

ROS Package

Modbus RTU Node

Technical Material

4th Edition

Contents

1 Introduction .. 2

2 Caution ... 3

3 Preparation ... 4

4 Message .. 7

5 Package configuration .. 8

6 Build settings .. 10

7 Sample code .. 11

2/11

1 Introduction

■ Modbus RTU Node

Modbus RTU Node is a node that controls products that support Modbus RTU. Modbus RTU control can be achieved

simply by distributing ROS messages.

■Applicable Product

Stepping motor: AZ Series (Built-In Controller Type, Pulse Input Type with RS-485 communication)

AR Series (Built-In Controller Type)

RKⅡ Series (Built-in Controller Type)

CVD Series (RS-485 Communication Type)

Brushless motor: BLH Series (RS-485 Communication Type)

BLE Series (RS-485 Communication Type)

BLV Series

BLV Series (R Type)

■System requirements

OS: Ubuntu 20.04.2 LTS (Linux)

ROS distribution: noetic

ROS version: 1.15.11

■How to use the applicable products

 Please refer to the user’s manual for the details of the applicable products.

■ Connection to RS-485 communication connector

 Personal computers generally do not have a terminal for RS-485 communication. Therefore, in order to

perform RS-485 communication from a personal computer, RS-485 communication devices (RS-485 communication

board, USB-RS-485 communication conversion cable, etc.) are required. As we do not provide RS-485

communication devices, they have to be prepared at customers. For the connection between a RS-485

communication device and our driver, please refer to the user's manual of the product.

■RS-485 Communication Parameter

Only communication ID and Baudrate can be changed for RS-485 communication parameters. All other

communication parameters are used with the contents shown below.

RS-485 Communication Parameter Setting Range

Communication ID (Modbus) 1-31 *1-15 for BLH

Baudrate (Modbus)
9600, 19200, 38400, 57600, 115200, 230400 bps

The 230400 bps applies AZ, CVD, BLH and BLV R type only.

Communication Order (Modbus)

AZ, CVD, BLH and BLV R type only
Initial Value (0: EvenAddress-HighWord & Big-Endian)

Communication Parity Initial Value (1: even parity)

Communication Stop Bit Initial Value (0: 1 bit)

Communication Timeout (Modbus) [ms] Initial Value (0: No monitoring performed)

Communication Error Alarm (Modbus) Initial Value (3)

Transmission Waiting Time (Modbus)[ms]
Initial Value (3) AZ, CVD, BLH, BLV, R type

Initial Value (10) AR, RKⅡ, BLE, BLV

Silent Interval (Modbus) [ms]

AZ, CVD, BLH and BLV R type only

Initial Value (0: set automatically)

Slave error detection response (Modbus)

AZ, CVD, BLH and BLV R type only

Initial Value (1: an exception response is returned)

Group ID Initial Value (Modbus)

AZ, CVD, BLH and BLV R type only

Initial Value (-1: Disabled)

3/11

2 Caution

(1) For the construction of the system, check the specifications of each equipment and apparatus that

constitute the system, and use the product having sufficient margin in the rating and performance. Take

safety measures such as a safety circuit to minimize the risk or danger even if a failure occurs.

(2) To ensure safe use of the system, obtain manuals or operating manuals for each device and equipment that

constitute the system. Check the contents related to safety including “Safety Precautions” or “Safety

Summaries” prior to use.

(3) Customers are required to confirm the standards, regulations, and restrictions that the system should

comply with.

(4) Copying, reproducing, or redistributing all or part of this manual without permission of Oriental Motor

Co., Ltd. is prohibited.

(5) The contents and information in this manual are as of April 2022. The contents of this document are

subject to change without notice for improvement.

(6) This manual describes the procedures to establish communication connection of the equipment. It does not

describe the operation, installation and wiring methods of each device and equipment. For details other

than the procedures of communication connection, refer to the operation manuals of the applicable products.

(7) This document is intended for those with ROS and Linux expertise. Please note that inquiries related to

installation and usage of ROS, and Linux are not supported.

4/11

3 Preparation

3.1 Overview

Modbus RTU Node provides a wrapper from Modbus RTU communication to standardized ROS messages.

Processing is performed in the following flow.

1) User node distributes query data to Modbus RTU Node.

2) Modbus RTU Node subscribes the distributed data.

3) If the driver is communicable, the query is sent to the driver.

4) The response from the driver is analyzed and distributed to the user node.

5) Status is updated if an error occurs. Status is distributed to the user node at regular intervals.

3.2 How to install Modbus RTU Node

Create a user work folder in any location and perform build once. Then unzip the Modbus RTU Node package.

After unzipping, copy and paste the unzipped folder to (/home/catkin_ws/src) in the "src" folder of the user

work folder. After that, perform build with the catkin_make command, and if the build succeeds, installation

is complete.

① Creating a user working folder

② Build

$ cd ~/catkin_ws

$ catkin_make

*Though the user work folder can be created in any location, here it is created in the following folder.

User working folder: /home/catkin_ws/

*There are times when a file that should be automatically generated during the build is not generated and

the build fails. By performing build repeatedly, the file is generated and the build will succeed.

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/src

$ catkin_init_workspace

$ cd ~/catkin_ws

$ catkin_make

5/11

3.3 Connecting PC and driver

The connection method of a PC and driver is shown as below. Connect a commercially available LAN cable to

the RS-485 communication connector of the driver, convert it to USB with an RS485-USB converter, and connect

it to the PC. The RS485-USB converter has to be prepared by customers.

3.4 How to start Node

First, enter the "roscore" command from the terminal to launch the master. Then start the Modbus RTU Node

and user node from another terminal. Communication starts when the user node performs distribution. Modbus

RTU Node is launched by the launch command, which is a function of ROS. If the argument is omitted, the

default value will be set.

Argument name Type Description

com String type
Device file name corresponding to serial port

Default value (”/dev/ttyUSB0”)

topicID
Numerical

value type

ID (0 to 15) for identifying nodes and messages when multiple Modbus

RTU Nodes are activated. Default value (0)

baudrate
Numerical

value type

Baud rate [bps] 9600, 19200, 38400, 57600, 115200, 230400

Default value (9600)

updateRate
Numerical

value type

Cycle to distribute to user nodes [Hz] (status only)

0 to 1000 Default value (1)

*When the value is 0, regular distribution of status is not executed.

*The maximum cycle that can be delivered changes depending on the

environment.

firstGen String types
Specify the 1st generation slave ID (1 to 31)

"1,2,3...31" Default value (empty string)

secondGen String types
Specify the 2nd generation slave ID (1 to 31)

"1,2,3...31" Default value (empty string)

globalID String types

Share Control Global ID used in ID Share mode.

ID Share mode is not used when -1 is specified.

If omitted by the launch command, globalID will be treated as -1.

Range: -1, 1 to 127 Initial value: -1

asixNum String types

This is the number of driver axes that communicate in ID Share mode.

If omitted in the launch command, axisNum is treated as 1.

Range: 1-5 Default 1

※ Applicable series for ID Share mode: BLV R type, AZ Series mini driver

Driver

RS485-USB
converter

6/11

(Example 1) When using two pieces of the BLV (slave ID=1,2) and AZ (slave ID=3,4)

$ roslaunch om_modbus_master om_modbusRTU.launch com: ="/dev/ttyUSB0" topicID: =1 baudrate: =115200

updateRate: =1000 firstGen: ="1,2," secondGen: ="3,4,"

(Example 2) When using two pieces of the AZ (slave ID=1,2) set with Share Control Global ID=10 and

baudrate=230400[bps] in ID Share mode

$ roslaunch om_modbus_master om_modbusRTU.launch com: ="/dev/ttyUSB0" topicID: =1 baudrate: =230400

updateRate: =1000 firstGen: ="" secondGen: ="1,2," globalID: ="10" axisNum: ="2"

*1st generation: AR, RKII, BLE, BLV; 2nd generation: AZ, CVD, BLH, BLV R type.

*Up to 8 slave IDs can be specified for the 1st generation and 2nd generation altogether.

Since the name for com differs depending on the environment, enter ls /dev/tty in the terminal to check

the serial device name, and enter the displayed device name.

*The node name for Modbus RTU Node is om_modbusRTU□. The numerical value of the topicID is entered in the

box (□).

*To use the USB port, it is necessary to give the read/write authority of the USB port with the following

command.

$ sudo chmod 666 /dev/ttyUSB0

*When the same serial port is specified to start multiple nodes, the nodes will be forcibly terminated when

a message from the user node is delivered.

7/11

4 Message

This section describes the messages used with Modbus RTU Node. The initial value of each message is 0.

4.1 Distribution of query data

The following messages are delivered from the user node. The Modbus RTU Node receives the delivered message,

converts it to a query and sends it to the driver. When delivering a message, the topic name and message

name have to be declared. The topic name is “om_query□”, where the topicID specified when Modbus RTU Node is

started is entered in the box (□). The message name is "om_query” and is fixed.

Message name Type Description

slave_id int8 Slave ID (0-31)

func_code int8 Function code (0: read, 1: write, 2: read&write)

write_addr int32 Upper register address that is the starting point for write

read_addr int32 Upper register address that is the starting point for read

write_num int8 Number of write data (1 to 32) *1 to 60 in ID Share mode (depending on the

number of set axes)

read_num int8 Number of read data (1 to 32) *1 to 60 in ID Share mode (depending on the

number of set axes)

data[64] int32 Write data to register (specified only for write and read&write)

4.2 Response subscription

For read, and read&write, the response is parsed and delivered to the user node. For write, the response of

the driver is delivered as it is. When subscribing to response data, the topic name and message name have

to be declared. The topic name is “om_response□”, where the topicID specified when Modbus RTU Node is started

is entered in the box (□). The message name is "om_response” and is fixed.

4.3 Status subscription

Status information is delivered in a periodical cycle by the Modbus RTU Node. The frequency is specified by

the updateRate argument of the launch command. When subscribing to Status, the topic name and message name

has to be declared. The topic name is “om_state□”, where the topicID specified when Modbus RTU Node is started

is entered in the box (□). The message name is "om_response” and is fixed.

4.4 Node communication interval

When delivering continuously from the user node, provide spacing of the time until the status state_driver

changes from 1 to 0. When the status is not used, increase the interval by 50 [ms] or more (100 [ms] or more

when using the read&write of the 1st generation). When a message is delivered while state_driver is 1

(communication is in progress), it will be discarded and no errors will occur.

Message name Type Description

slave_id int8 Slave ID of the subscribed response

func_code int8 Function code of subscribed response

data[64] int32 Result of parsing the response from the driver

Message name Type Description

state_driver int8 0: Communication possible 1: Communication in progress

state_mes int8 0: No message 1: Message arrived 2: Message error

state_error int8 0: No error 1: No response 2: Exceptional response

8/11

5 Package configuration

The configuration of the package is as follows.

om_modbus_master

│

├─ include

│ └─ om_modbus_master

│ ├─ ICheckData.h

│ ├─ ICheckIdShareMode.h

│ ├─ IConvertQueryAndResponse.h

│ ├─ ISetMessage.h

│ ├─ ISetResponse.h

│ ├─ om_base.h

│ ├─ om_broadcast.h

│ ├─ om_first_gen.h

│ ├─ om_idshare_mode.h

│ ├─ om_node.h

│ ├─ om_ros_message.h

│ └─ om_second_gen.h

│

├─ launch

│ └─ om_modbusRTU.launch

│

├─ msg

│ ├─ om_query.msg

│ ├─ om_response.msg

│ └─ om_state.msg

│

├─ src

│ ├─ om_base.h

│ ├─ om_broadcast.cpp

│ ├─ om_first_gen.h

│ ├─ om_idshare_mode.cpp

│ ├─ om_node.h

│ ├─ om_ros_message.h

│ └─ om_second_gen.h

│

├─ sample

│ ├─ cpp

│ │ ├─ AZ

│ │ │ ├─ sample1_1.cpp

│ │ │ ├─ sample1_2.cpp

│ │ │ ├─ sample2_1.cpp

│ │ │ ├─ sample2_2.cpp

│ │ │ └─ sample3.cpp

│ │ │

│ │ └─ BLV

│ │ ├─ sample1_1.cpp

│ │ ├─ sample1_2.cpp

│ │ ├─ sample2.cpp

│ │ └─ sample3.cpp

│ │

│ └─ python

│ ├─ AZ

│ │ ├─ idshare_sample1_1.py

│ │ ├─ idshare_sample1_2.py

│ │ ├─ sample1_1.py

│ │ ├─ sample1_2.py

9/11

│ │ ├─ sample2_1.py

│ │ ├─ sample2_2.py

│ │ └─ sample3.py

│ │

│ ├─ BLV

│ │ ├─ sample1_1.py

│ │ ├─ sample1_1.py

│ │ ├─ sample1_2.py

│ │ ├─ sample2.py

│ │ └─ sample3.py

│ │

│ └─ BLV- R

│ ├─ idshare_sample1_1.py

│ └─ idshare_sample1_2.py

│

├─ CMakeLists.txt

└─ package.xml

The contents of each file are shown below

Name Description

om_modbusRTU.launch Specify nodes and parameters to start with roslaunch

om_query.msg Query data definition

om_response.msg Response data definition

om_state.msg Status data definition

om_ros_message.cpp ROS communication class source file

om_ros_message.h ROS communication class header file

om_base.cpp Serial communication class source file

om_base.h Serial communication class header file

om_first_gen.cpp Modbus RTU base class (1st generation) source file

om_firts_gen.h Modbus RTU base class (1st generation) header file

om_second_gen.cpp Modbus RTU derived class (2nd generation) source file

om_second_gen.h Modbus RTU derived class (2nd generation) header file

om_broadcast.cpp Modbus RTU derived class (broadcast) source file

om_broadcast.h Modbus RTU derived class (broadcast) header file

om_node.cpp Main function source file

om_idshare_mode.cpp ID Share mode source file

Om_idshare_mode.h ID Share mode header file

om_node.h Main function header file

ICheckData.h Interface

IConvertQueryAndResponse.h Interface

ICheckIdShareMode.h Interface

ISetMessage.h Interface

ISetResponse.h Interface

CMakeLists.txt Build settings

package.xml Information about the package name, version, author, etc.

sample1_1(.cpp、.py) Write sample (AZ, BLV)

sample1_2(.cpp、.py) Read sample (AZ, BLV)

sample2(.cpp, .py)

Motor operation sample (BLV)

3-wire operation At the time of shipment, operation data No.0 and

No.1 are set to VR1, and since the rotation speed is specified by

10/11

an external setter, the information is written to operation data

No.2.

sample2_1(.cpp, .py) Motor operation (stored data operation) sample (AZ)

sample2_2(.cpp, .py) Motor operation (direct data operation) sample (AZ)

sample3(.cpp, .py)

Motor operation (2 axes) and detection position monitor sample

(AZ)

Motor operation (2 axes) and detection speed monitor sample (BLV)

BLV-R/idshare_sample1_1.py Sample of motor operation (Read, Write) by ID Share mode

BLV-R/idShare_sample1_2.py Sample of motor operation (Read&Write) by ID Share mode

AZ/idshare_sample1_1.py Sample of motor operation (Read, Write) by ID Share mode

AZ/idshare_sample1_2.py Sample of motor operation (Read&Write) by ID Share mode

6 Build settings

ROS uses its own build system catkin. This is an extended CMake, and CMake describes the information necessary

for building in "CMakeLists.txt". The settings of “CMakeLists.txt” are shown below.

CMake version

cmake_minimum_required(VERSION 2.8.3)

Package name

om_modbus_master

C++11 is used

add_compile_options(-std=c++11)

Specify the dependent package

find_package(catkin REQUIRED COMPONENTS

 roscpp

 rospy

 std_msgs

 message_generation

)

Generate messages in the 'msg' folder

add_message_files(

 FILES

 om_query.msg

 om_response.msg

 om_state.msg

)

Generate added messages and services with any dependencies listed here

generate_messages(

 DEPENDENCIES

 std_msgs

)

Transmit the information specific to catkin which is necessary to generate CMake file to the build

system.

catkin_package(

 INCLUDE_DIRS include

CATKIN_DEPENDS roscpp rospy std_msgs message_runtime

)

11/11

include directory

include_directories(include ${catkin_INCLUDE_DIRS})

Target the executable file to build

add_executable(om_modbusRTU src/om_ros_message.cpp src/om_base.cpp src/om_first_gen.cpp

src/om_second_gen.cpp src/om_node.cpp src/om_broadcast.cpp src/om_idshare_mode.cpp)

add_dependencies(om_modbusRTU_node ${${PROJECT_NAME}_EXPORTED_TARGETS}${catkin_EXPORTED_TARGETS})

Specify which library the executable target should link against

target_link_libraries(om_modbusRTU ${catkin_LIBRARIES})

7 Sample code

User node samples (C++, Python) are included in the "sample" folder. The BLV Python sample code can be

executed by inputting the following code into the terminal: (Start Modbus RTU Node before executing the

sample code)

Refer to the comments in the sample source code for sample content.

$ cd ~/catkin_ws/src/om_modbus_master/sample/python/BLV

$ python sample1_1.py

*User working folder: /home/catkin_ws/

Modbus RTU Node is launched by the launch command shown below. (When the BLV sample is used)

$ roslaunch om_modbus_master om_modbusRTU.launch com:="/dev/ttyUSB0" topicID:=1 baudrate:=115200

updateRate:=1000 firstGen:="1,2,"

Also, when using the AZ in ID Share mode, the Python sample code can be executed by entering the following

code in the terminal. (Start Modbus RTU Node before executing the sample code)

$ cd ~/catkin_ws/src/om_modbus_master/sample/python/AZ

$ python idshare_sample1_1.py

*User working folder: /home/catkin_ws/

Modbus RTU Node is launched by the launch command shown below. (When the AZ ID Share mode sample is used)

$ roslaunch om_modbus_master om_modbusRTU.launch com:="/dev/ttyUSB0" topicID:=1 baudrate:=230400

updateRate:=1000 firstGen:="" secondGen:= "1,2," globalID:="10" axisNum:= "2"

Oriental Motor and its licensors shall not be liable for any direct or indirect loss, damage, etc. (including,

but not limited to damage to hardware or other software, loss of business profits, business interruption,

loss of business information etc.)

ORIENTAL MOTOR Co., Ltd.

April 15,2022

