the "reset alarm."	0 : No operation 1: Execute
$\begin{gathered} 12482 \\ (30 C 2 h) \end{gathered}$	Clear alarm records	Clears alarm records.	
$\begin{gathered} 12483 \\ (30 C 3 h) \end{gathered}$	Clear warning records	Clears warning records.	
$\begin{gathered} 12484 \\ (30 \mathrm{C} 4 \mathrm{~h}) \end{gathered}$	Clear communication error records	Clears the communication error records.	
$\begin{gathered} 12485 \\ (30 C 5 h) \end{gathered}$	P-PRESET execute	Presets the command position and feedback position.	
$\begin{gathered} 12486 \\ (30 \mathrm{C} 6 \mathrm{~h}) \end{gathered}$	Configuration	Executes the parameter recalculation and the setup.	
$\begin{gathered} 12487 \\ (30 C 7 \mathrm{~h}) \end{gathered}$	All data initialization	Resets the parameters saved in the non-volatile memory to the initial value. Note that "communication parity", "communication stop bit" and "transmission waiting time" parameters are not initialized.	
$\begin{gathered} 12488 \\ (30 \mathrm{C} 8 \mathrm{~h}) \end{gathered}$	Batch NV memory read	Reads the parameters saved in the non-volatile memory, to the RAM. All operation data and parameters previously saved in the RAM are overwritten.	
$\begin{gathered} 12489 \\ (30 C 9 h) \end{gathered}$	Batch NV memory write	Writes the parameters saved in the RAM to the nonvolatile memory.	
$\begin{gathered} 12490 \\ (30 \mathrm{CAh}) \end{gathered}$	Encoder counter preset	Update the encoder counter to the value of the "encoder preset value" parameter.	

memo The non-volatile memory can be rewritten approximately 100,000 times.

5-3 Monitor command

These commands are used to monitor the driver condition.

Command code	Name	Description
$\begin{gathered} \hline 8256 \\ (2040 \mathrm{~h}) \end{gathered}$	Present alarm	Monitors the present alarm code.
$\begin{gathered} \hline 8257 \\ (2041 \mathrm{~h}) \end{gathered}$	Alarm record 1	Monitors the alarm records.
$\begin{gathered} \hline 8258 \\ (2042 h) \end{gathered}$	Alarm record 2	
$\begin{gathered} \hline 8259 \\ (2043 \mathrm{~h}) \end{gathered}$	Alarm record 3	
$\begin{gathered} 8260 \\ (2044 \mathrm{~h}) \\ \hline \end{gathered}$	Alarm record 4	
$\begin{gathered} \hline 8261 \\ (2045 \mathrm{~h}) \\ \hline \end{gathered}$	Alarm record 5	
$\begin{gathered} 8262 \\ (2046 \mathrm{~h}) \end{gathered}$	Alarm record 6	
$\begin{gathered} 8263 \\ (2047 \mathrm{~h}) \end{gathered}$	Alarm record 7	
$\begin{gathered} \hline 8264 \\ (2048 \mathrm{~h}) \\ \hline \end{gathered}$	Alarm record 8	
$\begin{gathered} \hline 8265 \\ (2049 \mathrm{~h}) \end{gathered}$	Alarm record 9	
$\begin{gathered} \hline 8266 \\ (204 \mathrm{Ah}) \end{gathered}$	Alarm record 10	
$\begin{gathered} 8267 \\ (204 \mathrm{Bh}) \end{gathered}$	Present warning	Monitors the present warning code.
$\begin{gathered} 8268 \\ (204 \mathrm{Ch}) \end{gathered}$	Warning record 1	Monitors the warning records.
$\begin{gathered} 8269 \\ (204 \mathrm{Dh}) \end{gathered}$	Warning record 2	
$\begin{gathered} \hline 8270 \\ \text { (204Eh) } \end{gathered}$	Warning record 3	
$\begin{gathered} 8271 \\ \text { (204Fh) } \\ \hline \end{gathered}$	Warning record 4	
$\begin{gathered} 8272 \\ \text { (2050h) } \end{gathered}$	Warning record 5	
$\begin{gathered} \hline 8273 \\ (2051 \mathrm{~h}) \\ \hline \end{gathered}$	Warning record 6	
$\begin{gathered} 8274 \\ (2052 \mathrm{~h}) \\ \hline \end{gathered}$	Warning record 7	
$\begin{gathered} 8275 \\ (2053 \mathrm{~h}) \\ \hline \end{gathered}$	Warning record 8	
$\begin{gathered} 8276 \\ (2054 \mathrm{~h}) \end{gathered}$	Warning record 9	
$\begin{gathered} \hline 8277 \\ (2055 \mathrm{~h}) \\ \hline \end{gathered}$	Warning record 10	
$\begin{gathered} \hline 8278 \\ (2056 \mathrm{~h}) \\ \hline \end{gathered}$	Present communication error code	Monitors the last received communication error code.
$\begin{gathered} 8279 \\ (2057 \mathrm{~h}) \\ \hline \end{gathered}$	Communication error code record 1	Monitors the communication error records that have occurred in the past.
$\begin{gathered} 8280 \\ (2058 \mathrm{~h}) \end{gathered}$	Communication error code record 2	
$\begin{gathered} 8281 \\ (2059 \mathrm{~h}) \\ \hline \end{gathered}$	Communication error code record 3	
$\begin{gathered} 8282 \\ (205 \mathrm{Ah}) \\ \hline \end{gathered}$	Communication error code record 4	

Command code	Name	Description
$\begin{gathered} 8283 \\ (205 \mathrm{Bh}) \\ \hline \end{gathered}$	Communication error code record 5	Monitors the communication error records that have occurred in the past.
$\begin{gathered} 8284 \\ (205 \mathrm{Ch}) \end{gathered}$	Communication error code record 6	
$\begin{gathered} 8285 \\ (205 \mathrm{Dh}) \end{gathered}$	Communication error code record 7	
$\begin{gathered} 8286 \\ \text { (205Eh) } \\ \hline \end{gathered}$	Communication error code record 8	
$\begin{gathered} \hline 8287 \\ \text { (205Fh) } \\ \hline \end{gathered}$	Communication error code record 9	
$\begin{gathered} 8288 \\ (2060 \mathrm{~h}) \\ \hline \end{gathered}$	Communication error code record 10	
$\begin{gathered} \hline 8289 \\ (2061 \mathrm{~h}) \\ \hline \end{gathered}$	Present selected data No.	Monitors the operation data No. currently selected.
$\begin{gathered} 8290 \\ (2062 \mathrm{~h}) \end{gathered}$	Present operation data No.	Monitors the operation data No. corresponding to the data used in the current positioning operation. This address is used in linked-motion operation and sequential positioning operation. While the motor is stopped, the last used operation data number is indicated. " -1 " is shown until positioning operation is performed after turning on the power.
$\begin{gathered} 8291 \\ (2063 \mathrm{~h}) \\ \hline \end{gathered}$	Command position	Monitors the command position.
$\begin{gathered} 8292 \\ (2064 \mathrm{~h}) \end{gathered}$	Command speed (r/min)	Monitors the command speed. (r/min)
$\begin{gathered} 8293 \\ (2065 \mathrm{~h}) \end{gathered}$	Command speed (Hz)	Monitors the command speed. (Hz)
$\begin{gathered} \hline 8294 \\ (2066 \mathrm{~h}) \\ \hline \end{gathered}$	Feedback position *	Monitors the feedback position.
$\begin{gathered} 8297 \\ (2069 \mathrm{~h}) \end{gathered}$	Remaining dwell time	Monitors how much of the dwell time used in the linkedmotion operation 2 remains.
$\begin{gathered} 8298 \\ (206 \mathrm{Ah}) \end{gathered}$	Direct I/O and electromagnetic brake status	Monitors the each direct I/O signal and electromagnetic brake status. See the following table for details.
$\begin{gathered} 8320 \\ (2080 \mathrm{~h}) \\ \hline \end{gathered}$	Encoder counter *	Monitors the encoder counter.

5-4 Operation data

Up to 64 operation data can be set (data Nos. 0 to 63).
When the operation data is changed, a recalculation and setup will be performed after the operation is stopped and the changed value will be set.

Command code		Name	Setting range	Initial value
Read	Write			
$\begin{gathered} 512 \\ (0200 \mathrm{~h}) \\ \text { to } \\ 575 \\ (023 \mathrm{Fh}) \end{gathered}$	$\begin{gathered} 4608 \\ (1200 \mathrm{~h}) \\ \text { to } \\ 4671 \\ (123 \mathrm{Fh}) \end{gathered}$	Position No. 0 to Position No. 63	$-8,388,608$ to $+8,388,607$ step	0
$\begin{gathered} 576 \\ (0240 \mathrm{~h}) \\ \text { to } \\ 639 \\ (027 \mathrm{Fh}) \end{gathered}$	$\begin{gathered} 4672 \\ (1240 \mathrm{~h}) \\ \text { to } \\ 4735 \\ \text { (127Fh) } \end{gathered}$	Operating speed No. 0 to Operating speed No. 63	0 to 1,000,000 Hz	1,000
$\begin{gathered} 640 \\ (0280 \mathrm{~h}) \\ \text { to } \\ 703 \\ (02 \mathrm{BFh}) \end{gathered}$	$\begin{gathered} 4736 \\ (1280 \mathrm{~h}) \\ \text { to } \\ 4799 \\ (12 \mathrm{BFh}) \end{gathered}$	Operation mode No. 0 to Operation mode No. 63	0 : Incremental (INC) 1: Absolute (ABS)	0
$\begin{gathered} 704 \\ (02 \mathrm{COh}) \\ \text { to } \\ 767 \\ \text { (02FFh) } \end{gathered}$	$\begin{gathered} 4800 \\ (12 \mathrm{COh}) \\ \text { to } \\ 4863 \\ (12 \mathrm{FFh}) \end{gathered}$	Operation function No. 0 to Operation function No. 63	0 : Single-motion 1: Linked-motion 2: Linked-motion2	0
$\begin{gathered} \hline 768 \\ (0300 \mathrm{~h}) \\ \text { to } \\ 831 \\ (033 \mathrm{Fh}) \\ \hline \end{gathered}$	4864 (1300h) to 4927 (133Fh)	Acceleration No. 0 to Acceleration No. 63	$\begin{aligned} & 1 \text { to } 1,000,000(1=0.001 \mathrm{~ms} / \mathrm{kHz} \\ & \text { or } 1=0.001 \mathrm{~s}) * 1 * 2 \end{aligned}$	30,000
$\begin{gathered} 832 \\ (0340 \mathrm{~h}) \\ \text { to } \\ 895 \\ (037 \mathrm{Fh}) \end{gathered}$	$\begin{gathered} 4928 \\ (1340 \mathrm{~h}) \\ \text { to } \\ 4991 \\ (137 \mathrm{Fh}) \end{gathered}$	Deceleration No. 0 to Deceleration No. 63		
$\begin{gathered} 960 \\ \text { (03COh) } \\ \text { to } \\ 1023 \\ (03 \mathrm{FFh}) \end{gathered}$	$\begin{gathered} 5056 \\ (13 \mathrm{COh}) \\ \text { to } \\ 5119 \\ (13 \mathrm{FFh}) \end{gathered}$	Sequential positioning No. 0 to Sequential positioning No. 63	0: Disable 1: Enable	0
$\begin{gathered} 1024 \\ (0400 \mathrm{~h}) \\ \text { to } \\ 1087 \\ (043 \mathrm{Fh}) \end{gathered}$	$\begin{gathered} 5120 \\ (1400 \mathrm{~h}) \\ \text { to } \\ 5183 \\ (143 \mathrm{Fh}) \end{gathered}$	Dwell time No. 0 to Dwell time No. 63	0 to 50,000 ($1=0.001 \mathrm{~s}$)	0

*1 This item is effective when the "acceleration/deceleration type" parameter is set to "separate". If this parameter is set to "common", the values of the "common acceleration" and "common deceleration" parameters will be used (initial value: separate).
*2 Acceleration/deceleration rate (ms/kHz) or acceleration/deceleration time (s) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

5-5 User parameters

Parameters are stored in the RAM or non-volatile memory. The data saved in the RAM are erased once the 24 VDC power supply is shut off, but the parameters in the non-volatile memory are remained to store even if the 24 VDC power supply is shut off.
When the 24 VDC power supply is turned on, the parameters stored in the non-volatile memory will be sent to the RAM, and the recalculation and setup for the parameters will be executed in the RAM.
Parameters set via industrial network are stored in the RAM. To save the parameters stored in the RAM to the nonvolatile memory, execute the "Write batch NV memory" of the maintenance command.
The parameters having set in the MEXE02 is saved in the non-volatile memory when the data writing is performed.
When a parameter is changed, the timing to update the new value varies depending on the parameter. For details about timing to update, check on "Notation rules."
memo

- Parameters set via industrial network are stored in the RAM. For parameters required for turning on the 24 VDC power supply again, be sure to save them in the non-volatile memory before turning off the power.
- The non-volatile memory can be rewritten approximately 100,000 times.

Notation rules

In this part, each update timing is represented in an alphabet.

Notation	Description
A	Recalculation and setup are immediately executed when the parameter is written.
B	Recalculation and setup are executed when the operation is stopped.
C	Recalculation and setup are executed after Configuration is executed or the 24 VDC power supply is turned on again.
D	Recalculation and setup are executed after the 24 VDC power supply is turned on again.

I/O parameter

Command code		Name	Setting range	Initial value	Effective (p.237)
Read	Write				
$\begin{gathered} 256 \\ (0100 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4352 \\ (1100 \mathrm{~h}) \end{gathered}$	STOP input action	0: Immediate stop 1: Deceleration stop 2: Immediate stop + current OFF 3: Deceleration stop + current OFF	1	A
$\begin{gathered} 257 \\ (0101 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4353 \\ (1101 \mathrm{~h}) \end{gathered}$	Hardware overtravel	0: Disable 1: Enable	1	
$\begin{gathered} 258 \\ (0102 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4354 \\ (1102 h) \end{gathered}$	Overtravel action	0: Immediate stop 1: Deceleration stop	0	
$\begin{gathered} 261 \\ (0105 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4357 \\ (1105 \mathrm{~h}) \end{gathered}$	AREA1 positive direction position	$-8,388,608$ to 8,388,607 step	0	
$\begin{gathered} 262 \\ (0106 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4358 \\ (1106 \mathrm{~h}) \end{gathered}$	AREA1 negative direction position			
$\begin{gathered} 263 \\ (0107 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4359 \\ (1107 \mathrm{~h}) \end{gathered}$	AREA2 positive direction position			
$\begin{gathered} 264 \\ (0108 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4360 \\ (1108 \mathrm{~h}) \end{gathered}$	AREA2 negative direction position			
$\begin{gathered} 265 \\ (0109 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4361 \\ (1109 \mathrm{~h}) \end{gathered}$	AREA3 positive direction position			
$\begin{gathered} 266 \\ (010 \mathrm{Ah}) \end{gathered}$	$\begin{gathered} 4362 \\ (110 \mathrm{Ah}) \end{gathered}$	AREA3 negative direction position			
$\begin{gathered} 267 \\ (010 \mathrm{Bh}) \end{gathered}$	$\begin{gathered} 4363 \\ (110 B h) \end{gathered}$	Minimum ON time for MOVE output	0 to 255 ms	0	

Command code		Name	Setting range	Initial value	Effective(p.237)
Read	Write				
$\begin{gathered} 268 \\ (010 \mathrm{Ch}) \end{gathered}$	$\begin{gathered} 4364 \\ (110 \mathrm{Ch}) \end{gathered}$	\pm LS logic level	0 : Normally open 1: Normally closed	0	C
$\begin{gathered} 269 \\ (010 \mathrm{Dh}) \end{gathered}$	$\begin{gathered} 4365 \\ \text { (110Dh) } \end{gathered}$	HOMES logic level		0	
$\begin{gathered} 270 \\ (010 \mathrm{Eh}) \end{gathered}$	$\begin{gathered} \hline 4366 \\ \text { (110Eh) } \end{gathered}$	SLIT logic level		0	
$\begin{gathered} 2048 \\ (0800 h) \end{gathered}$	$\begin{gathered} 6144 \\ (1800 h) \end{gathered}$	MS0 operation No. selection	0 to 63	0	B
$\begin{gathered} 2049 \\ (0801 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6145 \\ (1801 \mathrm{~h}) \end{gathered}$	MS1 operation No. selection		1	
$\begin{gathered} 2050 \\ (0802 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6146 \\ (1802 \mathrm{~h}) \\ \hline \end{gathered}$	MS2 operation No. selection		2	
$\begin{gathered} 2051 \\ (0803 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6147 \\ (1803 \mathrm{~h}) \end{gathered}$	MS3 operation No. selection		3	
$\begin{gathered} 2052 \\ (0804 h) \end{gathered}$	$\begin{gathered} 6148 \\ (1804 \mathrm{~h}) \end{gathered}$	MS4 operation No. selection		4	
$\begin{gathered} 2053 \\ (0805 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6149 \\ (1805 h) \end{gathered}$	MS5 operation No. selection		5	
$\begin{gathered} 2054 \\ (0806 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6150 \\ (1806 h) \end{gathered}$	HOME-P output function selection	0 : Home output 1: Return-to-home complete output	0	A

- Motor parameter

Command code		Name	Setting range	Initial value	Effective (p.237)
Read	Write				
$\begin{gathered} 288 \\ (0120 h) \end{gathered}$	$\begin{gathered} 4384 \\ (1120 \mathrm{~h}) \end{gathered}$	RUN current	0 to 1,000 ($1=0.1 \%$)	1,000	
$\begin{gathered} 289 \\ (0121 \mathrm{~h}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4385 \\ (1121 \mathrm{~h}) \end{gathered}$	STOP current	0 to 600 (1=0.1\%)	500	
$\begin{gathered} 293 \\ (0125 h) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4389 \\ (1125 \mathrm{~h}) \\ \hline \end{gathered}$	Speed filter	0 to 200 ms	1	B
$\begin{gathered} 294 \\ (0126 h) \end{gathered}$	$\begin{gathered} 4390 \\ (1126 h) \end{gathered}$	Moving average time	0 to 200 ms	1	
$\begin{gathered} 2064 \\ (0810 h) \end{gathered}$	$\begin{gathered} 6160 \\ (1810 h) \end{gathered}$	Filter selection	0 : Speed filter 1: Moving average filter	0	C

- Operation parameter

Command code		Name	Setting range	Initial value	Effective(p.237)
Read	Write				
$\begin{gathered} 320 \\ (0140 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4416 \\ (1140 h) \end{gathered}$	Common acceleration	$\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) * 1 * 2 \end{aligned}$	30,000	
$\begin{gathered} 321 \\ (0141 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4417 \\ (1141 h) \end{gathered}$	Common deceleration	$\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) * 1 * 2 \end{aligned}$	30,000	
$\begin{gathered} 322 \\ (0142 h) \end{gathered}$	$\begin{gathered} 4418 \\ (1142 h) \end{gathered}$	Starting speed	0 to 1,000,000 Hz	100	
$\begin{gathered} 323 \\ (0143 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4419 \\ (1143 h) \end{gathered}$	JOG operating speed	1 to 1,000,000 Hz	1,000	B
$\begin{gathered} 324 \\ (0144 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4420 \\ (1144 h) \end{gathered}$	JOG acceleration/ deceleration rate	$\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) * 2 \end{aligned}$	30,000	
$\begin{gathered} 325 \\ (0145 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4421 \\ (1145 h) \end{gathered}$	JOG starting speed	0 to 1,000,000 Hz	100	
$\begin{gathered} 326 \\ (0146 h) \end{gathered}$	$\begin{gathered} 4422 \\ (1146 h) \end{gathered}$	Acceleration/deceleration type	0: Common 1: Separate	1	

| Command code | | Name | | Setting range | Initial value |
| :---: | :---: | :--- | :--- | :---: | :---: | | Effective |
| :---: |
| $(\mathrm{p} .237)$ |

*1 This item is effective when the "acceleration/deceleration type" parameter is set to "common." (initial value: separate).
*2 Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

Home operation parameter

Command code		Name	Setting range	Initial value	Effective (p.237)
Read	Write				
$\begin{gathered} 352 \\ (0160 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4448 \\ (1160 \mathrm{~h}) \end{gathered}$	Home-seeking mode	0: 2-sensor mode 1:3-sensor mode	1	
$\begin{gathered} 353 \\ (0161 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4449 \\ (1161 \mathrm{~h}) \end{gathered}$	Operating speed of homeseeking	1 to $1,000,000 \mathrm{~Hz}$	1,000	
$\begin{gathered} 354 \\ (0162 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4450 \\ (1162 \mathrm{~h}) \end{gathered}$	Acceleration/deceleration of home-seeking	$\begin{aligned} & 1 \text { to } 1,000,000 \\ & (1=0.001 \mathrm{~ms} / \mathrm{kHz} \text { or } 1=0.001 \mathrm{~s}) \text { * } \end{aligned}$	30,000	
$\begin{gathered} 355 \\ (0163 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4451 \\ (1163 \mathrm{~h}) \end{gathered}$	Starting speed of homeseeking	1 to $1,000,000 \mathrm{~Hz}$	100	
$\begin{gathered} \hline 356 \\ (0164 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4452 \\ (1164 \mathrm{~h}) \end{gathered}$	Position offset of homeseeking	$-8,388,608$ to 8,388,607 step	0	B
$\begin{gathered} 357 \\ (0165 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4453 \\ (1165 \mathrm{~h}) \end{gathered}$	Starting direction of homeseeking	0: Negative direction 1: Positive direction	1	
$\begin{gathered} 358 \\ (0166 h) \end{gathered}$	$\begin{gathered} 4454 \\ (1166 h) \end{gathered}$	SLIT detection with homeseeking	0: Disable 1: Enable	0	
$\begin{gathered} 359 \\ (0167 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4455 \\ (1167 \mathrm{~h}) \end{gathered}$	TIM signal detection with home-seeking	0: Disable 1:TIM signal enable 2: ZSG signal enable	0	
$\begin{gathered} 2096 \\ (0830 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6192 \\ (1830 h) \end{gathered}$	Backward steps in 2-sensor mode home-seeking	0 to 32,767 step	200	

* Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

Alarm/warning parameter

| Command code | | | Name | Setting range | Initial value |
| :---: | :---: | :--- | :--- | :---: | :---: | \(\left.\begin{array}{c}Effective

(\mathrm{p} .237)\end{array}\right]\)

- Coordinates parameter

Command code		Name	Setting range	Initial value	Effective(p.237)
Read	Write				
$\begin{gathered} 448 \\ (01 \mathrm{COh}) \end{gathered}$	$\begin{gathered} 4544 \\ (11 \mathrm{COh}) \end{gathered}$	Electronic gear A	1 to 65,535	1	
$\begin{gathered} 449 \\ (01 \mathrm{Clh}) \end{gathered}$	$\begin{gathered} 4545 \\ (11 \mathrm{C} 1 \mathrm{~h}) \end{gathered}$	Electronic gear B	1 to 65,535	1	C
$\begin{gathered} 450 \\ (01 \mathrm{C} 2 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4546 \\ (11 \mathrm{C} 2 \mathrm{~h}) \end{gathered}$	Motor rotation direction	0 : Positive direction=CCW 1: Positive direction=CW	1	
$\begin{gathered} 451 \\ (01 \mathrm{C} 3 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4547 \\ (11 \mathrm{C} 3 \mathrm{~h}) \end{gathered}$	Software overtravel	0 : Disable 1: Enable	1	
$\begin{gathered} 452 \\ (01 \mathrm{C} 4 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 4548 \\ (11 C 4 h) \end{gathered}$	Positive software limit	-8,388,608 to 8,388,607 step	8,388,607	
$\begin{gathered} 453 \\ (01 \mathrm{C} 5 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4549 \\ (11 \mathrm{C} 5 \mathrm{~h}) \end{gathered}$	Negative software limit	$-8,388,608$ to 8,388,607 step	-8,388,608	
$\begin{gathered} 454 \\ (01 \mathrm{C} 6 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4550 \\ (11 \mathrm{C} 6 \mathrm{~h}) \end{gathered}$	Preset position	$-8,388,608$ to 8,388,607 step	0	
$\begin{gathered} 455 \\ (01 \mathrm{C} 7 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4551 \\ (11 \mathrm{C} 7 \mathrm{~h}) \end{gathered}$	Wrap setting	0: Disable 1: Enable	0	
$\begin{gathered} 456 \\ (01 \mathrm{C} 8 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 4552 \\ \text { (11C8h) } \end{gathered}$	Wrap setting range	1 to 8,388,607 step	500	C
$\begin{gathered} 2144 \\ (0860 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6240 \\ (1860 \mathrm{~h}) \end{gathered}$	Encoder resolution	100 to 10,000 P/R	500	
$\begin{gathered} 2145 \\ (0861 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6241 \\ (1861 \mathrm{~h}) \end{gathered}$	Encoder preset value	$-8,388,608$ to 8,388,607 step	0	A
$\begin{gathered} 2146 \\ (0862 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6242 \\ (1862 \mathrm{~h}) \end{gathered}$	Stepout detection	0: Disable 1: Enable	0	C
$\begin{gathered} \hline 2147 \\ (0863 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 6243 \\ (1863 \mathrm{~h}) \end{gathered}$	Stepout detection band	1 to $3,600\left(1=0.1^{\circ}\right)$	72	
$\begin{gathered} 2148 \\ (0864 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6244 \\ (1864 \mathrm{~h}) \end{gathered}$	Stepout detection action	0 : No operation 1:Warning 2: Alarm	0	A

Common parameter

| Command code | | Name | | Setting range | Initial value |
| :---: | :---: | :--- | :--- | :---: | :---: | \(\left.\begin{array}{c}Effective

(\mathrm{p} .237)\end{array}\right)\)

Communication parameter

$\left.$| Command code | | Name | | Setting range | Initial value |
| :---: | :---: | :--- | :--- | :---: | :---: | | Effective |
| :---: |
| $(\mathrm{p} .237)$ | \right\rvert\,

I/O function parameter

[^14]- Setting range for IN input function selection

0: Not used	7: -JOG	16: FREE	33: R1	40: R8	47: R15
1: FWD	8: MS0	17: AWO	34: R2	41: R9	48: M0
2: RVS	9: MS1	18: STOP	35: R3	42: R10	49: M1
3: HOME	10: MS2	24: ALM-RST	36: R4	43: R11	50: M2
4: START	11: MS3	25: P-PRESET	37: R5	44: R12	51: M3
5: SSTART	12: MS4	27: HMI	38: R6	45: R13	52: M4
6: +JOG	13: MS5	32: R0	39: R7	46: R14	53: M5

- Setting range for OUT output function selection

0: Not used	10: MS2_R	35: R3	45: R13	61:_LS_R	74: AREA2
1: FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	75: AREA3
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	80: S-BSY
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	82: MPS
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	83: STEPOUT
5: SSTART_R	17: AWO_R	40: R8	50: M2_R	67: READY	84: OH
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	85: ZSG
7: -JOG_R	32: R0	42: R10	52: M4_R	70: HOME-P	86: MBC
8: MS0_R	33: R1	43: R11	53: M5_R	72: TIM	
9: MS1_R	34: R2	44: R12	60:+LS_R	73: AREA1	

■ I/O function [RS-485] parameter

Command code		Name	Setting range	Initial value	Effective (p.237)
Read	Write				
$\begin{gathered} 2224 \\ (08 \mathrm{BOh}) \end{gathered}$	$\begin{gathered} 6320 \\ (18 \mathrm{BOh}) \end{gathered}$	NET-INO input function selection	Refer to the table on p. 243 .	48: M0	C
$\begin{gathered} 2225 \\ (08 \mathrm{~B} 1 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6321 \\ (18 \mathrm{~B} 1 \mathrm{~h}) \end{gathered}$	NET-IN1 input function selection		49: M1	
$\begin{gathered} 2226 \\ (08 B 2 h) \end{gathered}$	$\begin{gathered} 6322 \\ (18 \mathrm{~B} 2 \mathrm{~h}) \end{gathered}$	NET-IN2 input function selection		50: M2	
$\begin{gathered} 2227 \\ (08 B 3 h) \end{gathered}$	$\begin{gathered} 6323 \\ (18 \mathrm{~B} 3 \mathrm{~h}) \end{gathered}$	NET-IN3 input function selection		4: START	
$\begin{gathered} 2228 \\ (08 B 4 h) \end{gathered}$	$\begin{gathered} 6324 \\ (18 B 4 h) \end{gathered}$	NET-IN4 input function selection		3: HOME	
$\begin{gathered} 2229 \\ (08 B 5 h) \end{gathered}$	$\begin{gathered} 6325 \\ (18 B 5 h) \end{gathered}$	NET-IN5 input function selection		18: STOP	
$\begin{gathered} 2230 \\ (08 B 6 h) \end{gathered}$	$\begin{gathered} 6326 \\ (18 B 6 h) \end{gathered}$	NET-IN6 input function selection		16: FREE	
$\begin{gathered} 2231 \\ (08 B 7 h) \end{gathered}$	$\begin{gathered} 6327 \\ (18 B 7 h) \end{gathered}$	NET-IN7 input function selection		24: ALM-RST	
$\begin{gathered} 2232 \\ (08 B 8 h) \end{gathered}$	$\begin{gathered} 6328 \\ (18 B 8 h) \end{gathered}$	NET-IN8 input function selection		8: MS0	
$\begin{gathered} 2233 \\ (08 B 9 h) \end{gathered}$	$\begin{gathered} 6329 \\ (18 B 9 h) \end{gathered}$	NET-IN9 input function selection		9: MS1	
$\begin{gathered} 2234 \\ \text { (08BAh) } \end{gathered}$	$\begin{gathered} 6330 \\ (18 B A h) \end{gathered}$	NET-IN10 input function selection		10: MS2	
$\begin{gathered} 2235 \\ (08 \mathrm{BBh}) \end{gathered}$	$\begin{gathered} 6331 \\ (18 \mathrm{BBh}) \end{gathered}$	NET-IN11 input function selection		5: SSTART	
$\begin{gathered} 2236 \\ (08 \mathrm{BCh}) \end{gathered}$	$\begin{gathered} 6332 \\ (18 B C h) \end{gathered}$	NET-IN12 input function selection		6: +JOG	
$\begin{gathered} 2237 \\ \text { (08BDh) } \end{gathered}$	$\begin{gathered} 6333 \\ (18 \mathrm{BDh}) \end{gathered}$	NET-IN13 input function selection		7: -JOG	
$\begin{gathered} 2238 \\ \text { (08BEh) } \end{gathered}$	$\begin{gathered} 6334 \\ \text { (18BEh) } \end{gathered}$	NET-IN14 input function selection		1: FWD	
$\begin{gathered} 2239 \\ (08 B F h) \end{gathered}$	$\begin{gathered} 6335 \\ (18 \mathrm{BFh}) \end{gathered}$	NET-IN15 input function selection		2: RVS	

Command code		Name	Setting range	Initial value	Effective (p.237)
Read	Write				
$\begin{gathered} 2240 \\ (08 C O h) \end{gathered}$	$\begin{gathered} 6336 \\ (18 \mathrm{COh}) \end{gathered}$	NET-OUTO output function selection	Refer to table next.	48: MO_R	C
$\begin{gathered} 2241 \\ (08 \mathrm{C} 1 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6337 \\ (18 \mathrm{C} 1 \mathrm{~h}) \end{gathered}$	NET-OUT1 output function selection		49: M1_R	
$\begin{gathered} 2242 \\ (08 \mathrm{C} 2 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6338 \\ (18 C 2 h) \end{gathered}$	NET-OUT2 output function selection		50: M2_R	
$\begin{gathered} 2243 \\ (08 \mathrm{C} 3 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 6339 \\ (18 \mathrm{C} 3 \mathrm{~h}) \end{gathered}$	NET-OUT3 output function selection		4: START_R	
$\begin{gathered} 2244 \\ (08 \mathrm{C} 4 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6340 \\ (18 \mathrm{C} 4 \mathrm{~h}) \end{gathered}$	NET-OUT4 output function selection		70: HOME-P	
$\begin{gathered} 2245 \\ (08 C 5 h) \end{gathered}$	$\begin{gathered} 6341 \\ (18 \mathrm{C} 5 \mathrm{~h}) \end{gathered}$	NET-OUT5 output function selection		67: READY	
$\begin{gathered} 2246 \\ (08 \mathrm{C} 6 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6342 \\ (18 \mathrm{C} 6 \mathrm{~h}) \end{gathered}$	NET-OUT6 output function selection		66: WNG	
$\begin{gathered} 2247 \\ (08 C 7 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6343 \\ (18 \mathrm{C} 7 \mathrm{~h}) \end{gathered}$	NET-OUT7 output function selection		65: ALM	
$\begin{gathered} 2248 \\ (08 \mathrm{C} 8 \mathrm{~h}) \end{gathered}$	$\begin{gathered} 6344 \\ (18 \mathrm{C} 8 \mathrm{~h}) \end{gathered}$	NET-OUT8 output function selection		80: S-BSY	
$\begin{gathered} 2249 \\ (08 \mathrm{C} 9 \mathrm{~h}) \end{gathered}$	$\begin{gathered} \hline 6345 \\ (18 \mathrm{C} 9 \mathrm{~h}) \end{gathered}$	NET-OUT9 output function selection		73: AREA1	
$\begin{gathered} 2250 \\ \text { (08CAh) } \end{gathered}$	$\begin{gathered} 6346 \\ (18 C A h) \end{gathered}$	NET-OUT10 output function selection		74: AREA2	
$\begin{gathered} 2251 \\ (08 \mathrm{CBh}) \end{gathered}$	$\begin{gathered} \hline 6347 \\ (18 \mathrm{CBh}) \end{gathered}$	NET-OUT11 output function selection		75: AREA3	
$\begin{gathered} 2252 \\ \text { (08CCh) } \end{gathered}$	$\begin{gathered} \hline 6348 \\ (18 \mathrm{CCh}) \end{gathered}$	NET-OUT12 output function selection		72: TIM	
$\begin{gathered} 2253 \\ \text { (08CDh) } \end{gathered}$	$\begin{gathered} 6349 \\ (18 \mathrm{CDh}) \end{gathered}$	NET-OUT13 output function selection		68: MOVE	
$\begin{gathered} 2254 \\ \text { (O8CEh) } \end{gathered}$	$\begin{gathered} 6350 \\ \text { (18CEh) } \end{gathered}$	NET-OUT14 output function selection		0 : Not used	
$\begin{gathered} 2255 \\ \text { (08CFh) } \end{gathered}$	$\begin{gathered} 6351 \\ \text { (18CFh) } \end{gathered}$	NET-OUT15 output function selection		83: STEPOUT	

- Setting range for NET-IN input function selection

0: Not used	7:-JOG	16: FREE	33: R1	40: R8	47: R15
1: FWD	8: MSO	17: AWO	34: R2	41: R9	48: M0
2: RVS	9:MS1	18: STOP	35: R3	42: R10	49: M1
3: HOME	10: MS2	24: ALM-RST	36: R4	43: R11	50: M2
4: START	11: MS3	25: P-PRESET	37: R5	44: R12	51: M3
5: SSTART	12: MS4	27: HMI	38: R6	45: R13	52: M4
6: +JOG	13: MS5	32: R0	39: R7	46: R14	53: M5

- Setting range for NET-OUT output function selection

0 : Not used	10: MS2_R	35: R3	45: R13	61:-LS_R	74: AREA2
1:FWD_R	11:MS3_R	36: R4	46: R14	62: HOMES_R	75: AREA3
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	80: S-BSY
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	82: MPS
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	83: STEPOUT
5: SSTART_R	17: AWO_R	40: R8	50: M2_R	67: READY	84: OH
6: +JOG_R	18: STOP_R	41: R9	51:M3_R	68: MOVE	85: ZSG
7:-JOG_R	32: RO	42: R10	52: M4_R	70: HOME-P	86: MBC
8: MSO_R	33: R1	43: R11	53: M5_R	72: TIM	
9: MS1_R	34: R2	44: R12	60: +LS_R	73: AREA1	

7 Operation using the OPX-2A

This chapter explains the overview and operation using the OPX-2A.

Table of contents

1 Overview of the OPX-2A 246
1-1 Names and functions of parts247
1-2 How to read the display 247
1-3 OPX-2A error display 248
2 Screen transitions 250
3 Monitor mode. 256
3-1 Overview of the monitor mode 256
3-2 Monitor items 256
4 Data mode 258
4-1 Setting items 258
4-2 Setting example 260
4-3 Initialization of the selected operation data 261
4-4 Initialization of all operation data 261
5 Parameter mode 262
5-1 Setting example 263
5-2 Parameter list 264
5-3 Initializing parameters 269
6 Test mode 270
6-1 Overview of the test mode. 270
6-2 Direct I/O test 271
6-3 JOG operation 271
6-4 Data select operation 271
6-5 Return-to-home operation. 272
6-6 Presetting the position 272
6-7 Presetting the encoder counter 272
6-8 Teaching 272
7 Copy mode 273
7-1 Overview of the copy mode 273
7-2 Error of the copy mode. 273

1 Overview of the OPX－2A

The OPX－2A is a data setter that lets you set parameters and monitor the communication time．
In addition，the OPX－2A can be used to save the data of driver．There are four destinations（data banks）to save data．

The OPX－2A can be used for the following purposes：
－Set parameters for the driver．
－Monitor the communication time and status．
－Check and clear the alarm records．
－The parameters set in the driver can be saved to the OPX－2A．
－The parameters saved in the OPX－2A can be copied to another driver connected to the OPX－2A．

－Notation

In this manual，keys are denoted by symbols，such as 【 $\frac{\text { MODE }}{\text { ESC }}$ 【（SET】【个】 $\downarrow 】 〔 \longleftarrow \rightarrow$ 】．
In figures，a simplified illustration of the display and LED indicators is used，as shown next．

Edit lock function

Enable the edit lock function if you want to prevent parameters from being edited or cleared． Parameters cannot be changed or deleted while the edit lock function is enabled．

－Setting the edit lock function

In the top screen of each operation mode，press the【 $\frac{\text { MODE }}{\text { ESC }}$ 】 key for at least 5 seconds．
The display will show＂Lock＂and the edit lock function will be enabled． The＂LOCK＂LED in the LED indicator area will also be lit．

－Canceling the edit lock function
Again in the top screen of each operation mode，press the【MODE $\$ key for at least 5 seconds．
The display will show＂UnLock＂and the edit lock function will be cancelled．
UnLac $\square \square \square \square \square \square$ The＂LOCK＂LED in the LED indicator area will turn off．

1-1 Names and functions of parts

Use these buttons to change the selected item or set data and parameters.
$\uparrow \downarrow$ Use these buttons to increase or decrease the value or change the selected item.
$\leftarrow \rightarrow$ Use these buttons to navigate through each data or parameter to a desired digit.

1-2 How to read the display

The display consists of 7-segment LEDs. (The number " 5 " and alphabet " S " are the same.)

- Numbers

$$
\begin{array}{l|ll}
1 & \boldsymbol{Z} & 3 \\
\hline
\end{array}
$$

- Alphabets

- Signs

■ How to read the LED indicators
When the operation mode is changed or an alarm or warning generates, a corresponding LED will be lit.
While the motor is operating or the edit lock function is enabled, the condition is also indicated by the illumination of a corresponding LED.

1-3 OPX-2A error display

Errors displayed on the OPX-2A are explained.

Error display	Meaning	Action
tiñeaut it	A communication error occurred between the OPX-2A and driver.	- Check if the OPX-2A is connected securely. - Check if the OPX-2A cable is disconnected or damaged. - The OPX-2A or the communication part of the driver may have damaged. Contact your nearest Oriental Motor sales office.

2 Screen transitions

memo - The following limitations are present while the edit lock function is enabled.

- Data mode, parameter mode: Although they are displayed on the screen, they are unable to operate.
- Clearing the alarm and warning records, clear data, position preset, encoder counter preset, teaching, copy mode: They are not displayed on the screen.
- When the HMI input is OFF, you can operate all functions of the monitor mode, uploading and verification of the copy mode, and viewing of the parameter mode.

$\xrightarrow{\substack{\text { SET }}}$| Top screen of |
| :--- |
| the copy mode |
| caP 4 |

3 Monitor mode

3-1 Overview of the monitor mode

- Monitoring the operating status

You can monitor the motor speed, command position, encoder counter, operation data number corresponding to the current operation, operation data number currently selected, and internal temperature of the driver in real time.
memo A range capable to monitor with the OPX-2A is from -19,999,999 to 19,999,999 with up to eight digit numbers. However, only seven digit numbers can be shown on the display of the OPX-2A, so only the last seven digit numbers are shown when the monitored value is eight digit numbers, and a dot is marked on the lower right of the display.

- Display example

Actual value	$-19,999,999$	$-10,000,001$	$-10,000,000$	$10,000,000$	$10,000,001$	$19,999,999$
Display	-9999999.	-0000001.	-0000000.	0000000.	0000001.	9999999.

- Checking the alarms/warnings, clearing alarm/warning records, and resetting alarms
- If an alarm or warning generates, a corresponding alarm code or warning code will be displayed. You can check the code to identify the details of the alarm/warning.
- Up to ten most recent alarms/warnings can be displayed, starting from the latest one. You can also clear alarm/ warning records.
- You can reset the alarms currently present.
- Checking the I/O signals

You can check the ON/OFF status of each I/O signal of the driver.

3-2 Monitor items

Motor speed

You can check the motor speed (unit: Hz).
While the motor is rotating in the CCW direction," - " is shown in front of the displayed value. If the speed is indicated by an absolute value, no sign is shown to indicate the rotating direction.
You can select the value display format using the "data setter speed display" parameter.

- Command position

You can check the command position of the motor with reference to the home position. If a resolution is set, an appropriate value based on the resolution is shown as steps.

■ Encoder count
When an encoder is equipped, you can check the encoder counter value.
■ Operation number
You can check the operation data number corresponding to the data used in the current positioning operation.

Selected number

You can check the operation data number currently selected.

Alarm

When an alarm generates, a corresponding alarm code will be displayed. You can also reset alarms or check and clear alarm records. For details of alarm, refer to p.277.

Note Do not turn off the driver power while an alarm is being reset or alarm records are being cleared (=while the display is blinking). Doing so may damage the data.

Some alarms cannot be reset on the OPX-2A. Check with the "Alarm list" on p.278. To reset these alarms, you must cycle the driver power.

Warning

When a warning generates, a corresponding warning code will be displayed. You can also check or clear warning records. For details of warning, refer to p. 282 .

Note Do not turn off the driver power while warning records are being cleared (=while the display is blinking). Doing so may damage the data.
memo You can also clear the warning records by turning off the driver power.

Direct I/O monitor

You can check the ON/OFF status of each I/O signal of the driver.
Each digit on the 7-segment LED display corresponds to a signal. The LED is lit when the signal is ON, and it is unlit when the signal is OFF.

- Input signals

Input monitor

- Output signals

Output monitor

Example: When the internal temperature of the driver is $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$

```
LEп̄P 4#
```


4 Data mode

Up to 64 sets of motor operation data can be set．Once set，the operation data is stored in the driver．The data will not be lost even after the OPX－2A is disconnected from the driver．

Note Operation data has significant bearing on motor operation．Before setting any operation data，make sure you fully understand the content of the operation data．
memo－If operations are limited by the edit lock function or HMI input，operation data cannot be edited．
－Operation data can also be set by selecting the ID with the parameter mode．
－If the value you have input is outside the setting range，＂Error＂will be displayed for 1 second．If this error display appears，input a different value that falls within the setting range．
－If［SET】 key is pressed while executing the internal processing via RS－485 communication，＂mEm－ bUSy＂may be displayed．Check＂2 Screen transitions＂on p． 250 when＂mEm－bUSy＂is displayed．Be sure to wait until all internal processing is completed，before pressing the【SET】 key．

4－1 Setting items

Setting item	Description	Setting range	Initial value
Operation mode	Selects how to specify the position（travel amount） in positioning operation（absolute mode or incremental mode）．	0 ：Incremental mode 1：Absolute mode	0
Position	Sets the position（distance）for positioning operation．	$\begin{aligned} & \hline-8,388,608 \text { to }+8,388,607 \\ & \text { step } \end{aligned}$	0
Operating speed	Sets the operating speed in positioning operation and continuous operation．	0 to 1，000，000 Hz	1，000
Operation function	Sets perform positioning operation as single－ motion or linked－motion operation．	0 ：Single－motion 1：Linked－motion 2：Linked－motion 2	0
Sequential positioning	Sets enable or disable sequential positioning operation．	0：Disable 1：Enable	0
Acceleration	Sets the acceleration rate or time in positioning operation and continuous operation．＊1＊2	0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000 \mathrm{~s}$	30.000
Deceleration	Sets the deceleration rate or time in positioning operation and continuous operation．＊1＊2		
Dwell time	Sets the dwell time to be used in linked－motion operation 2.	0.000 to 50.000 s	0.000

＊1 This item is effective when the＂acceleration／deceleration type＂parameter is set to＂separate＂．If this parameter is set to＂common＂，the values of the＂common acceleration＂and＂common deceleration＂parameters will be used．
＊2 Acceleration／deceleration rate（ $\mathrm{ms} / \mathrm{kHz}$ ）or acceleration／deceleration time（s）can be selected using＂acceleration／ deceleration unit＂parameter．（initial value：acceleration／deceleration rate）．

■ How to set the dwell time
When displaying the＂2：linked－motion 2＂on the＂operation function＂and pressing the【SET】 key，the screen to set the dwell time is displayed．Input the dwell time using the【イ】【】【】【 \rightarrow 】 keys and press the【SET】 key．

4－2 Setting example

This section explains how to change the operation mode and position of the operation data No．0．
－Operation mode：Changes from incremental mode to absolute mode．
－Position：Changes from 0 step to 10,000 steps．
1．Use the $\left[\frac{M O D E}{E S C} 】\right.$ key to select the data mode． The＂DATA＂LED is lit．

Top screen of the data mode

6．Press the【SET】key．
The blinking speed of the input value becomes quickly and the value is set．
The display returns to the operation mode screen．

7．Press the【 \downarrow 】key．
The display changes to the position screen．

8．Press the【SET】key．
The present set value of the position is displayed with blinking．
Press the【SET】 key on the top screen of the data mode． The display changes to the operation data No． 0 screen．

3．Press the【SET】key．
The display changes to the operation mode screen．

4．Press the【SET】key again．
The present set value of the operation mode is displayed with blinking．

5．Press the【 \downarrow 】key once to select＂ 1 ．＂

9．Use the【イ】 \downarrow 【 $\leftarrow 】 ~(~) ~ k e y s ~ t o ~ s e l e c t " ~ 10,000 " . ~ . ~$
The selected digit is displayed with blinking．

10．Press the【SET】key．
The blinking speed of the input value becomes quickly and the value is set．
The display returns to the position screen．

11．Press the $【 \frac{M O D E}{E S C} 】$ key．
The display returns to the operation data No． 0 screen．

Present value of the operation mode （blinking display）

Change to absolute mode（blinking display）

Return to the operation mode

Present value of the position
（blinking display）

Input 10，000（blinking display）

Confirm the changed value（quick blinking）

4-3 Initialization of the selected operation data

All of the set value for the selected operation data number can be reverted to the initial values. Perform "clear data" of the data mode. For the operation, check the screen transitions of the data mode on p.251.

4-4 Initialization of all operation data

All of the operation data saved in the driver can be reverted to the initial values. Perform "Initialize operation data" of the copy mode. For the operation, check the screen transitions of the copy mode on p. 254.

5 Parameter mode

You can set parameters relating to motor operation and control．These parameters are saved in the non－volatile memory of the driver．
There is an unique ID in each parameter．With the OPX－2A，set the parameter selecting the ID．
When a parameter is changed，the timing to update the new value varies depending on the parameter．For details about timing to update，check on＂Notation rules．＂

Note Parameters have significant bearing on motor operation．Before setting any parameter，make sure you fully understand the content of the parameter．
memo－If operations are limited by the edit lock function or HMI input，parameters cannot be edited．
－If the value you have input is outside the setting range，＂Error＂will be displayed for 1 second．If this error display appears，input a different value that falls within the setting range．
－If（SET】 key is pressed while executing the internal processing via RS－485 communication，＂mEm－ bUSy＂may be displayed．Check＂2 Screen transitions＂on p .250 when＂mEm－bUSy＂is displayed．Be sure to wait until all internal processing is completed，before pressing the【SET】 key．
－If a non－existent parameter ID is entered，＂id－Err＂will be displayed for 1 second．Check the ID and enter the correct one．
－The non－volatile memory can be rewritten approximately 100，000 times．

Notation rules

In this part，each update timing is represented in an alphabet．

Notation	Description
A	Recalculation and setup are immediately executed when the parameter is written．
B	Recalculation and setup are executed when the operation is stopped．
C	Recalculation and setup are executed after the 24 VDC power supply is turned on again．

5-1 Setting example

This section explains how to assign the TIM output to the OUT1 output.

1. Use the 【 $\frac{\text { MODE }}{E S C} 】$ key to select the parameter mode. The "PAR" LED is lit.

Top screen of the parameter mode

Select parameter

OUT1 output function selection (ID: 2209)

Present value (blinking display)

Set the OUT1 output to "72"
(blinking display)

Confirm the value (quick blinking)

\downarrow
Return to the "OUT1 output function selection" parameter
1d 2209

5-2 Parameter list

Operation data

Operation data can also be set by selecting the data mode.

ID	Parameter name	Setting range	Initial value	Effective (p.262)
$\begin{gathered} 640 \\ \text { to } \\ 703 \end{gathered}$	Operation mode No. 0 to Operation mode No. 63	0 : Incremental mode 1: Absolute mode	0	B
$\begin{gathered} 512 \\ \text { to } \\ 575 \end{gathered}$	Position No. 0 to Position No. 63	$-8,388,608$ to $+8,388,607$ step	0	
$\begin{gathered} 576 \\ \text { to } \\ 639 \end{gathered}$	Operating speed No. 0 to Operating speed No. 63	0 to 1,000,000 Hz	1,000	
$\begin{gathered} 704 \\ \text { to } \\ 767 \end{gathered}$	```Operation function No.0 to Operation function No.63```	0 : Single-motion 1: Linked-motion 2: Linked-motion 2	0	
$\begin{gathered} 960 \\ \text { to } \\ 1023 \end{gathered}$	Sequential positioning No. 0 to Sequential positioning No. 63	0: Disable 1: Enable	0	
$\begin{gathered} 768 \\ \text { to } \\ 831 \end{gathered}$	Acceleration No. 0 to Acceleration No. 63	0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000$ s *1 *2	30.000	
$\begin{gathered} 832 \\ \text { to } \\ 895 \end{gathered}$	```Deceleration No.O to Deceleration No.63```	0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000$ s *1 *2	30.000	
$\begin{gathered} 1024 \\ \text { to } \\ 1087 \end{gathered}$	Dwell time No. 0 to Dwell time No. 63	0.000 to 50.000 s	0.000	

*1 This item is effective when the "acceleration/deceleration type" parameter is set to "separate". If this parameter is set to "common", the values of the "common acceleration" and "common deceleration" parameters will be used.
*2 Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

Parameters

ID	Parameter name	Setting range	Initial value	Effective (p.262)
256	STOP input action	0: Immediate stop 1: Deceleration stop 2: Immediate stop \& Current OFF 3: Deceleration stop \& Current OFF	1	A
257	Hardware overtravel	0: Disable 1: Enable	1	
258	Overtravel action	0: Immediate stop 1: Deceleration stop	0	
261	AREA1 positive direction position	-8,388,608 to 8,388,607 step	0	
262	AREA1 negative direction position			
263	AREA2 positive direction position			
264	AREA2 negative direction position			
265	AREA3 positive direction position			
266	AREA3 negative direction position			
267	Minimum ON time for MOVE output	0 to 255 ms	0	
268	\pm LS logic level	0 : Normally open 1: Normally closed	0	C
269	HOMES logic level			
270	SLIT logic level			
288	RUN current	0.0 to 100.0\%	100.0	A
289	STOP current	0.0 to 60.0\%	50.0	
293	Speed filter	0 to 200 ms	1	B
294	Moving average time		1	
320	Common acceleration	0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000$ s *	30.000	
321	Common deceleration			
322	Starting speed	0 to 1,000,000 Hz	100	
323	JOG operating speed	1 to $1,000,000 \mathrm{~Hz}$	1,000	
324	JOG acceleration/deceleration rate	0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000$ s *	30.000	
325	JOG starting speed	0 to 1,000,000 Hz	100	
326	Acceleration/deceleration type	0 : Common 1: Separate	1	
327	Acceleration/deceleration unit	$\begin{aligned} & 0: \mathrm{ms} / \mathrm{kHz} \\ & 1: \mathrm{s} \end{aligned}$	0	C
352	Home-seeking mode	0: 2-sensor mode 1:3-sensor mode	1	B
353	Operating speed of home-seeking	1 to 1,000,000 Hz	1,000	
354	Acceleration/deceleration of home-seeking	0.001 to $1,000.000 \mathrm{~ms} / \mathrm{kHz}$ or 0.001 to $1,000.000$ s *	30.000	
355	Starting speed of home-seeking	1 to $1,000,000 \mathrm{~Hz}$	100	
356	Position offset of home-seeking	$-8,388,608$ to 8,388,607 step	0	
357	Starting direction of home-seeking	0 : Negative direction 1: Positive direction	1	B
358	SLIT detection with home-seeking	0: Disable 1: Enable	0	
359	TIM signal detection with home-seeking	0: Disable 1:TIM signal enable 2: ZSG signal enable	0	
388	Return-to-home incomplete alarm	0: Disable 1: Enable	0	C

ID	Parameter name	Setting range	Initial value	Effective (p.262)
416	Overheat warning	40 to $85^{\circ} \mathrm{C}$ (104 to $185^{\circ} \mathrm{F}$)	85	A
419	Overvoltage warning	120 to 450 V	435	
420	Undervoltage warning	120 to 280 V	120	
448	Electronic gear A			C
449	Electronic gear B		1	
450	Motor rotation direction	0 : Positive direction=CCW 1: Positive direction=CW	1	
451	Software overtravel	0: Disable 1: Enable	1	A
452	Positive software limit	-8,388,608 to 8,388,607 step	8,388,607	
453	Negative software limit	$-8,388,608$ to 8,388,607 step	-8,388,608	
454	Preset position	-8,388,608 to 8,388,607 step	0	
455	Wrap setting	0: Disable 1: Enable	0	C
456	Wrap setting range	1 to 8,388,607 step	500	
480	Data setter speed display	0 : Signed 1: Absolute value	0	A
481	Data setter edit	0: Disable 1: Enable	1	
2048	MS0 operation No. selection	0 to 63	0	B
2049	MS1 operation No. selection		1	
2050	MS2 operation No. selection		2	
2051	MS3 operation No. selection		3	
2052	MS4 operation No. selection		4	
2053	MS5 operation No. selection		5	
2054	HOME-P output function selection	0 : Home output 1: Return-to-home complete output	0	A
2064	Filter selection	0 : Speed filter 1: Moving average filter	0	C
2084	JOG travel amount	1 to $8,388,607$ step	1	
2096	Backward steps in 2-sensor mode homeseeking	0 to 32,767 step	200	B
2144	Encoder resolution	100 to 10,000 P/R	500	C
2145	Encoder preset value	-8,388,608 to 8,388,607 step	0	A
2146	Stepout detection	0 : Disable 1: Enable	0	C
2147	Stepout detection band	0.1 to 360.0°	7.2	
2148	Stepout detection action	0 : No operation 1:Warning 2: Alarm	0	A
2176	INO input function selection	See table on p. 268.	3	C
2177	IN1 input function selection		4	
2178	IN2 input function selection		48	
2179	IN3 input function selection		49	
2180	IN4 input function selection		50	
2181	IN5 input function selection		16	
2182	IN6 input function selection		18	
2183	IN7 input function selection		24	

ID	Parameter name	Setting range	Initial value	Effective (p.262)
2304	Communication timeout	$0:$ Not monitored 1 to 10,000 ms	0	A
2305	Communication error alarm	1 to 10 times	3	
2563	Communication parity	$0:$ None $1:$ Even number $2:$ Odd number	1	
2564	Communication stop bit	$0: 1$ bit $1: 2$ bit	0	C
2565	Transmission waiting time	0.0 to $1,000.0 \mathrm{~ms}$	10.0	

* Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "acceleration/deceleration unit" parameter. (initial value: acceleration/deceleration rate).
- Setting range of function selection parameters
- IN input function selection parameters

0: Not used	7: -JOG	16: FREE	33: R1	40: R8	47: R15
1: FWD	8: MS0	17: AWO	34: R2	41: R9	48: M0
2: RVS	9: MS1	18: STOP	35: R3	42: R10	49: M1
3: HOME	10: MS2	24: ALM-RST	36: R4	43: R11	50: M2
4: START	11: MS3	25: P-PRESET	37: R5	44: R12	51: M3
5: SSTART	12: MS4	27: HMI	38: R6	45: R13	52: M4
6: +JOG	13: MS5	32: R0	39: R7	46: R14	53: M5

- OUT output function selection parameters

0: Not used	10: MS2_R	35: R3	45: R13	61:_LS_R	74: AREA2
1: FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	75: AREA3
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	80: S-BSY
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	82: MPS
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	83: STEPOUT
5: SSTART_R	17: AWO_R	40: R8	50: M2_R	67: READY	84: O.H.
6: +JOG_R	18: STOP_R	41:R9	51: M3_R	68: MOVE	85: ZSG
7: -JOG_R	32: R0	42: R10	52: M4_R	70: HOME-P	86: MBC
8: MSO_R	33: R1	43: R11	53: M5_R	72: TIM	
9: MS1_R	34: R2	44: R12	60:+LS_R	73: AREA1	

- NET-IN input function selection parameters

0: Not used	7: -JOG	16: FREE	33: R1	40: R8	47: R15
1: FWD	8: MS0	17: AWO	34: R2	41: R9	48: M0
2: RVS	9: MS1	18: STOP	35: R3	42: R10	49: M1
3: HOME	10: MS2	24: ALM-RST	36: R4	43: R11	50: M2
4: START	11: MS3	25: P-PRESET	37: R5	44: R12	51: M3
5: SSTART	12: MS4	27: HMI	38: R6	45: R13	52: M4
6: +JOG	13: MS5	32: R0	39: R7	46: R14	53: M5

- NET-OUT output function selection parameters

0: Not used	10: MS2_R	35: R3	45: R13	61: -LS_R	74: AREA2
1: FWD_R	11: MS3_R	36: R4	46: R14	62: HOMES_R	75: AREA3
2: RVS_R	12: MS4_R	37: R5	47: R15	63: SLIT_R	80: S-BSY
3: HOME_R	13: MS5_R	38: R6	48: M0_R	65: ALM	82: MPS
4: START_R	16: FREE_R	39: R7	49: M1_R	66: WNG	83: STEPOUT
5: SSTART_R	17: AWO_R	40: R8	50: M2_R	67: READY	84: O.H.
6: +JOG_R	18: STOP_R	41: R9	51: M3_R	68: MOVE	85: ZSG
7: -JOG_R	32: R0	42: R10	52: M4_R	70: HOME-P	86: MBC
8: MS0_R	33: R1	43: R11	53: M5_R	72:TIM	
9: MS1_R	34:R2	44:R12	60: +LS_R	73: AREA1	

5-3 Initializing parameters

You can revert parameters saved in the driver to their initial values. Perform "Initialize operation data" of the copy mode. For the operation, check the screen transitions of the copy mode on p. 254.

6 Test mode

6－1 Overview of the test mode

－Direct I／O test
You can check the ON／OFF status of each input signal of the driver．You can also switch the ON／OFF status of each output signal on the OPX－2A．There is also a direct I／O test function with which you can check the connection status of the driver．
－JOG operation
You can operate the motor using the keys on the OPX－2A．
－Data select operation
You can perform the positioning operation．
－Return－to－home operation
You can perform the return－to－home operation．
－Position preset
You can set the preset value as the command position．
－Encoder counter preset
You can set the preset value as the encoder counter value．
－Teaching
You can operate the motor using the keys on the OPX－2A and reflect the attained position in the operation data．
memo－Stop the motor operation before changing to the test mode．
－When you move from the top screen of the test mode to a lower level，the following inputs will be disabled．
START，SSTART，HOME，\pm JOG，FWD，RVS and MSO to MS5．
－In the direct I／O test，if the screen moves to the lower level，all of I／O signals and operation will be disabled．
－If the【SET】key is pressed while executing the internal processing via RS－485 communication， ＂mEm－bUSy＂may be displayed．Check＂2 Screen transitions＂on p． 250 when＂mEm－bUSy＂is displayed．Be sure to wait until all internal processing is completed，before pressing the【SET】 key．
－If＂Error＂is displayed when data select operation，return－to－home operation，position preset， encoder counter preset or teaching function is performed，check whether an alarm generates．
－When the HMI input is OFF，test mode cannot be executed．

■ What happens when the［SET］key is pressed while the motor is operating
While the motor is operating，you cannot move to any lower level from the top screen of the test mode．Pressing the【SET】 key will generate an error，and＂oPE－Err＂will be shown．Be sure
a PE－Err to stop the motor operation before pressing the【SET】 key

6－2 Direct I／O test

When checking the connection condition of the driver，perform the direct I／O test． Each digit on the 7－segment LED display corresponds to a signal．
The LED is lit when the input signal is ON，and it is unlit when the input signal is OFF．
Use the【イ】】】keys to switch the ON－OFF state of the output signal．＂ם＂is displayed when the signal is ON，while
＂－＂is displayed when the signal is OFF．
－Input signals

Sensor test

－Output signals

6－3 JOG operation

You can operate the motor using the keys on the OPX－2A．
Pressing the【个】key once causes the motor to rotate one step in the positive direction．Pressing and holding the key causes the motor to rotate continuously in the positive direction．
Pressing the $\llbracket \downarrow$ key once causes the motor to rotate one step in the negative direction．Pressing and holding the key causes the motor to rotate continuously in the negative direction．
The operating speed corresponds to the value set in the＂JOG operating speed＂parameter．
Take note that when the value set in the＂JOG starting speed＂parameter is greater than the value set in the＂JOG operating speed＂parameter，the JOG starting speed will become effective．

Note During operation，the motor rotates at the specified operating speed while each applicable key is pressed．Before commencing the operation，consider the status of the equipment and condition of its surroundings to confirm thoroughly that motor rotation will not cause any dangerous situations．

6－4 Data select operation

Select a desired operation data number and then press the【SET】key，and positioning operation will be performed．
Note During operation，the motor rotates at the specified operating speed．Before commencing the operation，consider the status of the equipment and condition of its surroundings to confirm thoroughly that motor rotation will not cause any dangerous situations．

6-5 Return-to-home operation

You can perform a return-to-home operation.
The operating speed corresponds to the value set in the "operating speed of home-seeking" parameter.
Note During operation, the motor rotates at the specified operating speed. Before commencing the operation, consider the status of the equipment and condition of its surroundings to confirm thoroughly that motor rotation will not cause any dangerous situations.

6-6 Presetting the position

In this operation, the command position is preset by rewriting the value in the "preset position" parameter.
memo If operations are limited by the edit lock function, the preset function cannot be performed.

6-7 Presetting the encoder counter

In this operation, the encoder counter is preset by rewriting the value in the "encoder preset value" parameter.
memo If operations are limited by the edit lock function, the preset function cannot be performed.

Teaching

You can operate the motor using the keys on the OPX-2A and reflect the attained position in the operation data. The absolute mode will be automatically selected as the operation mode of any position data set by teaching. The operating speed, acceleration/deceleration rate and starting speed of teaching are the same as the corresponding settings applicable to JOG operation.

Note
During operation, the motor rotates at the specified operating speed. Before commencing the operation, consider the status of the equipment and condition of its surroundings to confirm thoroughly that motor rotation will not cause any dangerous situations.
memo If operations are limited by the edit lock function, the teaching cannot be performed.

7 Copy mode

7－1 Overview of the copy mode

－Download
Copy parameters saved in the OPX－2A to the driver． If a download error occurs，a code indicating the nature of the error will blink on the display．Download will not be performed and the display will return to the top screen of download．Refer to＂7－2 Error of the copy mode＂to display the error．
－Upload
Copy parameters saved in the driver to the OPX－2A．
－Verification
Verify parameters in the OPX－2A against the corresponding data in the driver．
If the verification finds that the two sets of parameters match，＂Good＂will be shown．If the two do not match，＂Error＂ will be shown．
If a verification error occurs，a code indicating the nature of the error will blink on the display．Verification will not be performed and the display will return to the top screen of verification．Refer to＂7－2 Error of the copy mode＂to display the error．
－Initializing driver parameter
Revert parameters saved in the driver to their initial values．
■ What happens when the［SET】 key is pressed while the edit lock is enabled
While the edit lock is enabled，you cannot move to any lower level from the top screen of the copy mode．Pressing the【SET】 key will generate an error，and＂LocK－Err＂will be shown．Be sure to cancel the edit lock before pressing the【SET】 key．Refer to p． 246 for the procedure to cancel the edit lock．

7－2 Error of the copy mode

If an error occurs in download or verification，the error code will blink on the display．
The processing will not be executed and the display will return to the top screen of each processing．

Blinking display	Description	Action
Prad－Err	There is a discrepancy between the product series of the driver and the data being processed．	－Check the product series of the driver． －Check the data bank number on the OPX－2A．
HERd-Err $b c z-E r r$	An error occurred while processing the data．	Execute the processing again．If the same error occurs， the parameters saved in the OPX－2A may have damaged．Upload the applicable parameters and set the OPX－2A data again．
пo－dRヒR	The specified data bank number does not contain parameters．	Check the data bank number．

Note Do not turn off the driver power while processing is in progress（＝while the display is blinking）． Doing so may damage the parameters．
memo When a parameter has been changed，the new parameter will become effective after the power is cycled．When parameters were changed by downloading，cycle the driver power．

8
 Inspection, troubleshooting and remedial actions

This part explains the periodical inspection methods as well as confirmation items and remedial actions when problems have happened.

Table of contents

1 Inspection and maintenance.................... 276
1-1 Inspection.. 276
1-2 Warranty... 276
1-3 Disposal ... 276
2 Alarms and warnings 277
2-1 Alarms.. 277
2-2 Warnings .. 282
2-3 Communication errors.................................... 283
3 Troubleshooting and remedial actions.284

1 Inspection and maintenance

1-1 Inspection

It is recommended that periodic inspections be conducted for the items listed below after each operation of the motor. If an abnormal condition is noted, discontinue any use and contact your nearest Oriental Motor sales office.

- Inspection item
- Check if any of motor mounting screws is loose.
- Check if the bearings (ball bearings) of the motor or other moving parts of the gear generates unusual noises.
- Check if a damage or stress is applied on the cable.
- Check if any of the connection parts of the driver is loose.
- Check if the output shaft and the load shaft are out of alignment.
- Check if the openings in the driver are clogged.
- Check if the installation place of the driver is loose.
- Check if dust and others attach on the driver.
- Check if the driver has unusual smells or appearance defects.

Note
The driver uses semiconductor components. Static electricity may damage the semiconductor components of the driver, so be extremely careful when handling them.

1-2 Warranty

Check on the Oriental Motor Website for the product warranty.

1-3 Disposal

Dispose the product correctly in accordance with laws and regulations, or instructions of local governments.

2 Alarms and warnings

The driver provides alarms that are designed to protect the driver from overheating, poor connection, error in operation, etc. (protective functions), as well as warnings that are output before the corresponding alarms generate (warning functions).

2-1 Alarms

When an alarm generates, the ALM output will turn OFF and the motor will stop. At the same time, the ALM LED will start blinking. The present alarm can be checked by counting the number of times the ALM LED blinks, or using the MEXE02, OPX-2A or RS-485 communication.

Example: Overvoltage alarm (number of blinks: 3)

Alarm reset

Before resetting an alarm, always remove the cause of the alarm and ensure safety, and perform one of the reset operations specified below. Refer to p .142 for the timing chart.

- Turn the ALM-RST input to OFF and then ON. (The alarm will be reset at the ON edge of the input.)
- Perform an alarm reset using RS-485 communication.
- Perform an alarm reset using the MEXEO2 or OPX-2A.
- Cycle the 24 VDC power.
memo Some alarms cannot be reset with the ALM-RST input, MEXE02, OPX-2A or RS-485 communication. Check the following table to identify which alarms meet this condition. To reset these alarms, cycle the 24 VDC power.

Alarm records

Up to 10 generated alarms are saved in the non-volatile memory in order of the latest to oldest. Alarm records saved in the non-volatile memory can be read and cleared when performing any of the following.

- Read the alarm records by the monitor command via RS-485 communication.
- Clear the alarm records by the maintenance command via RS-485 communication.
- Read and clear the alarm records using the MEXEO2 or OPX-2A.

Alarm list

Remedial action	Reset operations	Motor excitation *1
- Reduce the load or increase the acceleration/deceleration. - Check the setting of the "stepout detection band" parameter.	- Turn the ALM-RST input from OFF (0) to ON (1). - Perform an alarm reset. *2	Excitation ON
Turn off the power and turn on the power again after checking that the motor, cable and driver output circuit are not short-circuited.	Cycle the power.	Excitation OFF
Review the ventilation condition in the enclosure.	- Turn the ALM-RST input from OFF (0) to ON (1). - Perform an alarm reset.	
- Check whether the power supply voltage is within the allowable range of the specification. - If the alarm is generated while operating, reduce the load or increase the acceleration/deceleration.	Cycle the power.	
Check if the main power supply and the 24 VDC power supply have been input normally.	- Turn the ALM-RST input from OFF (0) to ON (1).	
Check whether the power supply voltage is within the allowable range of the specification.	- Perform an alarm reset.	
Contact your nearest Oriental Motor sales office.	Cycle the power.	
Check the command pulse frequency.	- Turn the ALM-RST input from OFF (0) to ON (1). - Perform an alarm reset.	
Initialize all parameters.	Cycle the power.	
Perform the position preset or return-to-home operation.	- Turn the ALM-RST input from OFF (0) to ON (1). - Perform an alarm reset.	Excitation ON
Check the sensor logic and the setting of the " \pm LS logic level" parameter.		
Check the connection of \pm LS.		
- Check the load. - Review the sensor installation positions and the starting direction of motor operation. - Check the sensor logic and the setting of the " \pm LS logic level" parameter.		
Install a HOME sensor in the position between +side sensor and -side sensor.		
- When each signal is used with the HOMES, adjust the connection condition of the output shaft and load as well as the HOME sensor position so that the each signal will turn ON while the HOMES is ON. - When each signal is not used with the HOMES, set the "TIM signal detection with home-seeking" parameter or "SLIT detection with home-seeking" parameter to "disable."		
Escape from the limit sensor by performing continuous operation or return-to-home operation.		
- In single-motion operation, check to see if the position data of the motor exceeds the softlimit value. - In linked-motion operation, check to see if the position data of the motor after linked-motion operation exceeds the softlimit value.		
Check the offset value.		

Code	No. of ALM LED blinks	Alarm type	Cause
70h	7	Abnormal operation data	- Five or more operation data was linked. - Data of different directions was linked in linked-motion operation. - Positioning operation of the operating speed $0 \mathrm{r} / \mathrm{min}$ was performed.
71h		Electronic gear setting error	The resolution set by the "electronic gear" parameter was outside the specification.
81h		Network bus error	When the motor operates, the master controller for the network converter shows a disconnection status.
83h		Communication switch setting error	Transmission rate setting switch (BAUD) was out-of-specification.
84h		RS-485 communication error	The number of consecutive RS-485 communication errors reached the set value of the "communication error alarm" parameter.
85h		RS-485 communication timeout	The time set in the "communication timeout" parameter has elapsed, and yet the communication could not be established with the master controller.
8Eh		Network converter error	An alarm was generated in the network converter.
FOh	Lit	CPU error	CPU malfunctioned.

*1 When an alarm generates, the motor operates as follows.
Excitation OFF: When an alarm generates, the motor current will be cut off and the motor will lose its holding torque. The electromagnetic brake will automatically actuate and hold the position when using the electromagnetic brake motor. Excitation ON: Even when an alarm generates, the motor current will not be cut off and the motor position will be held.
*2 If an excessive position deviation alarm generates, turning the ALM-RST input ON alone will not reset the alarm. Before recovering from the deviation error, be sure to reset the alarm by the ALM-RST input first. Check p. 84 for how to recover from the deviation error.

Remedial action	Reset operations	Motor excitation *1
Check the operation data.	- Turn the ALM-RST input from OFF (0) to ON (1). - Perform an alarm reset.	Excitation ON
Set the electronic gear correctly, and then cycle the power.	Cycle the power.	Excitation OFF
Check the connector or cable of the master controller.	- Turn the ALM-RST input from OFF (0) to ON (1). - Perform an alarm reset.	Excitation ON
Check the transmission rate setting switch (BAUD).	Cycle the power.	Excitation OFF
- Check the connection between the master controller and driver. - Check the setting of RS-485 communication.	- Turn the ALM-RST input from OFF (0) to ON (1). - Perform an alarm reset.	Excitation ON
Check the connection between the master controller and driver.		
Check the alarm code of the network converter.		
Cycle the power.	-	-

2-2 Warnings

When a warning generates, the WNG output will turn ON. The motor will continue to operate. Once the cause of the warning is removed, the WNG output will turn OFF automatically.

Warning records

Up to 10 generated warnings are saved in the RAM in order of the latest to oldest.
Warning records saved in the RAM can be read or cleared when performing any of the following.

- Read the warning records by the monitor command via RS-485 communication.
- Clear the warning records by the maintenance command via RS-485 communication.
- Read and clear the warning records using the MEXE02 or OPX-2A.
memo You can also clear the warning records by turning off the 24 VDC power.

Warning list

Code	Warning type	Cause	Remedial action
10h	Excessive position deviation	When the "stepout detection action" parameter is set to "warning" the position deviation between the encoder position and command position reached the set value of the "stepout detection band" parameter.	- Reduce the load or increase the acceleration/deceleration. - Check the setting of the "stepout detection band" parameter.
21h	Main circuit overheat	The driver internal temperature reached the set value of the "overheat warning" parameter.	Review the ventilation condition in the enclosure.
22h	Overvoltage	- The power supply voltage exceeded the set value of the "overvoltage warning" parameter. - A large inertial load was stopped abruptly or vertical operation was performed.	- Check whether the power supply voltage is within the allowable range of the specification. - If the alarm is generated while operating, reduce the load or increase the acceleration/deceleration.
25h	Undervoltage	- The power supply voltage fell below the set value of the "undervoltage warning" parameter. - The main power was cut off momentarily or the voltage became insufficient.	Check whether the power supply voltage is within the allowable range of the specification.
71h	Electronic gear setting error	The resolution set by the "electronic gear" parameter was outside the specification.	Set the "electronic gear" parameter correctly so that the resolution is in a range of the specification.
84h	RS-485 communication error	The RS-485 communication error was detected.	- Check the connection between the master controller and driver. - Check the setting of RS-485 communication.

2-3 Communication errors

Up to 10 communication errors are saved in the RAM in order of the latest to the oldest and you can check using the MEXEO2 or via RS-485 communication.

Communication error records

Up to 10 communication errors are saved in the RAM in order of the latest to oldest.
Communication error records saved in the RAM can be read or cleared when performing any of the following.

- Read the communication error records by the monitor command via RS-485 communication.
- Clear the communication error records by the maintenance command via RS-485 communication.
- Read and clear the communication error records by the status monitor of the MEXEO2.
memo You can also clear the communication records by turning off the 24 VDC power.

Communication error list

Code	Communication error type	Cause	Remedial action
84h	RS-485 communication error	One of the following errors was detected. - Framing error - BCC error	- Check the connection between the master controller and driver. - Check the setting of RS-485 communication.
88h	Command not yet defined	The command requested by the master could not be executed because of being undefined.	- Check the setting value for the command. - Check the flame configuration.
89h	Execution disable due to user I/F communication in progress	The command requested by the master could not be executed because the MEXEO2 or OPX-2A was communicating with the driver.	Wait until the processing for the MEXE02 or OPX-2A will be completed.
8Ah	Non-volatile memory processing in progress	The command could not be executed because the driver was performing the non-volatile memory processing. - Internal processing was in progress. (S-BSY is ON.) - An EEPROM error alarm was present.	- Wait until the internal processing will be completed. - When the EEPROM error was generated, initialize all parameters using the MEXE02, OPX-2A or via RS-485 communication.
8Ch	Outside setting range	The setting data requested by the master could not be executed due to outside the range.	Check the setting data.
8Dh	Command execute disable	When the command is unable to execute, it was tried to execute.	Check the driver status.

3 Troubleshooting and remedial actions

During motor operation, the motor or driver may fail to function properly due to an improper setting or wiring. When the motor cannot be operated correctly, refer to the contents provided in this section and take appropriate action. If the problem persists, contact your nearest Oriental Motor sales office.

Phenomenon	Possible cause	Remedial action
- The motor is not excited. - The output shaft can be moved by hand.	The AWO input is turned ON.	Turn the AWO input OFF and confirm that the motor will be excited.
	The FREE input is turned ON.	Turn the FREE input OFF.
The motor does not operate.	An electromagnetic brake motor is used and the electromagnetic brake is in the holding state.	Check the connections between electromagnetic brake and driver.
	The STOP input is turned ON.	Turn the STOP input OFF.
	The position (distance) is not set in the operation data while positioning operation.	Check the operation data.
	The FWD input and RVS input are turned ON simultaneously in the continuous operation.	Turn either FWD input or RVS input ON.
The motor rotates in the direction opposite to the specified direction.	The "motor rotation direction" parameter is set wrong.	Check the "motor rotation direction" parameter.
The gear output shaft rotates in the direction opposite to the motor output shaft.	A gear that rotates in the direction opposite to the motor output shaft is used.	- With TS geared motors, the gear output shaft rotates in the direction opposite to the motor output shaft when the gear ratio is 20 or 30 . - With Harmonic geared motors, the gear output shaft always rotates in the direction opposite to the motor output shaft.
Motor operation is unstable.	Connection error in the motor or power supply.	Check the connections between the driver, motor and power supply.
	The "RUN current" or "STOP current" parameter is too low.	Return the "RUN current" or "STOP current" parameter to its initial value and check. If the operating current is too low, the motor torque will also be too low and operation will be unstable.
Motor vibration is too great.	Load is too small.	Lower the operating current using the "RUN current" parameter. Vibration will increase if the motor's output torque is too large for the load.
The electromagnetic brake does not release.	The power is not supplied to the electromagnetic brake.	Check the connection of the electromagnetic brake.

memo - Check the alarm message when the alarm generates.

- I/O signals can be monitored using the MEXE02, OPX-2A or RS-485 communication. Use to check the wiring condition of the I/O signals.

9 Cables / Accessories

This part explains cables and accessories that are used in combination with the products.

Table of contents
1 Cables 286
1-1 Motor cable 286
1-2 I/O signal cable 288
1-3 Communication cable for the support software 288
1-4 RS-485 communication cable. 289
2 Accessories 290
2-1 Data setter 290
2-2 CR circuit for surge suppression 290
2-3 CR circuit module. 290

1 Cables

1-1 Motor cable

The RKII Series has models included with a "cable for motor" to connect the motor and driver, and also it has models without a "cable for motor."
If the distance between the motor and the driver is extended furthermore, use a connection cable set or an extension cable set since the length of the included cable is not enough.
The cable set for electromagnetic brake motor consists of two cables, one for motor and the other for electromagnetic brake.
The cable set for encoder motor consists of two cables, one for motor and the other for encoder.
When installing the motor on a moving part, use a flexible cable.

- Extending the wiring length using - Extending the wiring length using a connection cable set;

Do not use the included cable. an extension cable set;

Connect an extension cable to the included cable.

memo When extending the wiring length by connecting an extension cable to the included cable, keep the total cable length to 20 m (65.6 ft .) or less.

Connection cable set

The cable set for electromagnetic brake motor consists of two cables, one for motor and the other for electromagnetic brake.
The cable set for encoder motor consists of two cables, one for motor and the other for encoder.

- Connection cable set

For standard motor

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VPF	$1(3.3)$
CC020VPF	$2(6.6)$
CC030VPF	$3(9.8)$
CC050VPF	$5(16.4)$
CC070VPF	$7(23.0)$
CC100VPF	$10(32.8)$
CC150VPF	$15(49.2)$
CC200VPF	$20(65.6)$

For electromagnetic brake motor

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VPFB	$1(3.3)$
CC020VPFB	$2(6.6)$
CC030VPFB	$3(9.8)$
CC050VPFB	$5(16.4)$
CC070VPFB	$7(23.0)$
CC100VPFB	$10(32.8)$
CC150VPFB	$15(49.2)$
CC200VPFB	$20(65.6)$

For encoder motor

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VPFE	$1(3.3)$
CC020VPFE	$2(6.6)$
CC030VPFE	$3(9.8)$
CC050VPFE	$5(16.4)$
CC070VPFE	$7(23.0)$
CC100VPFE	$10(32.8)$
CC150VPFE	$15(49.2)$
CC200VPFE	$20(65.6)$

- Flexible connection cable set

For standard motor

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VPR	$1(3.3)$
CC020VPR	$2(6.6)$
CC030VPR	$3(9.8)$
CC050VPR	$5(16.4)$
CC070VPR	$7(23.0)$
CC100VPR	$10(32.8)$
CC150VPR	$15(49.2)$
$\mathbf{C C 2 0 0 V P R}$	$20(65.6)$

For electromagnetic brake motor

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VPRB	$1(3.3)$
CC020VPRB	$2(6.6)$
CC030VPRB	$3(9.8)$
CC050VPRB	$5(16.4)$
CC070VPRB	$7(23.0)$
CC100VPRB	$10(32.8)$
CC150VPRB	$15(49.2)$
CC200VPRB	$20(65.6)$

For encoder motor

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VPRE	$1(3.3)$
CC020VPRE	$2(6.6)$
CC030VPRE	$3(9.8)$
CC050VPRE	$5(16.4)$
CC070VPRE	$7(23.0)$
CC100VPRE	$10(32.8)$
CC150VPRE	$15(49.2)$
CC200VPRE	$20(65.6)$

- Driver side

Model: 5557-06R-210 (Molex Incorporated)

Cable for electromagnetic brake

| Pin No. | Color | Lead size |
| :---: | :---: | :---: | :---: |$\quad \bullet$ Motor side

Model: 5559-02P-210 (Molex Incorporated)

Cable for encoder

Pin No.	Color	Lead size
1	Red	AWG26 ($0.14 \mathrm{~mm}^{2}$)
2	Pink	
3	Green	
4	Blue	
5	Yellow	
6	Orange	
7	White	AWG22 (0.3 mm ${ }^{2}$)
8	Black	
9	-	-
10	Drain wire	AWG25 (0.16 mm ${ }^{2}$)

- Motor side - Driver side

Model: XADR-10V (J.S.T. Mfg Co., Ltd.)

Model: PUDP-10V-K
(J.S.T. Mfg Co., Ltd.)

- Extension cable set

The cable set for electromagnetic brake motor consists of two cables, one for motor and the other for electromagnetic brake.
The cable set for encoder motor consists of two cables, one for motor and the other for encoder.

- Extension cable set

For standard motor

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VPF	$1(3.3)$
CC020VPF	$2(6.6)$
CC030VPF	$3(9.8)$
CC050VPF	$5(16.4)$
CC070VPF	$7(23.0)$
CC100VPF	$10(32.8)$
CC150VPF	$15(49.2)$

For electromagnetic brake motor

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VPFBT	$1(3.3)$
CC020VPFBT	$2(6.6)$
CC030VPFBT	$3(9.8)$
CC050VPFBT	$5(16.4)$
CC070VPFBT	$7(23.0)$
CC100VPFBT	$10(32.8)$
CC150VPFBT	$15(49.2)$

For encoder motor

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VPFET	$1(3.3)$
CC020VPFET	$2(6.6)$
CC030VPFET	$3(9.8)$
CC050VPFET	$5(16.4)$
CC070VPFET	$7(23.0)$
CC100VPFET	$10(32.8)$
CC150VPFET	$15(49.2)$

- Flexible extension cable set

For standard motor

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VPR	$1(3.3)$
CC020VPR	$2(6.6)$
CC030VPR	$3(9.8)$
CC050VPR	$5(16.4)$
CC070VPR	$7(23.0)$
CC100VPR	$10(32.8)$
$\mathbf{C C 1 5 0 V P R}$	$15(49.2)$

For electromagnetic brake motor

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VPRBT	$1(3.3)$
CC020VPRBT	$2(6.6)$
CC030VPRBT	$3(9.8)$
CC050VPRBT	$5(16.4)$
CC070VPRBT	$7(23.0)$
CC100VPRBT	$10(32.8)$
CC150VPRBT	$15(49.2)$

For encoder motor

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VPRET	$1(3.3)$
CC020VPRET	$2(6.6)$
CC030VPRET	$3(9.8)$
CC050VPRET	$5(16.4)$
CC070VPRET	$7(23.0)$
CC100VPRET	$10(32.8)$
CC150VPRET	$15(49.2)$

1-2 I/O signal cable

These are shielded cables for driver control I/O signals offering excellent noise resistance. The ground wires useful to grounding are provided at both ends of the cable. Select the cable suitable for the number of I/O signals connected.

General-purpose type

Cable length $[\mathrm{m}(\mathrm{ft})]$.	Number of lead wire			
	CC06D005B-1	CC10D005B-1	CC12D005B-1	CC16D005B-1
$1(3.3)$	CC06D010B-1	CC10D010B-1	CC12D010B-1	CC16D010B-1
$1.5(4.9)$	CC06D015B-1	CC10D015B-1	CC12D015B-1	CC16D015B-1
$2(6.6)$	CC06D020B-1	CC10D020B-1	CC12D020B-1	CC16D020B-1

1-3 Communication cable for the support software

[^15]1-4 RS-485 communication cable

You can link drivers using this cable connected to the RS-485 communication connectors (CN6, CN7).
Model: CC002-RS4 [0.25 m (0.8 ft.)]

2 Accessories

2-1 Data setter

The data setter lets you set data and parameters for your RKII Series FLEX built-in controller type with ease and also functions as a monitor.
Model: OPX-2A

2-2 CR circuit for surge suppression

This product is effective to suppress the serge which occurs in a relay contact part. Use it to protect the contacts of the relay or switch.

Model: EPCR1201-2

2-3 CR circuit module

This product is effective to suppress the surge which occurs in a relay contact part. Use this product to protect the contacts of the relay or switch.
Four pieces of CR circuit for surge suppression are mounted on the compact circuit, and this product can be installed to the DIN rail. This product can make the wiring easily and securely since it also supports terminal block connection.
Model: VCS02

- Unauthorized reproduction or copying of all or part of this Manual is prohibited. If a new copy is required to replace an original manual that has been damaged or lost, please contact your nearest Oriental Motor branch or sales office.
- Oriental Motor shall not be liable whatsoever for any problems relating to industrial property rights arising from use of any information, circuit, equipment or device provided or referenced in this manual.
- Characteristics, specifications and dimensions are subject to change without notice.
- While we make every effort to offer accurate information in the manual, we welcome your input. Should you find unclear descriptions, errors or omissions, please contact the nearest office.
- Orientalmotor and GLEX are registered trademarks or trademarks of Oriental Motor Co., Ltd., in Japan and other countries. Modbus is a registered trademark of the Schneider Automation Inc. CC-Link is a registered trademark of the CC-Link Partner Association. MECHATROLINK is a registered trademark of the MECHATROLINK Members Association. EtherCAT ${ }^{\oplus}$ is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. Other product names and company names mentioned in this manual may be registered trademarks or trademarks of their respective companies and are hereby acknowledged. The third-party products mentioned in this manual are recommended products, and references to their names shall not be construed as any form of performance guarantee. Oriental Motor is not liable whatsoever for the performance of these third-party products.
© Copyright ORIENTAL MOTOR CO., LTD. 2013
- Please contact your nearest Oriental Motor office for further information.

ORIENTAL MOTOR U.S.A. CORP
Technical Support Tel:800-468-3982
8:30am EST to 5:00pm PST (M-F) www.orientalmotor.com

ORIENTAL MOTOR (EUROPA) GmbH
Schiessstraße 44, 40549 Düsseldorf, Germany Technical Support Tel:00 800/22 556622 www.orientalmotor.de

ORIENTAL MOTOR (UK) LTD.
Unit 5 Faraday Office Park, Rankine Road Basingstoke, Hampshire RG24 8QB UK
Tel:+44-1256347090
www.oriental-motor.co.uk
ORIENTAL MOTOR (FRANCE) SARL
Tel:+33-1 47869750
www.orientalmotor.fr
ORIENTAL MOTOR ITALIA s.r.I.
Tel:+39-02-93906347
www.orientalmotor.it

ORIENTAL MOTOR ASIA PACIFIC PTE. LTD.
Singapore
Tel:1800-842-0280
www.orientalmotor.com.sg
ORIENTAL MOTOR (MALAYSIA) SDN. BHD.
el:1800-806-161
www.orientalmotor.com.my
ORIENTAL MOTOR (THAILAND) CO., LTD.
Tel:1800-888-881
www.orientalmotor.co.th
ORIENTAL MOTOR (INDIA) PVT. LTD.
Tel:1800-120-1995 (For English)
1800-121-4149 (For Hindi)
www.orientalmotor.co.in
TAIWAN ORIENTAL MOTOR CO., LTD.
Tel:0800-060708
www.orientalmotor.com.tw
SHANGHAI ORIENTAL MOTOR CO., LTD.
Tel:400-820-6516
www.orientalmotor.com.cn

NA ORIENTAL MOTOR CO., LTD.

Korea

Tel:080-777-2042
www.inaom.co.kr
ORIENTAL MOTOR CO., LTD.
4-8-1 Higashiueno, Taito-ku, Tokyo 110-8536 Japan
Tel:+81-3-6744-0361
www.orientalmotor.co.jp

[^0]: *1 Keep 20 m (65.6 ft .) or less for the wiring distance between the motor and driver.
 *2 Included with the product or sold separately.

[^1]: * Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "Acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

[^2]: * In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In network I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.

[^3]: * In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In network I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.

[^4]: * In direct I/O, turn the START input ON after setting the M0 to M5 inputs. In network I/O, the operation will be performed even when turning the M0 to M5 inputs and the START input ON simultaneously.

[^5]: *1 Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "Acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).
 *2 This signal is used when an encoder is connected.

[^6]: * After pulling out of the limit sensor, the motor rotates according to the set value in the "backward steps in 2-sensor mode home-seeking" parameter.

[^7]: * The acceleration/deceleration for continuous operation can be set as follows using the "acceleration/deceleration type" parameter:
 Separate: The acceleration/deceleration set under the applicable operation data No. will be followed. (Each 64 data for acceleration and deceleration)
 Common: The setting of the "common acceleration" and "common deceleration" parameter will be followed. (Each one data for acceleration and deceleration)

[^8]: *1 Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "acceleration/deceleration unit" parameter. (initial value: acceleration/deceleration rate).
 *2 This signal is used when an encoder is connected.

[^9]: * Acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$) or acceleration/deceleration time (s) can be selected using "acceleration/ deceleration unit" parameter. (initial value: acceleration/deceleration rate).

[^10]: * 1.2 sec or less for the electromagnetic brake type

[^11]: *1 Included with the product or sold separately.
 *2 This cable is provided as our product. Purchase it separately.

[^12]: - Number of connected driver: 1 unit
 - Address number: 0
 - Termination resistor: Set

[^13]: - Number of connected driver: 1 unit
 - Address number: 0
 - Termination resistor: Set

[^14]:

[^15]: Be sure to purchase the communication cable for the support software when connecting a driver to the PC in which the support software MEXE02 has been installed.
 This is a set of a PC interface cable and USB cable. The cable is connected to the USB port on the PC. The MEXE02 can be downloaded from Oriental Motor Website Download Page.

 Model: CC05IF-USB [5 m (16.4 ft.)]

